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Supplementary Methods 
 
 
Simplified model of the Pseudomonas putida TOL network 
 
This model is based on the network described in de Las Heras et al, 2012. The aim is to 
simulate the behaviour of the TOL transcriptional network and modifications made to it. In the 
experimental studies, the induction of the TOL pathway is followed by the expression of the lux 
reporter gene under the control of the master transcriptional regulator of the TOL pathway, 
XylR. XylR is normally present on cells at stationary phase in an inactive form, which can be 
activated by the optimal inducer m-xylene and by sub-optimal inducers, such as 3MBA. Upon 
activation, XylR induces transcription of other proteins involved in the TOL pathway, and in this 
case, the lux reporter gene. In the wild type network activated XylR also represses its own 
transcription and its concentration is therefore regulated through a negative feedback loop. 
This regulation was experimentally modified by de Las Heras et al (2012) by changing the 
negative to a positive feedback loop in which XylR activates its own transcription. This was 
done by exchanging the endogenous XylR promoter, PR, by one of two XylR-activated 
promoters, the strong promoter Pu and the weaker one Ps. 
 
The model described below is a simple two-ODE model that follows only two variables, the 
concentration of XylR, and the concentration of the lux reporter, which is induced by the 
activated form of XylR. We also include the possibility of increasing the RNA polymerase factor 
𝜎!" as a factor controlling transcription from the Pu promoter. 
 
 
 
Model description and assumptions 
 
- XylR, denoted by RT, is assumed to be synthesized at a constant background rate 𝑘!"!  and 
degraded also at a constant background rate, 𝑘!" . In the wild type network and modified 
networks XylR synthesis is also a function f of XylR activity, denoted here as aR. Therefore, we 
write a preliminary differential equation for XylR: 
 

𝑑𝑅!
𝑑𝑡 =   𝑘!"! + 𝑓 𝑎! −   𝑘!"𝑅 
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- We assume that the activated form of XylR is bound to the inducer in a complex. Compared 
to protein synthesis and degradation, we expect the binding and unbinding of the inducer to 
XylR to be fast, so we can assume that the concentrations of the complex, 𝑅!, and free XylR, 
𝑅!, are at equilibrium. Also, the sum of the complex and the free forms is equal to the total 
amount of XylR: 
 

𝑅! = 𝑅! + 𝑅! 2 
 
- Therefore, the concentration of the XylR-inducer complex, Rc can be described by the 
following expression: 
 

𝑅! = 𝑅!
𝐼

𝐾! + 𝐼
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where  I represents the concentration of inducer added to the cells, and 𝐾! is the dissociation 
constant of the XylR-inducer complex. 
 
- To model the effects of optimal and sub-optimal inducers, we consider that the complexes 
with different inducers have different levels of transcriptional activity. This is because it appears 
that the optimal and sub-optimal inducers have similar affinities for XylR (de Las Heras et al, 
2012). We also allow the possibility that the free form of XylR can have a small, background 
level of activity. Therefore, we can define the activity of XylR,  𝑎!  as a weighted sum of the 
free and complex forms: 
 

𝑎! = 𝜆𝑅! + 𝛼𝑅! 4 
 
Where normally 𝜆 > 𝛼, and 𝜆 is a parameter that indicates how strongly a particular inducer 
activated XylR, and 𝛼 indicates the background activity of free XylR.  
 
Thus, combining equations 3 and 4 we obtain an expression to describe the level of activity of 
XylR: 
 

𝑎! = 𝑅!    𝛼 + 𝜆 − 𝛼
𝐼

𝐾! + 𝐼
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- Using equation 5, we can then define the function 𝑓 𝑎!  from equation 1. We assume that 
as most transcription factors, active XylR activates or inactivates transcription in a non-linear 
way, described here with Hill equations. The shape of the function also depends on whether 
XylR acts as a transcriptional inhibitor or as an activator.  
 
Then, for the model of the wild type network, where XylR inhibits its own transcription in a 
negative feedback loop, the function 𝑓! from equation 1 is defined as: 
 

𝑓! 𝑎! = 𝑘!"!!
𝐽!!"

𝐽!!" +   𝑎!!"
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Where 𝑘!"!!  is the maximum rate of XylR synthesis (when 𝑎! = 0), 𝐽!  is the 𝑎!  level resulting 
in half-maximal XylR-dependent transcriptional inhibition and 𝑛!  is the Hill coefficient which 
determines how steep is the transcriptional inhibition.  
 
For the network with a positive feedback loop, the 𝑓 𝑎!  function describing transcriptional 
activation of XylR by XylR is: 
 

𝑓! 𝑎! = 𝑘!"!! 𝜎
𝑎!!"

𝐽!!" +   𝑎!!"
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Where 𝑘!"!! 𝜎 is the maximum rate of XylR synthesis; 𝑘!"!!  represents the contribution to the rate 
made by active XylR and 𝜎 takes into account the amount of the 𝜎!" factor present in the cell. 
For simplicity we assume that increasing the levels of this factor leads to a linear increase in 
the transcription rate from the Pu promoter. 𝐽!  is the 𝑎!  level resulting in half-maximal XylR-
dependent transcriptional activation and 𝑛!  is the Hill coefficient which determines the 
steepness of the activation.  
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Finally, we write a differential equation for the concentration of the Lux reporter, whose 
synthesis is activated by XylR.  
 

𝑑𝐿
𝑑𝑡 = 𝑘!"! + 𝑘!"!! 𝜎

𝑎!!"

𝐽!!" +   𝑎!!"
  +   𝑘!"𝐿 
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Where 𝑘!"!  is a small background synthesis rate 𝑘!"!! 𝜎 is the maximum rate of XylR and 𝜎!"-
dependent Lux synthesis. 𝐽!  is the 𝑎!  level resulting in half-maximal XylR-dependent 
transcriptional activation of lux and 𝑛! is the Hill coefficient which determines the steepness of 
XylR transcriptional activation. 
 
We used MATLAB to simulate these systems of ODEs: 

-­‐ For the model with the original system architecture involving a negative feedback loop 
the system of ODEs is composed of ODEs 1 and 8 and algebraic equations 5 and 6 
and 

-­‐ For the system with XylR controlled by a positive feedback loop, the system is 
composed of ODEs 1 and 8 and algebraic equations 5 and 7. 

 
Parameters values are shown in the Table below: 
 
 
Parameter Value 

𝑘!"!  0 (Fig 2), 0.1 (Fig 6) 
𝑘!"  1 
𝐾! 1 
𝜆 1 
𝛼 0.01 
𝑘!"!!  1 (Fig 2), 2 (Fig 6) 
𝐽!  0.2 (Fig 2), 0.3 (Fig 6) 
𝑛𝑅 3 
𝑘!"!  0.1 
𝑘!"!!  1 
𝑘!" 0.5 
𝐽! 0.3 
𝑛𝐿 3 
𝜎 1 (Fig 2b, 6a), 2 (Fig 1c, 6b) 
I 0 (before induction), 20 (after induction) 

 
 


