Supplementary Material

A microscopic insight from conformational thermodynamics to functional ligand binding in proteins

Samapan Sikdar¹, J. Chakrabarti^{1,2} * and Mahua Ghosh¹ *

1

Department of Chemical, Biological And Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700098, INDIA

2

Also at Unit of Nanoscience and Technology-II and The Thematic Unit of Excellence on Computational Materials Science, S. N. Bose National Center for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700098, INDIA

*Corresponding authors:

E.mail: jaydeb@bose.res.in and mahuaghosh@bose.res.in

Supplementary Material:

Supplementary Tables S1-S3

Supplementary Figures S1-S6

Table S1. Conformational thermodynamic changes (kJ/mol) of all the dihedrals of the metal binding loop aspartates upon Ca²⁺ binding to native apo-aLA. The ΔG_i^{conf} and $T\Delta S_i^{conf}$ in the last two columns indicate the total change for each residue by adding individual dihedral contributions.

	ΔG_{ϕ}^{conf}	$T\Delta S_{\phi}^{conf}$	ΔG_{arphi}^{conf}	$T\Delta S_{\psi}^{conf}$	$\Delta G^{conf}_{\chi 1}$	$T\Delta S_{\chi 1}^{conf}$	$\Delta G^{conf}_{\chi 2}$	$T\Delta S_{\chi 2}^{conf}$	ΔG_i^{conf}	$T\Delta S_i^{conf}$
D82	-0.75	-1.25	2.0	-0.2	-0.5	-1.1	-0.05	-1.0	0.7	-3.5
D84	0.5	0.1	-0.1	1.65	1.5	-0.2	0.25	2.75	2.15	4.3
D87	-0.4	-0.3	-0.3	-0.3	-0.25	-0.3	0.25	2.2	-0.7	1.3
D88	-0.1	-0.05	0	0	0.2	0.35	0.2	1.9	0.3	2.2

Residue #	Residue	ΔG_i^{conf} (Ca ²⁺)	$T\Delta S_i^{conf}$ (Ca ²⁺)	ΔG_i^{conf} (Mg ²⁺)	$T\Delta S_i^{conf}$ (Mg ²⁺)		
5	LYS	1.0	6.4	0.3	-0.8		
6	CYS	0.3	0.0	0.3	0.2		
7	GLU	0.6	4.9	0.9	3.7		
8	VAL	-0.3	-0.9	0.2	0.2		
9	PHE	1.3	7.0	0.6	2.8		
10	ARG	-1.5	-6.2	2.8	2.9		
11	GLU	0.6	5.6	0.2	0.2		
12	LEU	0.05	-1.1	-1.1	-4.9		
13	LYS	0.12	-4.0	-0.8	-3.5		
14	ASP	-0.6	-1.4	-2.8	2.3		
15	LEU	-0.3	-3.1	0.1	-1.6		
16	LYS	-0.7	-5.3	0.3	2.3		
17	GLY	0.0	-0.3	0.7	1.0		
18	TYR	-0.6	-4.2	1.0	1.2		
19	GLY	-0.3	-0.2	-0.5	-0.4		
20	GLY	0.2	0.2	0.3	0.5		
21	VAL	-0.9	-1.7	-0.4	-3.4		
22	SER	-0.3	-5.0	0.0	0.0		
23	LEU	-0.5	-0.5	-0.5	-3.5		
24	PRO	0.1	1.1	0.9	1.3		
25	GLU	-0.9	-2.0	-0.8	-4.1		
26	TRP	0.9	0.1	-0.4	-0.7		
27	VAL	-0.4	-3.0	-0.3	-3.3		
28	CYS	0.1	0.0	0.0	-0.1		
29	THR	0.0	-1.5	-0.1	-0.7		
30	THR	-0.2	0.6	-1.3	-2.8		
31	PHE	-0.6	-4.9	-0.4	-2.1		
32	HSE	0.2	2.1	0.2	0.6		
33	THR	0.1	-0.4	-0.9	-2.1		
34	SER	-0.8	2.2	-0.6	-2.0		

Table S2. Conformational thermodynamic changes (kJ/mol) in residues from A1 and A2 helices upon Ca^{2+}/Mg^{2+} binding to native apo-aLA.

Residue #	Residue	$\Delta G_i^{conf} (\operatorname{Ca}^{2+})$	$T\Delta S_i^{conf}$ (Ca ²⁺)	ΔG_i^{conf} (Mg ²⁺)	$T\Delta S_i^{conf}$ (Mg ²⁺)	
50	TYR	-0.6	1.6	-1.1	-4.0	
51	GLY	0.0	-0.7	0.1	-0.7	
52	LEU	-0.4	-0.5	-1.1	0.4	
53	PHE	0.0	1.4	-0.6	-3.2	
54	GLN	-0.4	-5.7	-0.5	-3.5	
55	ILE	0.2	-1.4	0.5	-0.4	
56	ASN	-0.5	-5.2	0.3	2.6	
57	ASN	0.0	1.5	0.0	-1.9	
58	LYS	-0.7	-0.7	-1.3	-2.4	
59	ILE	0.9	0.8	0.6	-0.5	
60	TRP	1.4	-0.4	3.6	2.3	
86	THR	-0.8	-1.7	-0.9	-1.9	
87	ASP	-0.7	1.3	-1.3	-1.4	
88	ASP	0.3	2.2	-0.7	-1.6	
89	ILE	-0.6	-1.5	0.0	2.3	
90	MET	0.0	-0.1	0.1	0.5	
91	CYS	0.1	-0.1	0.0	0.0	
92	VAL	-1.0	-3.6	-1.2	-5.2	
93	LYS	-1.2	-2.8	-0.2	-0.1	
94	LYS	-0.9	-4.0	-0.4	0.1	
95	ILE	3.4	2.9	-1.0	-2.7	
96	LEU	-0.5	-5.3	-0.5	-3.7	
97	ASP	0.1	-0.2	-0.2	-0.7	
98	LYS	-0.5	-2.8	-0.6	-1.1	
99	VAL	-0.6	-2.4	-0.8	-1.4	
100	GLY	-0.7	-1.1	-0.8	-0.7	
101	ILE	-1.0	-5.7	-0.2	0.2	
102	ASN	2.3	5.7	1.2	0.5	
103	TYR	0.3	5.0	0.0	-0.1	
104	TRP	-1.0	1.2	-1.9	-1.3	

Table S3. Conformational thermodynamic changes (kJ/mol) at the interfacial residues upon Ca^{2+}/Mg^{2+} binding to native apo-aLA

Figure Captions:

Fig. S1. The Ramachandran plot of simulated Mg²⁺-aLA complex.

Fig. S2. The convergence of equilibrium dihedral distributions corresponding to five samples generated randomly from the 80-100 ns trajectory, for a few representative dihedrals in apo-, Ca^{2+} -, Mg^{2+} -aLA.

Fig. S3. The conformational thermodynamic changes (in kJ/mol) at the residues of the MBL upon metal binding are illustrated. (a) $\Delta G_{MBL,i}^{conf}$, (b) $T\Delta S_{MBL,i}^{conf}$ of Ca²⁺-aLA (c) $\Delta G_{MBL,i}^{conf}$ and (d) $T\Delta S_{MBL,i}^{conf}$ upon Mg²⁺ binding.

Fig. S4. Representative equilibrium dihedral distributions in native-apo, Ca^{2+} and Mg^{2+} -aLA: (a) ψ of K79. (b) ψ of D82. (c) ψ of D84. (d) ϕ of D87. (e) ψ of F80. (f) ϕ of L81.

Fig. S5. Representative equilibrium dihedral distributions in native-apo, Ca²⁺- and Mg²⁺-aLA: (a) χ_1 and (b) χ_2 of K79. (c) χ_1 of D82. (d) χ_2 of D84. (e) χ_2 of D87. (f) χ_1 of D88.

Fig. S6. Multiple Sequence Alignment (MSA) of aLA sequences from different species. The predicted oleic acid binding residues, H32, W60, I95 and W104 are conserved; however, I59 shows weak conservation across the sequences.

Fig S2

Fig S3

Fig S4

Fig S5

Bos taurus	MMSFVSLLLVGIL-FHATQAEQLTKCEVFRELKDLKGYGGVSLPEWVCTT	CHJ	SGYDTQAIVQNNDSTEYGLFQINN	IKIM	CKDDQNPHSSNICNISCDKFLDDDLTDDIMCVK	ILDKVGIN	17.M	AHKALCSEKLDQWLCEKL
Bos <i>mutus</i>	MMSFVSLLLVGIL-FHATQAEQLTKCEVFRELKDLKGYGGVSLPEWVCTT	THT	SGYDTQAIVQNNDSTEYGLFQIN	IKIM	CKDDQNPHSSNICNISCDKFLDDDLTDDIMCVK	ILDKVGIN	17.M	AHKALCSEKLDQWLCEKL
Bos grunniens	MMSFVSLLLVGIL-FHATQAEQLTKCEVFRELKDLKGYGGVSLPEWVCTT	LHJ	SGYDTQAIVQNNDSTEYGLFQINN	IKIM	KDDQNPHSSNICNISCDKFLDDDLTDDIMCVK	ILDKVGIN	17. M.	AHKALCSEKLDQWLCEKL
Bos indicus	MMSFVSLLLVGIL-FHATQAEQLTKCEVFRELKDLKGYGGVSLPEWVCTT	CHJ	SGYDTQAIVQNNDSTEYGLFQINN	IKIM	KDDQNPHSSNICNISCDKFLDDDLTDDIMCVK	ILDKVGIN	17. M.	AHKALCSEKLDQWLCERL
Bubalus <i>bubalis</i>	MMSFVSLLLVGIL-FHATQAEQLTKCEVFRELKDLKDYGGVSLPEWVCTA	LH.	SGYDTQAIVQNNDSTEYGLFQIN	IKIM	KDDQNPHSSNICNISCDKFLDDDLTDDIMCVK	ILDKVGIN	1M	AHKALCSEKLDQWLCEKL
Ovis <i>aries</i>	MMSFVSLLLVGIL-FHATQAEQLTKCEVFQELKDLKDYGGVSLPEWVCTA	CHJ	SGYDTQAIVQNNDSTEYGLFQINN	IKIM	KDDQNPHSRNICNISCDKFLDDDLTDDIMCVK	ILDKVGIN	17.M:	AHKALCSEKLDQWLCEKL
Capra <i>hircus</i>	MMSFVSLLLVGIL-FHATQAEQLTKCEVFQKLKDLKDYGGVSLPEWVCTA	LHJ	SGYDTQAIVQNNDSTEYGLFQINN	IKIM	KDDQNPHSRNICNISCDKFLDDDLTDDIVCAK	ILDKVGIN	17. M.	AHKALCSEKLDQWLCEKL
Cannis <i>familiaris</i>	MMSFVSLLLVSIL-FPAIQAKQFTKCELSQVLKDMDGFGGIALPEWICTI	CHI	SGYDTQTIVNNNGGTDYGLFQIS	JKFW	KDDQNLQSRNICDISCDKFLDDDLTDDMICAK	ILDKEGIC	DYW.	AHKPLCSEKLEQWRCEKL
Mustelo <i>furo</i>	MMSFISLLLVGIM-FPAIQAKQFTKCELSQVLKDMDGFGGIALPEWICTI	CHJ	SGYDTQTIVNNNGSTEYGLFQINN	11.CAM	CKDNKILQSRNICNISCDKFLDDDLTDDMTCAKI	ILNKEGID	DY WI	AHKPLCSEKLEQWHCEKL
Pteropus alecto	MMSFLSLLLVGIL-FPATQAKQFTKCELSQVLKDMDGYGGITLPEWICTI	THS	SGYDTETIINNNGKREYGLFQINN	1KTM	RDNRKLQSRNICDISCDKFLDDDLTDDVICAK	ILDSEGID	DYW.	AHKPLCSEKLEQWRCEKL
Sus scrofa	MMSFVSLLVVGIL-FPAIQAKQFTKCELSQVLKDMDGYGDITLPEWICTI	CH I	SGYDTKTIVHDNGSTEYGLFQINN	1KTM	CRDNQ-IQSKNICGISCDKFLDDDLTDDMMCAK	ILDNEGIC	DYW.	AHKALCSEKLDQWLCEKM
Equus <i>caballus</i>	-KMMSFASLLLVGIL-FSATQAKQFTKCELSQVLKSMDGYKGVTLPEWICTI	THS	SGYDTQTIVKNNGKTEYGLFQINN	11.CMM	RDNQILPSRNICGISCNKFLDDDLTDDVMCAK	ILDSEGID	DYW.	AHKPLCSEKLEQWLCEEL
Macaca fascicularis	MRSFVPLFLVGIL-FPAIPAKQFTKCELSQLLKDIDGYGGIALPEFICTM	CHJ	SGYDTQAIVESNGSTEYGLFQISM	1KTM	CKSSQVPQSRNICDISCDKFLDDDITDDIMCAK	ILDIKGID	DY WI	AHKALCTEKLEQWLCEKL
Macaca <i>mulatta</i>	MRSFVPLFLVGIL-FPAIPAKQFTKCELSQLLKDIDGYGGIALPEFICTM	CHJ	SGYDTQAIVESNGSTEYGLFQISM	1KTM	CKSSQVPQSRNICDISCDKFLDDDITDDIMCAK	ILDIKGID	DYW.	AHKALCTEKLEQWLCEKL
Gorilla <i>gorilla</i>	MRFFVPLFLVGIL-FPAILAKQFTKCELSQLLKDIDGYGGIALPELICTM	CHJ	SGYDTQAIVENNESTEYGLFQISM	1KTM	KSSQVPQSRNICDISCDKFLDDDITDDIMCAK	ILDIKGID	DYW.	AHKALCTEKLEQWLCEKL
Pusa <i>hispida</i>	MMSFVSLLLVGIM-FPAIQAKQFRKCELSQVLKDMDGFRGIALPKWICTI	CHJ	SGYDTQTIVSNNGSTEYGLFQINN	JICFW	RDNQILQSRNICDISCDKFLDDDLTDDMICAK	ILDKEGID	DY WI	AHKPLCSEKLEQWHCEKL
Homo sapiens	MRFFVPLFLVGIL-FPAILAKQFTKCELSQLLKDIDGYGGIALPELICTM	CHJ	SGYDTQAIVENNESTEYGLFQIS	1KTM	CKSSQVPQSRNICDISCDKFLDDDITDDIMCAK	ILDIKGID	DY W.	AHKALCTEKLEQWLCEKL
Myotis brandtii	MMSFLSLLLVGIL-FPALEAKQFTKCELSQVLKDMDGYGGVTLPEWICNI	ΓHΝ	SGYDTQTMVSNNGKTEYGLFQINN	1KLW	CRDNQ-IQSRNICDISCDKFLDDDLTDDMMCAK	ILDSEGIC	DYW.	PHKPLCSEKLEQWLCEKL
Ailuropoda melanoleuca	MMFFVSLLLVGIM-CPAIQAKQFTKCELSQVLKDMDGFGGIALSEWICTI	CHJ	SGYDTQTIVNNNGSTEYGLFQINN	JICFW	RDNQILQSRNICDISCDKFLDDDLTDDMICAK	ILDKEGID	DY WI	AHKPLCSEKLEQWHCEKL
Camelus <i>ferus</i>	MMSLVSLLLVGIL-FPTIQAKQFTKCKLSDELKDMNGHGGITLAEWICII	ΓHΝ	SGYDTETVVSNNGNREYGLFQIN	JKIW	RDNENLQSRNICDISCDKFLDDDLTDDKMCAK	ILDKEGID	DYW.	AHKPLCSEKLEQWQCEKW
Cervus <i>elaphus</i>	VCTA	7H7	SGYDTQAIVQNDDSTEYGLFQIN	1KIM	CKDDQNPHSSNICNISCDKFLDDDLTDDIMCVK	ILDKVGIN	1M.	AHKALCSEKLDQWLCEKL
Balaenoptera musculus	MSFVSLLLVGNL-FHAIQAEQLTKCEVFQRLKDLDGYGGVTLPEWVCTV	CHJ	SGCDTQTVVNNNGSTEYGLFQINN	IKIW	RDNHIPHSRDICXISCDKFLDDDLTDDIMCVK	ILDNV		
Cavia <i>porcellus</i>	MMSFFPLLLVGIL-FPAVQAKQLTKCALSHELNDLAGYRDITLPEWLCII	CH I	SGYDTQAIVKNSDHKEYGLFQINI	DKDF	CESSTTVQSRNICDISCDKLLDDDLTDDIMCVK	ILDIKGID	DYW.	AHKPLCSDKLEQWYCEAQ
Sotalia <i>fluviatilis</i>	LLLVGIL-FHAVQAEQLTKCELFQRLKDLDGYGGVTLPEWVCTV	CHJ	SGCDTQTIVNNSDSTEYGLFQINN	IKIW	RDNQIPHSRDICGISCDKFLDDDLTDDIMCVK	ILDNV		
Heterocephalus glaber	KQFTKCELSQNLYDIDGYGRIALPELICTM	CHJ	SGYDTQAIVENNESTEYGLFQISM	17 TM	CKSSQSPQSRNICDITCDKFLDDDITDDIMCAK	ILDIKGID	DYW.	AHKALCTEKLEQWLCEKE
Papio <i>cynocephalus</i>	MMSPFPLLLVSIL-FSALQAKQFTKCSLSQELNDLAGYRNITLPEWICII	CH I	SGYDTQTIIRNNGNTEYGLFQINI	DKDF	CDSSQNLQSRNICDISCDKFLDDDLTDDIMCAK	ILDIKGID	D H W.	AHKPLCSDKLEQWYCKVL
Delphinus <i>delphis</i>	LLVGIL-FHAVQAEQXTKCELFQRLKDLDGYGGVTLPEWVCTV	CHJ	SGCDTQTIVNNNDSTEYGLFQINN	IKIW	RDNQIPHSRDICGISCDKFLDDDLTDDIMCVK	ILDNV		
Equus <i>asinus</i>	KQFTKCELSQVLKSMDGYKGVTLPEWICTI	THS	SGYDTQTIVKNNGKTEYGLFQINN	11.CMM	RDNQILPSRNICGISCNKFLDDDLTDDVMCAK	ILDS		
Camelus dromedarius	KQFTKCKLSDELKDMNGHGGITLAEWICII	ΓHN	SGYDTETVVSNNGNREYGLFQIN	1KIM	RDNENLQSRNICDISCDKFLDDDLTDDKMCAK	ILDK		
Odobenus <i>rosmarus</i>	MMSFVSLLLVSIM-FPAIQAKQFTKCELSQVLNDMDGFGGIALPEWICTV	CHJ	SGYDTQTIVSNNGSTEYGLFQINN	JICFW	RDNQILQSRNICDISCDKFLDNDLTDDMICAK	ILDKV		
Oryctolagus cuniculus	MMPLVPLLLVSIV-FPGIQATQLTRCELTEKLKELDGYRDISMSEWICTL	CHJ	SGLDTKITVNNNGSTEYGIFQISI	DKLW	VSKQNPQSKNICDTPCENFLDDNLTDDVKCAM	ILDKEGID	DEIW:	AHKPLCSENLEQWVCKKL
Rattus norvegicus	MMRFVPLFLACI-SLPAFQATEFTKCEVSHAIEDMDGYQGISLLEWTCVL	CHJ	SGYDSQAIVKNNGSTEYGLFQIS1	JRNW	CKSSEFPESENICDISCDKFLDDELADDIVCAK	IVAIKGID	DT WI	AHKPMCSEKLEQWRCEKP
Loxodonta <i>africana</i>	AKMMSFVPLLLVGIL-FPAIQAKQFTKCELSQVLKDIDGYAGITLPEFTCTI	CH I	SGYDTQTIVNNNGSTEYGLFQISM	1K.AM	RDHQIPQSRNICDISCDKFLDDDLTDDMMCAK	ILDSKGID	WYC	
Mus musculus	MMHFVPLFLVCILSLPAFQATELTKCKVSHAIKDIDGYQGISLLEWACVL	CHJ	SGYDTQAVVNDNGSTEYGLFQISI	DRFW	CKSSEFPESENICGISCDKLLDDELDDDIACAK	ILAIKGID	DTWI	AYKPMCSEKLEQWRCEKP
Phocoenoides phocoena	QAEQLTKCELFQRLKDLDGYGGVTLPEWVCTV	CHJ	SGCDTQTIVNNNDSTEYGLFQIN	JKIW	CRDNQIPHSRDICGISCDKFLDDDLTDDIM			
Cricetulus griseus	MMPFIPLILVCIL-FPAIQATQLTKCEVYQAMRDMDGHEGISSLEWTCII	THS	SGCDTQATVKNNGSTEYGLFQISM	11KHW	CESSEIPESENICGISCDKFLDDDLTDDKMCAK	ILAIKGID	WYC	
	*	* *	** *:: : :**:***.	: :	* . * :** *:::**::: **	*	*	
				_	1			

Fig S6