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1 Supplementary Materials

In this section, the definitions of Bayesian network and Conditional Mutual information are introduced. In addition

more details of proposed algorithms are explained.

1.1 Preliminaries

1.1.1 Bayesian Network

Bayesian Networks (BNs), known also as belief networks, are the family of probabilistic graphical models1. A BN

is a DAG which consists of a set of vertices and a set of directed edges between vertices. If there is a directed edge

from A to B, we say that B is a child of A and A is a parent of B. Learning BNs from datasets consists of two stages.

In the first stage the skeleton of the BN is determined. This is called structural learning. In the second stage the

parameters of the BN are determined. This is called parameter learning. A BN, indicated by M = (G,θ G), consists

of a network structure, G, and a set of parameters, θ G, where parameters determine the conditional probabilities of

the model. The structure of BN consists of a DAG, G = (X,E(G)), where X denotes the set of vertices and E(G)

indicates the set of edges which represents dependency relationships between vertices.

The vector of parameters of BN, θ G, contains the parameter θxi|PaM(xi) = PM(xi|PaM(xi)), where xi denotes some

value of the Xi and PaM(xi) indicates some set of values for Xi’s parents. If Xi has no parent, then P(Xi|PaM(Xi)) is

equal to P(Xi). By using these conditional distributions, the joint distribution over X can be obtained as follows:

P(X1,X2, ...,Xn) = ∏
Xi∈X

P(Xi|PaM(Xi)).

If P(X ,Y |Z) = P(X |Z)P(Y |Z), then two vertices X and Y are conditionally independent given Z.

Basically, there are three methods for learning the structure of BNs from data; constraint-based methods2–8, score-

based searching methods9–11 and Hybrid methods12,13. Constraint-based methods apply information about Con-

ditional Independent (CI) test to determine dependency between vertices. The score-based searching methods

produce a series of candidate networks, calculate a score for each candidate and return a candidate with the highest

score. The hybrid method is a combination of this two methods. We refer to1 for the basic notions on BNs.

1.1.2 Conditional Mutual information

Mutual Information (MI) is a suitable tool for detecting nonlinear dependencies between genes and has been

widely used to infer GRNs14. Furthermore, MI is able to deal with thousands of genes and a limited number

of samples15. Gene expression data are typically modeled as continuous variables. With the widely adopted

hypothesis of Gaussian distribution for gene expression data. The measure of MI for two continuous variables X



3

and Y can be simply calculated using the following formula8,16.

MI(X ,Y ) =
1
2

log
σ2

X σ2
Y

σXY
, (1)

where σ2
X , σ2

Y and σXY indicate the variance of X , the variance of Y and the covariance between X and Y , respec-

tively. Similarly, CMI for continuous variables X and Y given the row vector of vertices Z can be determined by

formula8

CMI(X ,Y |Z) = 1
2

log
det(C(X ,Z))det(C(Y,Z))
det(C(Z))det(C(X ,Y,Z))

, (2)

where C(A) and det(C(A)) represent the covariance matrix of vector A and determinant of C(A), respectively. If X

and Y are conditionally independent given Z, then CMI(X ,Y |Z) = 0. The theory on MI and CMI has been deeply

studied and widely used for GRN inference8,14,16–19. PCA-CMI8 is a famous method which applied these measure

to detect the dependency between genes. The PCA-CMI is computationally feasible and runs fast to infer GRNs.

It is notable that result of PCA-CMI is dependent on the sequential ordering of vertices. It means that by changing

the sequential ordering of vertices, the result of PCA-CMI may be different.

1.1.3 PC Algorithm based on Conditional Mutual Information (PCA-CMI)

The PCA-CMI is computationally feasible and runs fast to infer GRNs.8. PCA-CMI is an iterative algorithm

and starts with a complete graph. The following describes the process of PCA-CMI which reconstructs GRNs by

extracting skeleton Si from Si−1.

Let Si (i =−1) be a complete undirected graph with vertex set X . This algorithm starts by setting i = i+1. Let X

and Y are adjacent in Si−1, and VXY =ADJ(X)
∩

ADJ(Y ), where ADJ(X) denotes the set of adjacent vertices of X ∈

X. Suppose that the size of VXY , |VXY |, is j. If i≤ j, for each i-subset of VXY such as M = {m1, ...,mi}, the i-order

CMI(X ,Y |M) is computed using Equation 2. Let CMImax(X ,Y |i) = maxM CMI(X ,Y |M). If CMImax(X ,Y |i) < θ

(θ denotes the threshold for CMI test), the edge between X and Y is removed from Si−1. Let Si be the skeleton of

the constructed graph, the above process are repeated until Si−1 = Si (i denotes the order of the algorithm). It is

notable that result of PCA-CMI is dependent on the sequential ordering of vertices. It means that by changing the

sequential ordering of vertices, the result of PCA-CMI may be different. Details of PCA-CMI are given in Table

S1. PCA-CMI is an iterative algorithm and starts with a complete graph. The process of PCA-CMI is indicated in

Figure S1.

According to the microarray data set for the expression values of genes G1,G2,G3,G4 and G5 in different samples,

the process of PCA-CMI which reconstructs GRNs is indicated in Figure S1. In step 1, the complete undirected

graph Si (i=−1) is generated according to the number of genes. In step 2, MI values are computed for each pairs of
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Table S1: The PC Algorithm based on CMI test (PCA-CMI)8

1: Start with a complete undirected graph S−1.
2: i = 0.
3: Repeat
4: For each X ∈ X,
5: For each Y ∈ ADJ(X),
6: Determine if there is M⊆VXY with |M|= i, such that X and Y given M are independent.
7: If this set exists,
8: remove the edge between X and Y from Si−1.
9: i = i+1.

10: Until i≤ |VXY |.

Figure S1: Diagram of the PCA-CMI. Microarray data set indicates gene expression data sets under different
conditions (samples). MI denotes the mutual information value between two genes. CMI indicates the conditional
mutual information value. The resulted PCA-CMI is compared to true network to evaluate.

genes and compared to the threshold θ . If the value of MI is smaller than a threshold, the edge between two genes

is deleted. Based on these MI values and threshold θ , edges G1−G3 and G1−G5 are removed from complete

network. In step 3, the first-order CMI between genes are calculated. By using θ , we have CMI(G1,G4|G2)< θ

and CMI(G3,G4|G2) < θ , so edges G1−G4 and G3−G4 are removed. In comparison with the true network,

edges G1−G2, G2−G4, G2−G3, G4−G5 and G3−G5 are correctly identified and edge G2−G5 is incorrectly

identified by PCA-CMI.

1.2 Methods

1.2.1 SORDER Algorithm

To clearly describe the SORDER Algorithm, some notations need to be introduced. The degree of a vertex X ∈ X

in graph G is represented by DegGX which equals to the number of vertices of G adjacent to X . A regular graph is

a graph in which all vertices have the same degree. Let R be a subset of X, the induced subgraph of G generated

by R, G[R], is a graph with vertex set R and edges of G with both ends in R. Edges of E(G[R]) represent the links
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between vertices of R in G. For set M, |M| indicates the number of elements of M. Suppose that, O1 and O2 denote

the sequential ordering of (X1, ...,Xk) and (Y1, ...,Ym), respectively. The concatenation of O1 and O2, represented

by O1
⊕

O2, is considered to be O1
⊕

O2 = (X1, ...,Xk,Y1, ...,Ym).

To overcome the disadvantage of PC algorithm i.e. the dependence on the sequential ordering of vertices, the

SORDER algorithm is proposed to select a suitable sequential ordering of vertices (genes) based on the degrees of

vertices in S0 (skeleton of order 0 resulted by PCA-CMI).

Node selection in SORDER algorithm is based on the maximum degree of nodes. In each step of SORDER

algorithm, node with maximum degree is selected, and the selection process are repeated until all nodes of graph are

chosen. When some nodes have the same degree in one step, an induced subgraph of these nodes are constructed.

In a similar manner, nodes in the induced subgraph are selected according to the maximum degree.Table S2 gives

the detail of SORDER algorithm.

Table S2: SORDER Algorithm

1: Set O = /0.
2: SORDER (G[X]).
3: { If G[X] is a regular graph,

O←O
⊕

random sequential ordering of X.
else
For each 0≤ u≤ n,
Ru={X |DegGX=u} ,

SORDER (G[Ru]) }.

1.2.2 CN Algorithm

The PCA-CMI depends not only on the sequential ordering of vertices, but also on the threshold value which is

used for CMI test. In the previous section, a suitable sequential ordering of vertices is determined using SORDER

algorithm. Different networks can be resulted by using different threshold values for CMI tests.

Suppose that [a b] is an interval of threshold values for CMI tests. For each θi = a+ i b−a
100 , 0≤ i < 100, network

Gi is constructed based on PCA-CMI using the sequential ordering generated by SORDER algorithm (SPCA-CMI)

with threshold θi and its sequential ordering. For two vertices X and Y , we define W (XY ) = |{i|XY∈E(Gi)}|
100 . W (XY )

denotes the reliability value of dependency between X and Y . In the CN algorithm, edge XY is removed from the

complete graph when, W (XY ) < φ , for threshold value φ . In order to assign a suitable value for φ , the Receiver

Operating Characteristic (ROC) curve is drawn by the TPR and FPR obtained by the CN algorithm. In this work

we consider φ = 0.6 a value in which TPR and FPR have simultaneously appropriate values. Table S3 gives this

process of the CN algorithm.
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Table S3: Details of the CN algorithm. SPCA-CMI: PCA-CMI based on sequential ordering of genes which
obtained by SORDER algorithm.

1: For each θi = a+ i b−a
100 , 0≤ i < 100,

Run SPCA-CMI using threshold θi to reconstruct graph Gi = (X,E(Gi)).
2: For two vertices X ∈ X and Y ∈ X define

W (XY ) = |{i|XY∈E(Gi)}|
100 .

3: Reconstruct graph G=(X,E(G)) where X denotes the set of vertices and E(G) = {XY |W (XY )≥ 0.6}.

1.2.3 CNMIT Algorithm

The resulted CN is an undirected network. We introduce an algorithm, namely CNMIT algorithm, to give direction

to edges of skeleton that are determined by CN algorithm. In order to describe the CNMIT algorithm, some

definitions need to be presented.

The score-based searching methods assign a score to each network structure. Then, the structure with the highest

score is selected by the search algorithm. Given a scoring function, the task is to find the highest-scoring network

structure among the set of all possible network structures.

3.3.1 Search Algorithm

A Hill climbing (HC) algorithm is particularly popular in search algorithms. A HC algorithm traverses the search

space by starting from an initial DAG, then an iterative procedure is repeated. At each procedure, only local

changes such as edge addition which inserts a single edge between two nonadjacent vertices, edge deletion which

removes a single edge between two vertices and edge reversal which reverses the direction of a single edge between

two vertices are considered. The algorithm stops when there is no local change improvement of the scoring function

value. Obviously, when we work with heuristic search algorithms we are not guaranteed to find a global optimal

structure but only a local optimal structure. In order to scape local maximum, the algorithm can restart with

different initial DAGs20.

3.3.2 Scoring Function

There are many scoring functions to measure the degree of fitness of a DAG, G, to a data set D10,21–27. One of the

famous scoring functions is a MIT score which is defined as follows10:

gMIT (G,D) =
n

∑
i=1, PaM(Xi )̸= /0

(2NMID(Xi,PaM(Xi))−max
σi

si

∑
j=1

χα,li,σi( j)
), (3)

where N denotes the total number of measurements in D and MID(Xi,PaM(Xi)) is the mutual information between

Xi and its parents as estimated from D. Given a graph G, let si be the number of parents of Xi, i.e si = |PaM(Xi)|.
χα ,li,σi( j)

is the value that P(χ2(li,σi( j)) ≤ χα,li,σi( j)
) = α (the Chi-squared distribution at significance level 1−α),

the term li,σi( j) denotes the degrees of freedom and determined by:

li,σi( j) =

 (ri−1)(riσi( j)−1)∏ j−1
k=1 riσi(k) j = 2, ...,si

(ri−1)(riσi(1)−1) j = 1
(4)
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where σi = [σi(1), ...,σi(si)] indicates any permutation of the index set (1, ...,si) of the variables in PaM(Xi) =

{Xi1, ...,Xisi}. For more details of MIT score see10.

In this work, we apply the search algorithm (HC algorithm) based on the scoring function (MIT score) to give

direction to the resulted CN algorithm. The details of CNMIT algorithm are given in Table S4.

Table S4: Details of the CNMIT algorithm. CN: Consensus Network Algorithm; HC algorithm: Hill Climbing
algorithm.

1: Run CN algorithm to obtain skeleton S
2: Apply the HC algorithm based on MIT score to direct the edges of S

1.3 Results

Two real data set are applied in this work. Figure S2 illustrates the structure of Gene-gene interaction between the

nine genes of SOS network in E.coil28. The time course profiles for a set of 8 genes, part of the SOS pathway

Figure S2: E. coli SOS pathway for 9 genes.

of E. coli29 are selected29. Figure S3 illustrates the structure of E.coil network which contains 8 genes and 7

edges. Table S5 indicates results of SPCA-CMI and CN algorithms and methods studied by Zhang8 for DREAM3

Figure S3: E. coli SOS pathway of 8 genes.
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with 10 nodes and 10 edges. Results of this table are related to the threshold value of 0.05 for MI and CMI tests

in PCA-CMI. As shown by Table S5, TP, ACC, PPV, F-measure, MCC and TPR under other algorithms are less

than those of the CN algorithm. Therefore, it can be deduced that the CN algorithm is more powerful in structure

learning than other methods studied by Zhang. Results of employing proposed algorithms on DREAM3 Challenge

Table S5: Comparison of different methods for Learning DREAM3 Challenge with 10 genes and 10 edges. LASSO: regression
based method; LP: linear programming based method; PCA-PCC: PC-algorithm based on partial correlation coefficient; MI:
MI method; PCA-CMI: Path Consistency Algorithm based on Conditional Mutual Information with threshold 0.05 for CMI;
SPCA-CMI: PCA-CMI based on sequential ordering of genes which obtained by SORDER algorithm; CN: Consensus Network
Algorithm. The best performer for the relative item is noted in bold.

Method TP FP TPR FDR PPV ACC MCC F-measure
LASSO 7 34 0.7 0.83 0.17 0.17 -0.4 0.27
LP 2 21 0.2 0.91 0.08 0.36 -0.33 0.12
PCA-PCC 8 1 0.8 0.1 0.89 0.93 0.8 0.84
MI 9 3 0.9 0.25 0.75 0.91 0.77 0.82
PCA-CMI 7 1 0.7 0.13 0.87 0.91 0.73 0.78
SPCA-CMI 7 1 0.7 0.13 0.87 0.91 0.73 0.78
CN 9 1 0.9 0.1 0.9 0.96 0.87 0.9

database with 50 genes and 77 edges have been represented in Table S6. The value of 0.05 and 0.1 are chosen as the

Table S6: Comparison of different methods for learning DREAM3 Challenge with 50 genes and 77 edges. LASSO:
regression based method; LP: linear programming based method; PCA-PCC: PC-algorithm based on partial corre-
lation coefficient; MI: MI method; PCA-CMIZ: Path Consistency Algorithm based on Conditional Mutual Infor-
mation with threshold 0.1 for CMI which reported by Zhang, 2012; PCA-CMI: Path Consistency Algorithm based
on Conditional Mutual Information with threshold 0.05 for CMI; SPCA-CMI: PCA-CMI based on sequential or-
dering of genes which obtained by SORDER algorithm; CN: Consensus Network Algorithm. The best performer
for the relative item is noted in bold.

Method TP FP TPR FDR PPV ACC MCC F-measure
LASSO 30 32 0.39 0.52 0.49 0.94 0.4 0.43
LP 8 7 0.1 0.45 0.55 0.94 0.22 0.17
PCA-PCC 35 93 0.45 0.73 0.27 0.89 0.3 0.34
MI 38 55 0.5 0.59 0.41 0.92 0.41 0.45
PCA-CMIZ 22 21 0.29 0.49 0.51 0.93 0.35 0.36
PCA-CMI 30 34 0.39 0.53 0.47 0.93 0.4 0.43
SPCA-CMI 32 32 0.42 0.5 0.5 0.94 0.42 0.46
CN 39 29 0.51 0.42 0.58 0.95 0.51 0.54

thresholds for CMI tests to determine the presence of dependency between genes. The TP, ACC, PPV, F-measure,

MCC and TPR measures receive larger values applying SPCA-CMI and CN algorithms to infer GRNs. This shows

that the CN algorithm has superior performance. Results of DREAM3 with 100 nodes and 166 edges have been

illustrated in Table S7. To determine the dependency among genes, both 0.05 and 0.1 thresholds for CMI tests are

considered. As shown by Table S7, the ACC, PPV, F and MCC measures received larger values by CN algorithm

for inferring about DREAM3 with 100 nodes.
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Table S7: Comparison of different methods for Learning DREAM3 Challenge with 100 genes and 166 edge.
LASSO: regression based method; LP: linear programming based method; PCA-PCC: PC-algorithm based on
partial correlation coefficient; MI: MI method; PCA-CMIZ: Path Consistency Algorithm based on Conditional
Mutual Information with threshold 0.1 for CMI which reported by Zhang, 2012; PCA-CMI: Path Consistency
Algorithm based on Conditional Mutual Information with threshold 0.05 for CMI; SPCA-CMI: PCA-CMI based
on sequential ordering of genes which obtained by SORDER algorithm; CN: Consensus Network Algorithm. The
best performer for the relative item is noted in bold.

Method TP FP TPR FDR PPV ACC MCC F-measure
LASSO 132 1549 0.79 0.92 0.08 0.68 0.18 0.14
LP 36 327 0.22 0.9 0.1 0.91 0.1 0.1
PCA-PCC 97 204 0.58 0.68 0.32 0.95 0.41 0.41
MI 84 119 0.51 0.59 0.41 0.96 0.44 0.45
PCA-CMIZ 46 25 0.27 0.35 0.64 0.97 0.41 0.38
PCA-CMI 57 48 0.34 0.46 0.54 0.97 0.42 0.42
SPCA-CMI 68 36 0.41 0.35 0.65 0.97 0.51 0.51
CN 72 35 0.43 0.33 0.67 0.98 0.53 0.53

Table S8: Best result for SPCA-CMI algorithm. TH: The threshold in which SPCA-CMI algorithm achieve the
best result; D10: DREAM10; D50: DREAM50; D100: DREAM100.

Data TH TP FP TPR FDR PPV ACC MCC F-measure
D10 0.1 8 0 0.8 0 1 0.96 0.87 0.89
D50 0.037 38 32 0.5 0.02 0.54 0.94 0.49 0.52
D100 0.037 79 44 0.48 0.01 0.62 0.97 0.53 0.54

Tables S5 to S7 show that CN algorithm not only can remarkably reduce the number of FP but also it can

successfully find more true edges. Results of using different algorithms for the real data set with 9 genes have been

represented in Table S9. The threshold value for CMI test is determined to be 0.01. Table S9 indicates that TP,

ACC, PPV, F-measure, MCC and TPR measures receive larger values when applying the CN algorithm to infer

GRNs.

Table S8 represents the best results for SPCA-CMI algorithm. First column corresponds to different networks

that are studied in this work. Second column considers threshold values for CMI test. From this table, it is demon-

strated that SPCA-CMI algorithm dominate the method of PCA-CMI. Tables S10 and S11 indicate results of

CNMIT algorithm and methods studied by Zhang16 for DREAM3 with 50 and 100 nodes. According to these

tables LASSO2012, LPMethod and RO have large value for FP. ARACNE contains best TP value in comparison

other methods but it has FP strictly higher than GENIE3, NARROMI and CNMIT methods. Results of CN algo-

rithm contain small value for FP, so FP values for CNMIT algorithm are strictly less than those of other methods

for directed networks.
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Table S9: Comparison of different methods for learning SOS network with 9 genes. LASSO: regression based
method; LP: linear programming based method; PCA-PCC: PC-algorithm based on partial correlation coefficient;
MI: MI method; PCA-CMIZ: Path Consistency Algorithm based on Conditional Mutual Information with threshold
0.01 for CMI which reported by Zhang, 2012; SPCA-CMI: PCA-CMI based on sequential ordering of nodes which
obtained by SORDER algorithm; CN: Consensus Network Algorithm. The best performer for the relative item is
noted in bold.

Method TP FP TPR FDR PPV ACC MCC F-measure AUC
LASSO 9 4 0.37 0.31 0.69 0.47 0.04 0.48 0.61
LP 5 1 0.21 0.16 0.83 0.44 0.16 0.33 0.59
PCA-PCC 12 3 0.5 0.2 0.8 0.58 0.24 0.61 0.67
MI 16 3 0.66 0.16 0.84 0.69 0.39 0.74 0.73
PCA-CMIZ 16 4 0.67 0.2 0.8 0.67 0.32 0.73 0.74
SPCA-CMI 16 4 0.67 0.2 0.8 0.67 0.32 0.73 0.74
CN 19 3 0.8 0.14 0.86 0.78 0.52 0.83 0.75

Table S10: Results of directed networks. Comparison of different methods for Learning DREAM3 Challenge with
50 genes and 77 edges. LASSO2012: regression based method; LPMethod: linear programming based method;
RO: recursive optimization based method; ARACNE: MI-based method; GENIE3-FR-sqrt0: GENIE3 method
with parameter ’sqrt for one case; GENIE3-FR-all: GENIE3 method with parameter ’all’ that is time consuming in
this case; NARROMI: method based on RO and MI; CNMIT: Consensus Network algorithm based on MIT score.
The best performer for the relative item is noted in bold.

Method TP FP TPR FDR PPV ACC MCC F-measure
LASSO2012 27 148 0.35 0.84 0.15 0.91 0.19 0.21
LPMethod 30 97 0.39 0.76 0.23 0.94 0.27 0.29
RO 38 150 0.5 0.8 0.2 0.92 0.28 0.28
ARACNE 45 94 0.6 0.7 0.33 0.95 0.4 0.42
GENIE3-FR-sqrt 37 89 0.48 0.71 0.29 0.94 0.34 0.36
GENIE3-FR-all 34 83 0.44 0.71 0.28 0.94 0.3 0.34
NARROMI 41 71 0.53 0.63 0.36 0.95 0.41 0.43
CNMIT 30 38 0.39 0.55 0.44 0.97 0.4 0.42

Table S11: Results of directed networks. Comparison of different methods for Learning DREAM3 Challenge with
100 genes and 166 edges. LASSO2012: regression based method; LPMethod: linear programming based method;
RO: recursive optimization based method; ARACNE: MI-based method; GENIE3-FR-sqrt0: GENIE3 method
with parameter ’sqrt’ for one case; GENIE3-FR-all: GENIE3 method with parameter ’all’ that is time consuming
in this case; NARROMI: method based on RO and MI; CNMIT: Consensus Network algorithm based on MIT
score. The best performer for the relative item is noted in bold.

Method TP FP TPR FDR PPV ACC MCC F-measure
LASSO2012 30 497 0.18 0.94 0.05 0.93 0.04 0.07
LPMethod 67 450 0.4 0.87 0.12 0.94 0.2 0.19
RO 62 832 0.37 0.93 0.06 0.9 0.12 0.11
ARACNE 84 322 0.5 0.79 0.2 0.95 0.3 0.29
GENIE3-FR-sqrt 70 198 0.42 0.73 0.26 0.97 0.31 0.31
GENIE3-FR-all 74 255 0.44 0.77 0.22 0.96 0.3 0.29
NARROMI 77 237 0.46 0.75 0.24 0.96 0.31 0.31
CNMIT 58 59 0.35 0.5 0.5 0.98 0.41 0.41
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2 User Manual

2.1 Introduction

CN algorithm is a Matlab code for learning Gene Regulatory Network (GRN) structure. It implements algorithm

for learning the structure using the Mutual Information Test (MIT) criterion, as presented in8. In CNMIT algo-

rithm, HC algorithm based on MIT score is applied to direct the edges of resulted structure by CN algorithm.

Softwares are in the form of MATLAB and JAVA codes. The source of data sets and codes are available at

htt p : //bs.ipm.ir/so f twares/CN. You can download all functions and data set in this site.

2.2 Installation

The Matlab codes are ready for use. The main files are listed in Tables S12 which contains all the main functionas.

Table S12: The Main functions for SORDER, CN and CNMIT algorithms

File Description
pca-cmi An algorithm for inferring gene regulatory networks from gene expression data.
sorder.m The SORDER algorithm to select a suitable sequential ordering of vertices.
MBluePen.m Is a java path for RedPen2.jar.
RedPen2.jar Is a java code for selecting a network with maximum MIT score.
direct.m Direct the result of CN algorithm.
cn.m A heuristic algoritm to infer gene regulatory networks from gene expression data.
cnmit.m A heuristic algoritm to infer direct gene regulatory networks from gene expression data.
compareTrue.m Compare a network with a true directed network.
compare.m Compare a network with a true network.
demo.m A walk-through demonstration

2.3 Usage and Examples

In this section, we demonstrate the use of our algorithms for structure learning via a set of walk-through examples.

The code for these examples can be found in the demo.m file. We first load the Dream3 data set and its true network

by the following codes:

data=load(‘Dream10.txt’);

load(‘TT.txt’);

‘data file’ is expression of variable, in which row is sample and column is the variable. ‘True Network.txt’ is an

undirected true network for the data set.

DREAM3 Challenge data sets with n variables and n samples (n = 10,50,100) contain true networks and data
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generated from these networks as described in30–32.

PCA-CMI

We first get the structure of network set by PCA-CMI. For example:

lamda=0.05;

order0=2;

[G,Gval,order] = pca− cmi(data, lamda,order0);

This function takes three parameters:

• data: Gene expression data.

• lamda: The significance level for the mutual information test of independence.

• order0: Is the order of the algorithm.

This function returns three outputs:

• G: The 0-1 symmetric network or graph after PCA-CMI. The value of 1 indicates the existence of edges

between two mentioned nodes.

• Gval: The network which shows the strength dependence. It contain values of MI or CMI.

• order: Is the order of the PCA-CMI.

SORDER algorithm

The SORDER algorithm is proposed to select a suitable sequential ordering of vertices (genes) based on the degrees

of vertices in G.

[sor] = sorder(G);

This function takes one parameter:

• G: The 0-1 adjacency matrix for resulted network by PCA-CMI.

This function returns one output:

• sor: A suitable sequential ordering of vertices (genes).
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Figure S4: Network G with vertex set X = {a,b,c,d,e, f}.

For example for a structure of network given in Figure S4, adjacency matrix G is determined by:

a b c d e f



a 0 1 1 0 0 1

b 1 0 0 1 0 0

c 1 0 0 1 1 1

d 0 1 1 0 0 0

e 0 0 1 0 0 0

f 1 0 1 0 0 0

The result of SORDER algorithm is a sequential order : O = {c,a,b,d, f ,e}.

CN algorithm

In CN algorithm we applied an interval threshold for dependency determination to construct consensus network.

We also apply SORDER algorithm to select the sequential ordering of vertices.

This algorithm takes an interval threshold for MI and CMI value such as:

lamdaa=0.03:0.001:0.05;

It also gets a threshold for construct consensus network.

th=0.6;

[GGT T ] = cn(data, lamdaa,order0, th);

This function takes four parameters:

• data: Gene expression data.

• lamdaa: The interval threshold for the mutual information test of independence.

• order0: Is the order of the algorithm.

• th: a threshold for construct consensus network.
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This function returns one output:

• GGTT: The 0-1 symmetric network or graph after CN algorithm.

The MIT score is implemented within the Elvira system (a JAVA package for learning the structure of BN10). The

Elvira package can be downloaded from http://leo.ugr.es/elvira/.

The MIT score is available at /bayelvira2/elvira/learning/MITMetrics.java. In this study, we rewrite the MIT score

program (Red.Pen2) which, in comparison to the Elvira system, reduces running time and memory occupied by

the algorithm33. MBluePen.m is a java path for RedPen2.jar. For example when you save the RedPen2.jar in drive

C in folder program, you have: ′/C : /Users/program/RedPen2. jar′.

CNMIT algorithm

The result of CN algorithm is an undirected graph, HC algorithm based on MIT score is applied to direct edges of

resulted network by CN algorithm.

For example we have:

[ f inalgraphCon] = cnmit(network,data,chi2States,retryCount,hillClimbing);. This function takes five parame-

ters:

• network:The resulted network by CN algorithm.

• data:Gene expression data.

• chi2States:The number of states which considered for variables.

• retryCount:The number of repetition for Hill Climbing (HC) algorithm.

• hillClimbing:The default is True, it means that HC algorithm is used for search method.

This function has one output:

• finalgraphCon: The 0-1 non symmetric direct network. 1 indicates the existence of direct edge from parent

to child.
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