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1 Relation between environmental conditions and basic

structural properties of the metabolic networks

1.1 Average total degree

The total degree of a node is the total number of arcs (directed edges) connected to that node,
where the arc can be pointing in either direction (i.e. we sum the in-coming and out-going arcs
to and from that node). The average total degree d;-"t for the jth network is then calculated by

taking the mean over all nodes in the network.

Habitat variability

Figure (a) shows that the trend for the average total degree is to increase with variability
in the environment, although not monotonically. In Figure (b) we plot the average total
degree against our global significance score Pyoba1 and find a significant correlation (r = 0.8983,
p<1079).
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Figure S1: (a) Relationship between environmental variability and the average total degree for
the 6 environmental classes. Note that here we plot the mean value over each environmental
class: Obligate, Specialised, AQuatic, Facultative, Multiple and Terrestrial. (b) The average
total degree plotted against the global significance score Pyiopal for the 115 bacterial networks.
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Figure S2: (a) Relationship between growth conditions, specifically oxygen requirements, and
the average total degree. Note that here we plot the mean value over each class and error bars
represent standard errors. (b) The average total degree plotted against the global significance
score Pyionar for the 383 bacterial networks.



Oxygen requirements

Figure |S2| (a) shows that the average total degree does not appear to follow any particular trend

regarding oxygen requirements, despite being correlated to the global significance score Pyobal
(r =0.7932, p < 107°) (Figure [S2 (b)).

1.2 Average path length

The average path length L is defined as the average shortest path length between all pairs of
nodes in the network. L is measure of how efficient information can be transported across the

network.

Habitat variability

Figure [S3| (a) shows that the average path length is the smallest for the networks within the
obligate class (i.e. the most specialised) and the largest for the terrestrial class (i.e. the most
varied). The specialised, aquatic, facultative and multiple class however, all have very similar
values. In Figure [S3| (b) we have plotted the average path length against the global significance
score Pyoba and find a significant correlation (r = 0.8723, p < 107°).
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Figure S3: (a) Relationship between environmental variability and the average path length for
the 6 environmental classes. Note that here we plot the mean value over each environmental
class: Obligate, Specialised, AQuatic, Facultative, Multiple and Terrestrial. (b) The average
path length plotted against the global significance score Pyobar for the 115 bacterial networks.

Oxygen requirements

Figure (a) shows that the mean average path length is larger for the metabolic networks
that evolved in the presence of oxygen, that is, the aerobic and facultative class. In Figure [S4]
(b) we have plotted the average path length against the global significance score Pyjopa for the
383 metabolic networks and find a significant correlation (r = 0.8617, p < 1079).



X Acrot
8.8¢ 1 0.9 X Facultative % ¥x
O Anacrobic x* X
* %
x xxx ¥ :‘
- A
= X
éD 8.4r 7 x X xi&%‘ ond? c!
2 07F x 8 %;‘* *
— e x % x % & x
= = X% %"‘ % Jx“ °
= E) o
& Ay x x’fb x* 9 o
% x0¥ §8 xX o °
< s0f ] * ox o
4 x "5 X0 x x
< 0. x O ﬁ x
% x *
x x
x X
7.61
)(i *
* x
Aerot Facultat Anaerobic 2 6 10
Oxygen Requirements Average Path Length
(a) (b)

Figure S4: (a) Relationship between growth conditions, specifically oxygen requirements, and
the average path length. Note that here we plot the mean value over each class and error bars
represent standard errors. (b) The average path length plotted against the global significance
score Pyiopal for the 383 bacterial networks.

1.3 Clustering coefficient

The clustering coefficient measures the extent to which the nodes in the network tend to cluster.
More formally, the clustering coefficient is defined as the fraction of a nodes neighbours that
are also neighbours of each other. We compute the average clustering coefficient by taking the

mean value over all nodes within the network.

Habitat variability

Figure [Sh| (a) shows that the clustering coefficient does not follow any particular trend as regards
environmental habitat. Figure |S5| (b) shows that the average clustering coefficient is only weakly
correlated with the global significance score Pyoba (r = 0.2531, p < 0.01).

Oxygen requirements

Figure [S6| (a) shows a relationship similar to the average total degree (Figure , that is, the
facultative class has a significantly larger amount of clustering present than the aerobic and
anaerobic classes. Figure (b) shows that the average clustering coefficient and the global
significance score Pyoba are not correlated (r = 0.0737, p = 0.1489).

See [2] for more details concerning the network measures above.

1.4 Spearman’s partial correlation between P and environment con-

ditioned on basic network measures

Spearman’s partial correlation between X and Y conditioned on Z allows one to compute the

correlation between X and Y, discounting the correlations between X and Z and between Y



0.032

0.028

Average Clustering Coefficient

0.026

0.9 0 1
Y [
00%, ©c,0 0
. % o
o [
o %O O ®o
o X
o
i x % »gd < %
2 o ox
2 o0Tr o o x X 4
= x
=0
RS Ox
o
o x
4 x x
x
x x
x %X
0.5 X 1
%, x
x x % x
b x
x
x X o
0 s AQ F M I 0.02 0.03 0.04 0.05
Environment Average Clustering Coefficient
(a) (b)

Figure S5: (a) Relationship between environmental variability and the average clustering
coefficient for the 6 environmental classes. Note that here we plot the mean value over each
environmental class: Obligate, Specialised, AQuatic, Facultative, Multiple and Terrestrial. (b)
The average clustering coefficient plotted against the global significance score Pyiopar for the 115
bacterial networks.
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Figure S6: (a) Relationship between growth conditions, specifically oxygen requirements, and
the average clustering coefficient. Note that here we plot the mean value over each class and
error bars represent standard errors. (b) The average clustering coefficient plotted against the
global significance score Pyionar for the 383 bacterial networks.



and Z [I]. We computed the correlation between the global motif significance score and both
variability and oxygen requirements conditioned on the simpler network metrics considered in
the previous section (degree, path-length and clustering) and found that our results remained
significant (¢ = 1, p < 1073 in all instances). Note that we use Spearman’s correlation since the
data consists of a mixture of both ordinal and continuous values; correlations were computed

using the partialcorr function which is available in the MATLAB Statistics Toolbox.

2 Motif dictionary

The motif dictionary provides a graphical description of the 13 3-node subgraphs and the 199
4-node subgraphs used in this study. Here, the top label corresponds to a motif’s identification
number when using the mfinder software (http://www.weizmann.ac.il/mcb/UriAlon/

groupNetworkMotifSW.html), whereas the bottom labels correspond to the motif numbering

used in this work.

2.1 3-node subsgraphs
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2.2 4-node subgraphs
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3 Significant metabolites: Motif 9

3.1 Habitat variability

Figure shows the mean frequency for metabolites occurring within motif 9 for the 115
metabolic networks, grouped into the specialised (blue bars) and varied (red bars) classes. Here
metabolites are displayed in decreasing order according to the varied class. Figure [S7] shows the
54 metabolites that were found at least once across the 115 metabolic networks. We find that
the distribution of metabolites is slightly broader for the varied class, similar, but less prominent,
to the results obtained for motif 5. Using Chi-square tests (Fisher’s Exact test) we explored
group differences for the individual metabolites. Figure [S§|identifies only one metabolite, RNA,
for which significant differences were found (Fisher’s Exact test, p < 0.001).

3.2 Oxygen requirement

Figure [S9 shows the mean frequency for metabolites occurring within motif 9 for the 383
metabolic networks that evolved in either the presence or absence of oxygen. Here metabolites
are displayed in decreasing order according to the aerobic class (blue bars). Figure [S9shows the
65 metabolites that were found at least once across the two classes. Note that the distribution
for the aerobic class and anaerobic class for motif 9 are a lot closer than was obtained for motif 5.
Figure shows that the metabolites with the most significant differences (Fisher’s Exact test,
p<0.001) included Glutathione, L-Arginine, L-Citrulline, N-(L-Arginino)succinate, Succinate,

Succinyl-CoA and O-Succinyl-L-homoserine.
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Figure S7: Mean normalised frequency for the 54 metabolites obtained for the 115 metabolic
networks. Blue bars represent the specialised class and the red bars represent the varied class.
Here, the metabolites are in descending order of the metabolite frequencies for the varied class.
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Figure S8: Mean normalised frequency for the 54 metabolites obtained for the 115 metabolic
networks. Error bars are standard errors. Asterisks indicate levels of significance, with *, **
and *** corresponding to p < 0.05, p < 0.01 and p < 0.001, respectively. Metabolite names are
provided for the most significant metabolites.
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Figure S9: Mean normalised frequency for the 65 metabolites obtained for the 383 metabolic
networks. Blue bars represent the aerobic-facultative class and the red bars represent the
anaerobic class. Here, the metabolites are in descending order of the metabolite frequencies for
the aerobic and facultative class.
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Figure S10: Mean normalised frequency for the 65 metabolites obtained for the 383 metabolic
networks. Error bars are standard errors. Asterisks indicate levels of significance, with *, **
and *** corresponding to p < 0.05, p < 0.01 and p < 0.001, respectively. Metabolite names are
provided for the most significant metabolites.
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