Systems biosynthesis of secondary metabolic pathways within the oral human

microbiome member Streptococcus mutans

Rostyslav Zvanych, Nikola Lukenda, Xiang Li, Janice J. Kim, Satheeisha Tharmarajah and Nathan A. Magarvey

Supplementary Information:

Figure S1. Fragmentation profile of mutanobactin A. \mathbf{A} – fragments generated by CID have been identified and validated by incorporation of isotopically labeled amino acids and acetate. \mathbf{B} – the actual MS/MS spectrum of mutanobactin A.

Figure S2. The fragmentation profiles of mutanobactin B and its proposed isomer. The two compounds have distinct retention times (25.7 and 30.5 min), but identical MS/MS profiles. The structure indicated in blue is the structure of the proposed isomer of mutanobactin B (mutanobactin B2). The elemental composition of mutanobactin B2 was validated using HRMS (m/z 735.44735 calculated, m/z 735.44929 observed, 2.6 ppm).

Figure S3. The fragmentation profiles of mutanobactin A and mutanobactin E. The structure of mutanobactin E (in blue) was elucidated using the combination of MS/MS and incorporation of isotopically labeled building blocks. The elemental composition of the proposed structure was validated using HRMS (m/z 749.46300 calculated, m/z 749.46314 observed, 0.2 ppm).

Figure S4. The fragmentation profiles of mutanobactin B and mutanobactin F. The structure of mutanobactin F (in blue) was elucidated using the combination of MS/MS and incorporation of isotopically labeled building blocks. The elemental composition of the proposed structure was validated using HRMS (m/z 763.47865 calculated, m/z 763.47872 observed, 0.1 ppm).

Figure S5. The fragmentation profiles of mutanobactin A and mutanobactin G. The structure of mutanobactin G (in blue) was elucidated using the combination of MS/MS and incorporation of isotopically labeled building blocks. The elemental composition of the proposed structure was validated using HRMS (m/z 737.4266 calculated, m/z 737.4280 observed, 1.9 ppm).

Figure S6. The fragmentation profiles of mutanobactin A and mutanobactin H. The structure of mutanobactin H (in blue) was elucidated using the combination of MS/MS and incorporation of isotopically labeled building blocks. The elemental composition of the proposed structure was validated using HRMS (m/z 751.44226 calculated, m/z 751.44384 observed, 2.1 ppm).

Figure S7. The fragmentation profiles of mutanobactin A and mutanobactin I. The structure of mutanobactin I (in blue) was elucidated using the combination of MS/MS and incorporation of isotopically labeled building blocks. The elemental composition of the proposed structure was validated using HRMS (m/z 739.44226 calculated, m/z 739.44243 observed, 0.2 ppm).

Figure S8. The fragmentation profiles of mutanobactin A and mutanobactin J. The structure of mutanobactin J (in blue) was elucidated using the combination of MS/MS and incorporation of isotopically labeled building blocks. The elemental composition of the proposed structure was validated using HRMS (m/z 753.45791 calculated, m/z 753.45800 observed, 0.1 ppm).

Figure S9. The fragmentation profiles of mutanobactin A and mutanolin A. The structure of mutanolin A (in green) was elucidated using the combination of MS/MS and incorporation of isotopically labeled building blocks. The elemental composition of the proposed structure was validated using HRMS (m/z 842.4514 calculated, m/z 842.4511 observed, 0.4 ppm).

Figure S10. The fragmentation profiles of mutanobactin B and mutanolin B. The structure of mutanolin B (in green) was elucidated using the combination of MS/MS and incorporation of isotopically labeled building blocks. The elemental composition of the proposed structure was validated using HRMS (m/z 856.4671 calculated, m/z 856.4670 observed, 0.1 ppm).

Figure S11. The fragmentation profiles of mutanobactin A and mutanolin C. The structure of mutanolin C (in green) was elucidated using the combination of MS/MS and incorporation of isotopically labeled building blocks. The elemental composition of the proposed structure was validated using HRMS (m/z 971.4940 calculated, m/z 971.4945 observed, 0.5 ppm).

Figure S12. The fragmentation profiles of mutanobactin B and mutanolin D. The structure of mutanolin D (in green) was elucidated using the combination of MS/MS and incorporation of isotopically labeled building blocks. The elemental composition of the proposed structure was validated using HRMS (m/z 985.50969 calculated, m/z 985.50951 observed, 0.2 ppm).

Figure S13. The fragmentation profiles of mutanobactin A and mutanolin E. The structure of mutanolin E (in green) was elucidated using the combination of MS/MS and incorporation of isotopically labeled building blocks. The elemental composition of the proposed structure was validated using HRMS (m/z 1028.51550 calculated, m/z 1028.51530 observed, 0.2 ppm).

Figure S14. The fragmentation profiles of mutanobactin B and mutanolin F. The structure of mutanolin F (in green) was elucidated using the combination of MS/MS and incorporation of isotopically labeled building blocks. The elemental composition of the proposed structure was validated using HRMS (m/z 1042.53115 calculated, m/z 1042.52969 observed, 1.4 ppm).

Figure S15. Base peak chromatogram of cell extract of *S. mutans* UA159. The approximate regions where mutanobactins, mutanamide and mutanolins elute are indicated.

Figure S16. Clustering of metabolite features from the volcano plot. When m/z dimension is added to the volcano plot, molecular features pertaining to the wild-type strain (green circles) separate based on their corresponding m/z values. Clustering of the molecular features is represented by the contour plot, where red indicates dense clustering; two major clusters can be identified – around m/z 730 and m/z 400.

Figure S17. Identification and structure determination of mutanamide. **A** - the unexpected clustering around m/z 400 was due to m/z 399.3 (mutanamide), which was isolated and whose structure was elucidated. **B** – the chemical structure of mutanamide strongly resembles mutanobactin A, however, the latter contains D-alanine, whereas mutanamide – L-alanine.

Figure S18. Fatty acid incorporation by mutanamide and mutanobactin A. $\mathbf{A} - MS/MS$ analysis of original mutanamide (*m/z* 399.3) and two analogs (*m/z* 383.2 and *m/z* 369.2) that incorporated 8-nonenoic and 7-octenoic fatty acids, respectively. $\mathbf{B} - MS/MS$ analysis of original mutanobactin (*m/z* 721.4) and two analogs (*m/z* 705.4 and *m/z* 691.4) that incorporated 8-nonenoic and 7-octenoic fatty acids, respectively.

Figure S19. Results of Marfey's reaction to determine the exact stereochemistry of mutanamide. Mutanamide was fully hydrolyzed, reacted with Marfey's reagent and run on the HPLC-UV together with the L-leucine, D-leucine, L-alanine and DL-alanine standards.

Figure S20. Antiproliferative activity of mutanamide and mutanobactin A in HT-29 cells. Both mutanamide and mutanobactin A did not have any significant effect on the growth of HT-29 cells after 1 or 15 hours.

Figure S21. ¹H NMR spectrum of mutanamide in 100% methanol-d₄.

Figure S22. ¹³C DEPTq135 NMR spectrum of mutanamide in 100% methanol-d₄.

Figure S23. 2D COSY spectrum of mutanamide in 100% methanol-d₄.

Figure S24. 2D HSQC spectrum of mutanamide in 100% methanol-d₄.

Figure S25. 2D HMBC spectrum of mutanamide in 100% methanol-d₄.

Figure S26. 2D HSQC-TOCSY spectrum of mutanamide in 100% methanol-d₄.

Figure S27. 2D NOESY spectrum of mutanamide in 100% methanol-d₄.