Supplementary Material for: MetDFBA: incorporating time-resolved metabolomics measurements into dynamic flux balance analysis

 A. Marcel Willemsen *
 Diana M. Hendrickx ^{†‡}
 Huub C.J. Hoefsloot ^{§†‡}
 Margriet M.W.B. Hendriks [¶]

 S. Aljoscha Wahl [∥]
 Bas Teusink ^{**}
 Age K. Smilde^{†‡}
 Antoine H.C. van Kampen^{*†}

1 Adaptation of *Penicillium chrysogenum* during feast-famine cycles

In order to study the effects of substrate gradients that occur during large scale-up of fermentation processes and the resulting product formation reduction, intermittent feeding cycles of 360 s consisting of 36 s of feeding with glucose and 324 s of no feed were applied to *Penicillium chrysogenum* cultivation. For details see [2]. After 100 hours block wise regime intracellular and extracellular metabolite concentrations were measured using GC-MS and and LC-MS, during one cycle at 24 time points with smaller intervals in the beginning. The studied metabolic network consists of the upper glycolysis, the pentose phosphate pathway (PPP) and storage metabolism, including trehalose, glycogen and mannitol. Time-series of 17 metabolites, participating in 22 reactions were used to apply our method. See Supplementary Tables 1 and 2 for an overview of the metabolic network and used abbreviations.

Since xylitol 5-phosphate was not measured, we lumped reactions $r2_4$ and $r2_5$ into $r2_4$ - $r2_5$ and reactions $r2_4$ and 2_7 into $r2_4$ - $r2_7$. We constrained the optimization problem further by making the reactions irreversible by setting the lower flux bounds to zero with an exception of the reactions $r1_2$, $r2_4$ - $r2_5$, $r2_6$ and $r2_4$ - $r2_7$ [2]. Because the feed was known we fixed this flux by setting both upper and lower bound of this flux to 7.3140 mmol/gDW/h for the first four time points, and to zero for the remaining time points. In this case study we focussed on testing how well our method performs in estimating dynamic fluxes. Therefore we minimized only the sum of squared fluxes to obtain a solution for the optimization.

^{*}Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academical Medical Centre, Amsterdam, The Netherlands

[†]Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands

[‡]Netherlands Metabolomics Centre, Leiden, The Netherlands

[§]email: H.C.J.Hoefsloot@uva.nl

[¶]Faculty of Science, Leiden Academic Centre for Drug Research, Analyical BioSciences, Leiden, The Netherlands

^{||}Kluyver Centre for Genomics of Industrial Fermentation, Biotechnology Department, Delft University of Technology, The Netherlands

^{**}Systems Bioinformatics, Centre for Integrative Bioinformatics, Free University of Amsterdam

abbreviation	metabolite
3PG	3-Phospho-glycerate
6PG	6-Phospho-gluconate
E4P	Erythrose 4-phosphate
F6P	Fructose-6-phosphate
FBP	Fructose-1,6-bisphosphate
G1P	Glucose-1-phosphate
G6P	Glucose-6-phosphate
GAP	Glyceraldehyde-3-phosphate
Glc_ext	Extracellular Glucose
Glyc	Glycogen
Mtl	Mannitol
Rib5P	Ribose-5-phosphate
Sed7P	Sedoheptulose-7-phosphate
Tre	Trehalose
Tre6P	Trehalose-6-phosphate
UDP_Glc	Uridine diphosphate glucose
Tre_ext	Extracellular Trehalose

Supplementary Table 1: Abbreviations of measured metabolites

Supplementary Figure 1: Estimated dynamic fluxes in nmol/gDW/s through the pentose phosphate pathway. Black indicates the experimental reference (${}^{13}C$ MFA), green indicates MetDFA estimations, red indicates the MetDFBA fixing the conversion of G6P into 6PG (reaction $r2_{-1}$).

Supplementary Table 2: Metabolic	network
----------------------------------	---------

reaction	name	lower bound	upper bound
=> Glc_ext	vfeedA	fixed	fixed
$1 \text{ Glc}_\text{ext} => 1 \text{ G6P}$	r1_1	0	1000
$1 \text{ G6P} \Longrightarrow 1 \text{ F6P}$	r1_2	-1000	1000
$1 \text{ F6P} \Longrightarrow 1 \text{ FBP}$	r1_3	0	1000
1 FBP => 2 3 PG	r1_4	0	1000
1 3PG =>	r1_5	0	1000
1 G6P => 1 P6G	r2_1	0	1000
1 P6G => 1 Rib5P	r2_2	0	1000
$2 \operatorname{Rib5P} => 1 \operatorname{3PG} + 1 \operatorname{Sed7P}$	$r2_4-r2_5$	-1000	1000
$1 \ 3PG + 1 \ Sed7P => 1 \ F6P + 1$	r2_6	-1000	1000
E4P			
1 Rib5P + 1 E4P => 1 F6P + 1	r2_4-r2_7	-1000	1000
3PG			
1 G6P => 1 G1P	tre_1	-1000	1000
$1 \text{ G1P} => 1 \text{ UDP}_Glc$	tre_2	0	1000
$1 \text{ G6P} + 1 \text{ UDP}_Glc => 1 \text{ Tre6P}$	tre_3	0	1000
$1 \operatorname{Tre6P} => 1 \operatorname{Tre}$	tre_4	0	1000
1 Tre => 2 G6P	tre_deg	0	1000
$1 \text{ Tre} => 1 \text{ Tre_ext}$	tre_exp	0	1000
$1 \text{ Tre_ext} => 2 \text{ Glc_ext}$	tre_ext_deg	0	1000
$1 \text{ UDP}_Glc => 1 \text{ Glyc}$	glyc_1	0	1000
$2 \text{ Glyc} \Longrightarrow 1 \text{ G6P} + 1 \text{ G1P}$	glyc_deg	0	1000
1 F6P => 1 Mtl	mtl_syn	0	1000
1 Mtl => 1 F6P	mtl_deg	0	1000

Supplementary Figure 2: Estimated dynamic fluxes in nmol/gDW/s through storage metabolism. Black indicates the experimental reference (${}^{13}C$ MFA), green indicates MetDFA estimations, red indicates the MetDFBA fixing the conversion of G6P into 6PG (reaction $r2_1$).

Supplementary Figure 3: Estimations of the average fluxes based on ${}^{13}C$ -labeling through the considered metabolic network in nmol/gDW/s including upper glycolysis, pentose phosphate pathway (PPP) and storage metabolism (mannitol, glycogen and trehalose). The width of the arrow is proportional to the hight of the flux.

Supplementary Figure 4: MetDFBA estimations of the average fluxes through the considered metabolic network in nmol/gDW/s including upper glycolysis, pentose phosphate pathway (PPP) and storage metabolism (mannitol, glycogen and trehalose). The width of the arrow is proportional to the hight of the flux.

Supplementary Figure 5: MetDFBA estimation with the entrance reaction to the PPP (r2_1, red arrow) fixed through the considered metabolic network in nmol/gDW/s including upper glycolysis, pentose phosphate pathway (PPP) and storage metabolism (mannitol, glycogen and trehalose). The width of the arrow is proportional to the hight of the flux.

Supplementary Figure 6: Bar plot showing the same fluxes as in Supplementary Figures 3-5. Black indicates the experimental reference (${}^{13}C$ MFA), green indicates MetDFA estimations, red indicates the MetDFBA fixing the conversion of G6P into 6PG (reaction $r2_{-1}$).

Supplementary Figure 7: Estimated dynamic fluxes in nmol/gDW/s going through the lumped reactions (part of the PPP). Black indicates the experimental reference (${}^{13}C$ MFA), green indicates MetDFA estimations, red indicates the MetDFBA fixing the conversion of G6P into 6PG (reaction $r2_1$).

2 Response of *Saccharomyces cerevisiae* to a glucose pulse

Cells were cultivated in aerobic chemostats (dilution rate $D = 0.1 h^{-1}$), as described elsewhere. [1, 8, 11] Short-term perturbation-response experiments were carried out by introducing a sudden increase of 10 mM in the extracellular glucose concentration (also called a 10 mM glucose pulse). The data set consists of time-series of quantitative data on extracellular and intracellular metabolite concentration levels (in mM). Extracellular metabolite levels were obtained enzymatically as described elsewhere.[1] Each time-series consists of 14-16 time points. Supplementary Table 3 gives an overview of the extracellular metabolites in the data set. Intracellular metabolite concentrations were determined by LC-MS/MS.[1] The time-series consist of 11-15 time points. The metabolites measured are from glycolysis and its branches, the tricarboxylic acid (TCA) cycle and the pentose phosphate pathway (PPP). Supplementary Table 4 gives an overview. Data were measured on the second scale. The shortest window of observation was from 0 to 130 seconds. The concentrations of the external metabolites are plotted in Supplementary Figure 8. Plots of the concentrations of the internal metabolites from glycolysis (except GAP and DHAP) and the TCA cycle are available in the Supplementary Material of [9]. Concentrations for the remaining internal metabolites (PPP, branches of glycolysis, GAP, DHAP, cofactors) are plotted in Supplementary Figures 9 and 10.

Supplementary Table 3: Extracellular metabolites in the data set.

metabolite	number of biological replicates
glucose (GLUC)	4
ethanol (ETH)	4
acetate (ACE)	4
glycerol (GLYCE)	3
acetaldehyde (ACALD)	2

metabolite	pathway/branch	number of
		biological
		replicates
glucose-6-phosphate (G6P)	glycolysis	4
fructose-6-phosphate $(F6P)$	glycolysis	4
fructose-1,6-bisphosphate (FBP)	glycolysis	4
3-phosphoglycerate (3PG)	glycolysis	4
phosphoenolpyruvate (PEP)	glycolysis	4
pyruvate (PYR)	glycolysis	4
glyceraldehyde-3-phosphate (GAP)	glycolysis	1
dihydroxyacetonephosphate (DHAP)	glycolysis	1
fructose-2, 6-bisphosphate (F26bP)	regulator of glycolysis	4
trehalose-6-phosphate (T6P)	trehalose branch	4
glycerol-3-phosphate (G3P)	glycerol branch	4
glucose-1-phosphate (G1P)	glycogen branch	4
mannose-6-phosphate (M6P)	mannose branch	4
citrate (CIT)	TCA cycle	4
oxoglutarate (OGL)	TCA cycle	4
succinate (SUC)	TCA cycle	4
fumarate (FUM)	TCA cycle	4
malate (MAL)	TCA cycle	4
glyoxylate (GLYOX)	glyoxylate shunt	4
6-phosphogluconate (6PG)	pentose phosphate pathway	4
erythrose-4-phosphate (E4P)	pentose phosphate pathway	1
ribose-5-phosphate (R5P)	pentose phosphate pathway	1
xylulose-5-phosphate (X5P)	pentose phosphate pathway	1
ribulose-5-phosphate (Rbu5P)	pentose phosphate pathway	1
sedoheptulose-7-phosphate (S7P)	pentose phosphate pathway	1
adenosine monophosphate (AMP)	cofactors	2
adenosine diphosphate (ADP)	cofactors	2
adenosine triphosphate (ATP)	cofactors	2

Supplementary Table 4: Intracellular metabolites in the data set.

Supplementary Figure 8: Experimental data *S.cerevisiae* - external metabolites. Each color represents a different biological experiment.

Supplementary Figure 9: Experimental data *S.cerevisae* - internal metabolites (E4P, R5P, X5P, Rbu5P, S7P, AMP, ADP, ATP). Each color represents a different biological experiment.

Supplementary Figure 10: Experimental data *S.cerevisae* - internal metabolites (GAP, T6P, F26bP, GLYOX, G3P, 6PG, DHAP, G1P, M6P). Each color represents a different biological experiment.

Supplementary Figure 11: Case study *S.cerevisiae* - reaction scheme after lumping of reactions. See Supplementary Table 5 for a reaction list and abbreviations. The biomass reaction (v54) is taken from the genome scale model (called yeast 5) [7] and is linked to the rest of the lumped model through AMP, ADP and ATP. The reaction coefficients of AMP, ADP and ATP are the same as in the genome scale model (see Supplementary Table 5). The measured concentrations of AMP, ADP and ATP are influenced by several reactions forming or consuming AMP, ADP or ATP outside the central carbon metabolism. Those reactions are lumped to v2, v3, v9, v10, v12, v14, v16 and v35: v2 lumps all interconversions between ATP and ADP; v3 lumps all reactions forming or consuming AMP; v9 lumps all interconversions between ATP and AMP; v10 lumps all reactions consuming ATP and forming ADP + AMP; v12 is the reaction ATP + AMP \rightarrow 2 ADP; v14 lumps all reactions forming or consuming ADP; v16 is the consumption of ATP + ADP in the purine metabolism; v35 is the reaction that converts ADP to AMP in the purine metabolism. Detailed information on the original reactions can be found in the genome scale model. [7]

Supplementary Table 5: Detailed list of the reactions in the lumped model. For more information, see caption Supplementary Figure 11. Abbreviations: see Supplementary Table 6.

v1	pyruvate \leftrightarrow other pathways	v32	$M6P \leftrightarrow F6P (PMI)$
v2	ATP \leftrightarrow ADP in non-central carbon pathways, transport	v33	non-central carbon pathways, transport \rightarrow SUC
v3	non-central carbon pathways, transport \leftrightarrow AMP	v34	${\rm G6P}$ \leftrightarrow non-central carbon pathways, transport
v4	Rbu5P \rightarrow riboflavin biosynthesis (DHBPS)	v35	ADP \rightarrow AMP in purine metabolism (NDP)
v5	E4P + PEP \rightarrow Phe, Tyr and Tryp biosynthesis (DAHPS)	v36	$OGL + ADP(mit) \rightarrow SUC + ATP(mit) (OGDH)$
v6	$\text{PEP} \rightarrow \text{Phe},$ Tyr and Tryp biosynthesis (EPSPS)	v37	$F6P + ATP \rightarrow FBP + ADP (PFK)$
v7	$F6P + ATP \rightarrow F26bP + ADP (6PF2K)$	v38	$G6P \rightarrow G1P (PGM)$
v8	$G6P \rightarrow 6PG (G6PDH + PGLS)$	v39	$6PG \rightarrow Rbu5P (6PGDH)$
v9	ATP \leftrightarrow AMP in non-central carbon pathways, transport	v40	3PG \rightarrow Gly, Ser and Thr metabolism (PGDH)
v10	$adenosine + ATP \leftrightarrow AMP + ADP in purine metabolism (AdK)$	v41	fructose and mannose metabolism \leftarrow M6P (PMM)
v11	ATP \leftrightarrow non-central pathways, transport	v42	R5P + ATP \rightarrow AMP + PRPP in purine metabolism (PRPS)
v12	$ATP + AMP \rightarrow 2ADP (ADK)$	v43	$PEP + ADP \rightarrow PYR + ATP (PYK)$
v13	$G6P \rightarrow T6P (TPS)$	v44	Rbu5P \leftrightarrow R5P (R5PI)
v14	non-central carbon pathways, transport \leftrightarrow ADP	v45	Rbu5P \leftrightarrow X5P (Ru5PE)
v15	OGL \leftrightarrow non-central carbon pathways, transport	v46	$GAP + S7P \leftrightarrow F6P + E4P (TAL)$
v16	$ADP + ATP \rightarrow purine metabolism (APA)$	v47	$R5P + X5P \rightarrow S7P + GAP (TKL1)$
v17	$PYR + ATP \rightarrow CIT + ADP (PYC + CIT)$	v48	$E4P + X5P \rightarrow GAP + F6P (TKL2)$
v18	CIT \rightarrow OGL (ACO + IDH / OGL transport)	v49	$T6P \rightarrow trehalose (TPP)$
v19	$CIT \rightarrow GLYOX (ACO + ICL)$	v50	DHAP \leftrightarrow GAP (TPI)
v20	$3PG \leftrightarrow PEP (GPM + ENO)$	v51	amino acids \rightarrow GAP (TRP)
v21	$F26bP \rightarrow F6P (FBP26)$	v52	$G1P \rightarrow glycogen$
v22	$FBP \leftrightarrow GAP + DHAP (FBA)$	v53	citrate transport \leftarrow CIT
v23	$FUM \leftrightarrow MAL (FMH)$	v54	biomass pseudoreaction: non measured + 0.051 AMP + 59.3 ATP - 59.3 ADP \rightarrow 1 biomass
v24	FUM \leftrightarrow SUC (FMR/SDH/SUC-FUM transport)	v55	$PYR \rightarrow ACALDex (PDC + ACALD transport)$
v25	$G6P \leftrightarrow F6P (PGI)$	v56	$\mathrm{PYR} \rightarrow \mathrm{ACEex} \; (\mathrm{PDC} + \mathrm{ALDH} + \mathrm{ACE} \; \mathrm{transport})$
v26	$GAP + ADP \leftrightarrow 3PG + ATP (GAPDH + PGK)$	v57	$PYR \rightarrow ETHex (PDC + ADH + ETH transport)$
v27	$G3P \rightarrow glycerol (G3PP + GT)$	v58	$GLUCex \leftrightarrow (glucose exchange)$
v28	$DHAP \rightarrow G3P (G3PDH)$	v59	ETHex \rightarrow (ethanol exchange)
v29	glucose + ATP \rightarrow G6P + ADP (glucose transport + HXK (glucose))	v60	ACEex \rightarrow (acetate exchange)
v30	MAL \rightarrow CIT (MDH + CIT / citrate transport)	v61	$GLYCex \rightarrow (glycerol exchange)$
v31	<code>GLYOX</code> \leftrightarrow non-central carbon pathways, transport	v62	ACALDex \rightarrow (acetaldehyde exchange)

6PF2K	6-phosphofructo-2-kinase	6PGDH	phosphogluconate dehydrogenase
ACO	aconitate hydratase (aconitase)	ADH	alcohol dehydrogenase
AdK	adenosine kinase	ADK	adenylate kinase
ALDH	aldehyde dehydrogenase	APA	ATP adenyltranferase
CIT	citrate synthase	DAHPS	3-deoxy-D-arabino-heptulosonate 7 phosphate synthetase
DHBPS	3,4-dihydroxy-2-butanone-4-phosphate synthase	ENO	enolase
EPSPS	3-phosphoskikimate 1 carboxyvinyltransferase (5- enolpyruvylskikimate-3-phosphate synthase)	FBA	fructose-bisphosphate aldolase
FBP26	fructose-2,6-bisphosphate 2-phosphatase	FMH	fumarase
FMR	fumarate reductase	G3PDH	glycerol-3-phosphate dehydrogenase
G3PP	glycerol-3-phosphatase	G6PDH	glucose 6-phosphate dehydrogenase
GAPDH	glyceraldehyde-3-phosphate dehydrogenase	GPM	phosphoglycerate mutase
GT	glycerol transport	HXK	hexokinase
ICL	isocitrate lyase	IDH	isocitrate dehydrogenase
MDH	malate dehydrogenase	NDP	nucleoside diphosphatase
OGDH	oxoglutarate dehydrogenase	PDC	pyruvate decarboxylase
PFK	phosphofructokinase	PGDH	phosphoglycerate dehydrogenase
PGI	glucose-6-phosphate isomerase	PGK	phosphoglycerate kinase
PGLS	6-phosphoglucolactonase	\mathbf{PGM}	phosphoglucomutase
PMI	mannose-6-phosphate isomerase	PMM	phosphomannomutase
PRPS	phosphoribosylpyrophosphate synthetase	PYC	pyruvate carboxylase
PYK	pyruvate kinase	R5PI	ribose-5-phosphate isomerase
Ru5PE	ribulose 5-phosphate 3-epimerase	SDH	succinate dehydrogenase
TAL	transaldolase	TKL1	transketolase 1
TKL2	transketolase 2	TPI	triose-phosphate isomerase
TPP	trehalose-phosphatase	TPS	alpha, alpha-trehalose-phosphate synthase
TRP	tryptophan synthase	ACALDex	external acetaldehyde
ACEex	external acetate	ETHex	external ethanol
GLUCex	external glucose	Gly	glycine
GLYCex	external glycerol	Phe	phenylalanine
PRPP	phosphoribosylpyrophosphate	Ser	serine
$_{\rm Thr}$	threonine	Tryp	tryptophan
Tyr	tyrosine		

2.1 MetDFBA: Objective functions used in the *S.cerevisiae* study.

Maximize biomass yield. In most (D)FBA studies of microorganisms it is assumed that survival is equivalent with growth [3] and, consequently, the objective is biomass (max $v_{biomass}$) maximization. However, there are conditions where the cell does not grow optimally [17].

Maximize ATP yield. The objective of maximizing ATP yield (max v_{ATP}) is based on the assumption that cells maximize energy production when oxygen is available.[16]

Maximize ATP yield in the cytosol. Studies of perturbation-response experiments showed that after a glucose pulse there is a switch from respiratory to respiro-fermentative metabolism and as a consequence low TCA activity.[5] This means that there is low ATP production in the mitochondria. Therefore maximization of cytosolic ATP (max v_{ATPcyt}) was incorporated.

Maximize glucose uptake. Maximizing glucose uptake is motivated by the fact that after a glucose pulse *S.cerevisiae* rapidly takes up the excess of glucose.[6]

Maximize ethanol yield. S.cerevisiae is known to ferment an excess of glucose to ethanol.[19] Maximization of ethanol (max $v_{ethanol}$) is therefore also included.

Minimization of the overall flux. Cells are assumed to minimize their enzyme usage, which corresponds to minimizing their overall flux.[17, 10] This can be mathematically formulated as minimizing the sum of the absolute values of all fluxes.[19] The following dynamic optimization problem has to be solved:

minimize
$$\int_{t_0}^{t_f} \left(\sum_{j=1}^r |v_j(t)| \right) dt$$

subject to
 $A \cdot v_t = b$
 $v_{min} \le v_t \le v_{max}$

This problem can be converted to a linear optimization problem [14] by introducing r more (slack) variables $v_{j+r} = |v_j|$ $(j = 1, \dots, r)$. The optimization problem above is equivalent with: [4]

minimize
$$F = \int_{t_0}^{t_f} \left(\sum_{j=1}^r v_{j+r}\right) dt$$

subject to
 $A \cdot v_t = b$
 $v_{min} \le v_t \le v_{max}$
 $v_{j+r} \ge -v_j \ (j = 1, \cdots, r)$
 $v_{j+r} \ge v_j \ (j = 1, \cdots, r)$

Approximating the integral in the objective function by using the trapezoidal rule results in a linear objective function.

Minimization of Metabolic Adjustment (MOMA). Organisms are assumed to adjust their metabolism with minimal effort after a perturbation. This is called Minimization of Metabolic Adjustment (MOMA).[18] The following quadratic optimization problem is solved:

minimize
$$\sum_{i=1}^{n} \sum_{j=1}^{r} (v_j (t_0) - v_j (t_i))^2$$

subject to
$$A \cdot v_t = b$$

$$v_{min} \le v_t \le v_{max}$$

This results in an optimum F_{opt} for the objective function and optimal dynamic rate profiles.

Objective function	Explanation
max v _{biomass}	• maximal biomass yield (v_{54})
subject to	• most common objective function in FBA
$A \cdot v_t = b$	studies[13, 15]
irreversibility constraints (see FBA)	
$\max v_{ATP}$	• maximal energetic efficiency[17, 13]
subject to	• reactions contributing to the objective
$A \cdot v_t = b$	function: $v_2, v_7, v_9, v_{10}, v_{11}, v_{12}, v_{16}, v_{17}, v_{26}, v_{29},$
irreversibility constraints	$v_{36}, v_{37}, v_{42}, v_{43}, v_{54}$
rate to TCA cycle	\bullet switch to respiro-fermentative metabolism
\leq steady state flux to TCA cycle	(excess glucose (from the pulse) fermented to ethanol)[12]
growth rate = $0.1 h^{-1}$	• growth rate does not change significantly during a small time interval
max name	• maximize energetic efficiency in the cytosol
subject to	• like previous objective but without v_{26}
$A \cdot v_t = b$	• respiro-fermentative metabolism[5]
irreversibility constraints	\rightarrow low TCA cycle activity
rate to TCA cycle	\rightarrow low ATP production in mitochondria
\leq steady state flux to TCA cycle	• excess glucose fermented to ethanol
growth rate = $0.1 h^{-1}$	• growth rate does not change significantly
	during a small time interval
max glucose uptake rate	• organism consumes the excess of glucose
subject to	as fast as possible
$A \cdot v_t = b$	• glucose uptake rate = v_{20}
irreversibility constraints	States of the state of 25
rate to TCA cycle	• excess glucose fermented to ethanol
< steady state flux to TCA cycle	0
growth rate = $0.1 h^{-1}$	• growth rate does not change significantly
	during a small time interval
max vethanol	• maximize ethanol yield (v_{57})
subject to	• excess glucose fermented to ethanol
$A \cdot v_t = b$	0
irreversibility constraints	
growth rate = $0.1 h^{-1}$	• growth rate does not change significantly
	during a small time interval
min sum of absolute fluxes	• minimize enzyme usage
subject to	
$A \cdot v_t = b$	• same constraints as FBA
irreversibility constraints	
$0.1 \leq \text{growth rate} \leq 1000$	
$\min \sum_{i=1}^{n} \sum_{j=1}^{r} (v_j(t_0) - v_j(t_i))^2$	• minimization of metabolic adjustment
subject to	(MOMA)
$A \cdot v_t = b$	
irreversibility constraints	

Supplementary Table 7: Overview of the objective functions used in the *S.cerevisiae* study.

Supplementary Table 8: *S.cerevisiae* study. Results of the evaluation of the five criteria described in section 3.2.1. in the main text for MetDFBA with the objective functions in Supplementary Table 7.

objective function	order of the optimum	contradiction with
$\max v_{biomass}$	10^{4}	1
$\max v_{ATP}$	10^{5}	1
$\max v_{ATPcyt}$	10^{-1}	1
$\max v_{glucose\ uptake\ rate}$	10^{5}	1
$\max v_{ethanol}$	10^{5}	1
min sum of absolute fluxes	10^{3}	2 and 5
MOMA	10^{2}	5

Supplementary Table 9: Overview of the multi-objective optimization problems solved in the S.cerevisiae study.

objective function
$-\min\left\{\left(\sum_{i=1}^{n}\sum_{j=1}^{r}\left(v_{j}\left(t_{0}\right)-v_{j}\left(t_{i}\right)\right)^{2}\right)-w\cdot v_{ATP}\right\}$
$\min\left\{\left(\sum_{i=1}^{n}\sum_{j=1}^{r}\left(v_{j}\left(t_{0}\right)-v_{j}\left(t_{i}\right)\right)^{2}\right)-w\cdot v_{gluc\ uptake}\right\}$
$\min\left\{\left(\sum_{i=1}^{n}\sum_{j=1}^{r}\left(v_{j}\left(t_{0}\right)-v_{j}\left(t_{i}\right)\right)^{2}\right)-w\cdot v_{ETH}\right\}$
$-\min\left\{\left(\sum_{i=1}^{n}\sum_{j=1}^{r}\left(v_{j}\left(t_{0}\right)-v_{j}\left(t_{i}\right)\right)^{2}\right)-w\cdot v_{biomass}\right\}$
$-\min\left\{\left(\sum_{i=1}^{n}\sum_{j=1}^{r}\left(v_{j}\left(t_{0}\right)-v_{j}\left(t_{i}\right)\right)^{2}\right)-w\cdot v_{ATPcyt}\right\}$
$\min \{sum \ of \ absolute \ fluxes \ -w \cdot v_{ATP}\}$
$\min \{sum \ of \ absolute \ fluxes \ -w \cdot v_{gluc \ uptake}\}$
min {sum of absolute fluxes $-w \cdot v_{ETH}$ }
$\min \{sum \ of \ absolute \ fluxes \ -w \cdot v_{biomass}\}$
$\min \{sum \ of \ absolute \ fluxes \ -w \cdot v_{ATPcyt}\}$

Supplementary Figure 12: Different Pareto optimal solutions P_1, P_2, P_3, \cdots can be calculated by varying the weight w in the multi-objective optimization.

objective $F1 - w \cdot F2$ w		order	order	Contradiction with
		of $F1$	of $F2$	literature?
$\min\left\{ \left(\sum_{i=1}^{n} \sum_{j=1}^{r} \left(v_j \left(t_0 \right) - v_j \left(t_i \right) \right)^2 \right) - w \cdot v_{ATP} \right\} \qquad 0.0$	001 - 10	10^{2}	10^{2}	contradiction with 5
	$0 - 10^5$	$10^4 - 10^7$	$10^3 - 10^5$	contradiction with 3 and 5
10	0	10^{7}	10^{5}	contradiction with 3
$\min\left\{\left(\sum_{i=1}^{n}\sum_{j=1}^{r}\left(v_{j}\left(t_{0}\right)-v_{j}\left(t_{i}\right)\right)^{2}\right)-w\cdot v_{gluc\;uptake}\right\}\;\;0.0$	001 - 10	$10^2 - 10^3$	10^{2}	contradiction with 5
	$0 - 10^5$	$10^4 - 10^7$	$10^3 - 10^5$	contradiction with 4 and 5
100	6	10^{7}	10^{5}	contradiction with 4
$\min\left\{\left(\sum_{i=1}^{n}\sum_{j=1}^{r}\left(v_{j}\left(t_{0}\right)-v_{j}\left(t_{i}\right)\right)^{2}\right)-w\cdot v_{ETH}\right\} $ 0.0	$1001 - 10^3$	$10^2 - 10^6$	$10^2 - 10^4$	contradiction with 5
	$4 - 10^{6}$	10^{7}	10^{5}	no contradiction
$\min\left\{\left(\sum_{i=1}^{n}\sum_{j=1}^{r}\left(v_{j}\left(t_{0}\right)-v_{j}\left(t_{i}\right)\right)^{2}\right)-w\cdot v_{biomass}\right\} 0.0$	1000000000000000000000000000000000000	$10^2 - 10^3$	10^{1}	contradiction with 5
	$4 - 10^{6}$	$10^5 - 10^8$	$10^2 - 10^4$	contradiction with 2
$\min\left\{\left(\sum_{i=1}^{n}\sum_{j=1}^{r}\left(v_{j}\left(t_{0}\right)-v_{j}\left(t_{i}\right)\right)^{2}\right)-w\cdot v_{ATPcyt}\right\}=0.0$	1000000000000000000000000000000000000	10^{2}	10^{-1}	contradiction with 5
$\frac{1}{\min\left\{sum \ of \ absolute \ fluxes \ -w \cdot v_{ATP}\right\}} \qquad 0.0$)01 - 1	10^{3}	10^{0}	contradiction with 4 and 5
10	-10^{6}	10^{5}	10^{5}	contradiction with 3, 4
				and 5
$\frac{1}{\min \{sum \ of \ absolute \ fluxes \ -w \cdot v_{gluc \ uptake}\}} \qquad 0.0$	001 - 1	10^{3}	10^{1}	contradiction with $4~{\rm and}~5$
10	-10^{6}	10^{5}	10^{5}	contradiction with 5
$\frac{1}{\min \{sum \ of \ absolute \ fluxes \ -w \cdot v_{ETH}\}} \qquad 0.0$	1000000000000000000000000000000000000	$10^3 - 10^5$	$10^2 - 10^5$	contradiction with $4 \mbox{ and } 5$
$\frac{1}{\min \{sum \ of \ absolute \ fluxes \ -w \cdot v_{biomass}\}} \qquad 0.0$	001 - 1	10^{3}	10^{1}	contradiction with 2, 4
				and 5
10		10^{3}	10^{1}	contradiction with $4 \ {\rm and} \ 5$
100	0	10^{5}	10^{3}	contradiction with 2 and 5
100	00	10^{6}	10^{4}	contradiction with 5
10	$4 - 10^{6}$	10^{6}	10^{4}	contradiction with 2 and 5
min Seam of abealate flames - at the stars of a flame	2	200	10-1	and K distion with I and K

Supplementary Figure 13: S. cerevisiae study. Plots glycolysis for MOMA + max $w \cdot v_{ETH}$, $w = 10^4 - 10^6$.

Supplementary Figure 14: S. cerevisiae study. Plots TCA cycle for MOMA + max $w \cdot v_{ETH}$, $w = 10^4 - 10^6$.

Supplementary Figure 15: S. cerevisiae study. Plots pentose phosphate pathway for MOMA + max $w \cdot v_{ETH}$, $w = 10^4 - 10^6$.

References

- A. B. Canelas, W. M. van Gulik, and J. J. Heijnen. Determination of the cytosolic free nad/nadh ratio in saccharomyces cerevisiae under steady-state and highly dynamic conditions. *Biotechnology and Bioengineering*, 100(4):734–743, 2008.
- [2] Lodewijk de Jonge, N.A.A. Buijs, Joseph J. Heijnen, Walter M. van Gulik, A. Abate, and S. Aljoscha Wahl. Flux Response of Glycolysis and Storage Metabolism during rapid feast/famine conditions in Penicillium chrysogenum using dynamic 13 C labeling. *Biotechnology Journal*, 9:372–385, October 2014.
- [3] J. S. Edwards and B. O. Palsson. The escherichia coli mg1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci U S A, 97(10):5528–5533, May 2000.
- [4] T. Ferguson. Linear programming: A concise introduction. (http://www.math.ucla.edu/ tom/LP.pdf), 2011.
- [5] O. Frick and C. Wittmann. Characterization of the metabolic shift between oxidative and fermentative growth in saccharomyces cerevisiae by comparative c-13 flux analysis. *Microbial Cell Factories*, 4:3, 2005.
- [6] M. L. Giuseppin and N. A. van Riel. Metabolic modeling of saccharomyces cerevisiae using the optimal control of homeostasis: a cybernetic model definition. *Metab Eng*, 2(1):14–33, Jan 2000.
- [7] B. D. Heavner, K. Smallbone, B. Barker, P. Mendes, and L. P. Walker. Yeast 5 an expanded reconstruction of the saccharomyces cerevisiae metabolic network. *BMC Systems Biology*, 6:55, 2012.
- [8] D. M. Hendrickx, H. C. J. Hoefsloot, M. M. W. B. Hendriks, A. B. Canelas, and A. K. Smilde. Global test for metabolic pathway differences between conditions. *Anal Chim Acta*, 719:8–15, Mar 2012.
- [9] D. M. Hendrickx, H. C. J. Hoefsloot, M. M. W. B. Hendriks, D. J. Vis, A. B. Canelas, B. Teusink, and A. K. Smilde. Inferring differences in the distribution of reaction rates across conditions. *Molecular Biosystems*, 8(9):2415–2423, 2012.
- [10] H. G. Holzhütter. The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. Eur J Biochem, 271(14):2905–2922, Jul 2004.
- [11] T. Kamminga. Short-term dynamics of glycolysis in saccharomyces cerevisiae expressing arginine kinase. Master's thesis, Department of Biotechnology, Delft University of Technology, 2007.
- [12] M. T A P Kresnowati, W. A. van Winden, M. J H Almering, A. ten Pierick, C. Ras, T. A. Knijnenburg, P. Daran-Lapujade, J. T. Pronk, J. J. Heijnen, and J. M. Daran. When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation. *Mol Syst Biol*, 2:49, 2006.
- [13] J. M. Lee, E. P. Gianchandani, and J. A. Papin. Flux balance analysis in the era of metabolomics. Brief Bioinform, 7(2):140–150, 2006.
- [14] D. G. Luenberger. Introduction to linear and nonlinear programming. Addison-Wesley, 1973.
- [15] J. D. Orth, I. Thiele, and B. O. Palsson. What is flux balance analysis? Nat Biotechnol, 28(3):245–248, Mar 2010.

- [16] R. Ramakrishna, J. S. Edwards, A. McCulloch, and B. O. Palsson. Flux-balance analysis of mitochondrial energy metabolism: consequences of systemic stoichiometric constraints. Am J Physiol Regul Integr Comp Physiol, 280(3):R695–R704, Mar 2001.
- [17] R. Schuetz, L. Kuepfer, and U. Sauer. Systematic evaluation of objective functions for predicting intracellular fluxes in escherichia coli. *Mol Syst Biol*, 3:119, 2007.
- [18] D. Segré, D. Vitkup, and G. M. Church. Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci U S A, 99(23):15112–15117, 2002.
- [19] E. S. Snitkin and D. Segré. Optimality criteria for the prediction of metabolic fluxes in yeast mutants. Genome Inform, 20:123–134, 2008.