Supplementary Data

Table S1. The Ordinary Differential Equations of the Mitotic Regulatory Network

$$\frac{d[\text{CDK1:CycB}]}{dt} = -\frac{k_0[\text{Wee1}][\text{CDK1:CycB}]}{k_1 + [\text{CDK1:CycB}]} + \frac{k_2[\text{p-CDC25}][\text{p-CDK1:CycB}]}{k_3 + [\text{p-CDK1:CycB}]} - \frac{k_{42}[\text{APC}/\text{C:CDC20}][\text{CDK1:CycB}]}{k_{43} + [\text{CDK1:CycB}]} \qquad (1)$$

$$\frac{d[\text{p-CDK1:CycB}]}{dt} = \frac{k_0[\text{Wee1}][\text{CDK1:CycB}]}{k_1 + [\text{CDK1:CycB}]} - \frac{k_2[\text{p-CDC25}][\text{p-CDK1:CycB}]}{k_3 + [\text{p-CDK1:CycB}]} - \frac{k_{42}[\text{APC}/\text{C:CDC20}][\text{p-CDK1:CycB}]}{k_{43} + [\text{p-CDK1:CycB}]} \qquad (2)$$

$$\frac{d[\text{CDK1}]}{dt} = -\frac{k_0[\text{Wee1}][\text{CDK1}]}{k_1 + [\text{CDK1}]} + \frac{k_2[\text{p-CDC25}][\text{p-CDK1}]}{k_3 + [\text{p-CDK1}]} + \frac{k_{42}[\text{APC}/\text{C:CDC20}][\text{CDK1:CycB}]}{k_{43} + [\text{p-CDK1}]} \qquad (3)$$

$$\frac{d[\text{p-CDK1}]}{dt} = \frac{k_0[\text{Wee1}][\text{CDK1}]}{k_1 + [\text{CDK1}]} - \frac{k_2[\text{p-CDC25}][\text{p-CDK1}]}{k_3 + [\text{p-CDK1}]} + \frac{k_{42}[\text{APC}/\text{C:CDC20}][\text{CDK1:CycB}]}{k_{43} + [\text{p-CDK1}]} \qquad (4)$$

$$\frac{d[\text{Wee1}]}{dt} = -\frac{k_4[\text{CDK1:CycB}][\text{Wee1}]}{k_5 + [\text{Wee1}]}$$
(5)

$$\frac{d[p-\text{Wee1}]}{dt} = \frac{k_4 [\text{CDK1:CycB}][\text{Wee1}]}{k_5 + [\text{Wee1}]} - \frac{k_6 [p-\text{PLK1}][p-\text{Wee1}]}{k_7 + [p-\text{Wee1}]}$$
(6)

$$\frac{d[\text{p-CDC25}]}{dt} = \frac{k_8[\text{CDK1:CycB}][\text{CDC25}]}{k_9 + [\text{CDC25}]} + \frac{k_{10}[\text{p-PLK1}][\text{CDC25}]}{k_{11} + [\text{CDC25}]} + \frac{k_{12}[\text{p-AurkA-cp}][\text{CDC25}]}{k_{13} + [\text{CDC25}]}$$
(7)

$$\frac{d[\text{CDC25}]}{dt} = -\frac{k_8[\text{CDK1:CycB}][\text{CDC25}]}{k_9 + [\text{CDC25}]} - \frac{k_{10}[\text{p-PLK1}][\text{CDC25}]}{k_{11} + [\text{CDC25}]} - \frac{k_{12}[\text{p-AurkA-cp}][\text{CDC25}]}{k_{13} + [\text{CDC25}]}$$
(8)

$$\frac{d[p-PLK1]}{dt} = \frac{k_{14}[p-AurkA-cp][Bora][PLK1]}{k_{15} + [PLK1]} - \frac{k_{16}[p-MYPT1-PP1C][p-PLK1]}{k_{17} + [p-PLK1]}$$
(9)

$$\frac{d[\text{PLK1}]}{dt} = -\frac{k_{14}[\text{p-AurkA-cp}][\text{Bora}][\text{PLK1}]}{k_{15} + [\text{PLK1}]} + \frac{k_{16}[\text{p-MYPT1-PP1C}][\text{p-PLK1}]}{k_{17} + [\text{p-PLK1}]}$$
(10)

$$\frac{d[\text{p-AurkA-cs}]}{dt} = \frac{k_{18}[\text{p-AurkA-cp}]}{1 + \frac{[\text{Bora}]}{k_{19}}}$$
(11)

$$\frac{d[p-\text{AurkA-cp}]}{dt} = \frac{k_{20}[p-\text{AurkA-cp}][\text{AurkA}]}{k_{21} + [\text{AurkA}]} - \frac{k_{18}[p-\text{AurkA-cp}]}{1 + \frac{[\text{Bora}]}{k_{19}}}$$
(12)

$$\frac{d[\text{AurkA}]}{dt} = -\frac{k_{20}[\text{p-AurkA-cp}][\text{AurkA}]}{k_{21} + [\text{AurkA}]}$$
(13)

$$\frac{d[\text{Bora}]}{dt} = -\frac{k_{22}[\text{p-PLK1}][\text{Bora}]}{k_{23} + [\text{Bora}]}$$
(14)

$$\frac{d[\text{p-MYPT1-PP1C}]}{dt} = \frac{k_{24}[\text{CDK1:CycB}][\text{MYPT1-PP1C}]}{k_{25} + [\text{MYPT1-PP1C}]}$$
(15)

$$\frac{d[\text{MYPT1-PP1C}]}{dt} = -\frac{k_{24}[\text{CDK1:CycB}][\text{MYPT1-PP1C}]}{k_{25} + [\text{MYPT1-PP1C}]}$$
(16)

$$\frac{d[p-AurkB]}{dt} = \frac{k_{26}[p-AurkB][AurkB]}{k_{27} + [AurkB]} - \frac{k_{28}[p-BUBR1][p-AurkB]}{k_{29} + [p-AurkB]}$$
(17)

$$\frac{d[\text{AurkB}]}{dt} = -\frac{k_{26}[\text{p-AurkB}][\text{AurkB}]}{k_{27} + [\text{AurkB}]} + \frac{k_{28}[\text{p-BUBR1}][\text{p-AurkB}]}{k_{29} + [\text{p-AurkB}]}$$
(18)

$$\frac{d[\text{p-BUBR1}]}{dt} = \frac{k_{30}[\text{p-PLK1}][\text{BUBR1}]}{k_{31} + [\text{BUBR1}]}$$
(19)

$$\frac{d[\text{BUBR1}]}{dt} = -\frac{k_{30}[\text{p-PLK1}][\text{BUBR1}]}{k_{31} + [\text{BUBR1}])}$$

$$+k_{32}$$
[p-AurkB]{ $1.2 \times 10^4 - ($ [p-BUBR1] + [BUBR1]}} (20)

$$\frac{d[\text{Attached}]}{dt} = k_{33}[\text{p-AurkA-cs}][\text{UnAttached}] - \frac{k_{34}[\text{p-AurkB}][\text{Attached}]}{1 + \frac{[\text{Attached}]}{k_{35}}}$$
(21)

$$\frac{d[\text{UnAttached}]}{dt} = -k_{33}[\text{p-AurkA-cs}][\text{UnAttached}] + \frac{k_{34}[\text{p-AurkB}][\text{Attached}]}{1 + \frac{[\text{Attached}]}{k_{35}}}$$
(22)

$$\frac{d[\text{CDC20}]}{dt} = k_{36} - k_{37} [\text{UnAttached}] [\text{CDC20}] - k_{38} [\text{CDC20}] [\text{APC/C}]$$

$$-\frac{k_{39}[\text{CDC20}]}{k_{40} + [\text{CDC20}] + [\text{APC/C:MCC}]}$$
(23)

$$\frac{d[\text{MCC}]}{dt} = k_{37}[\text{UnAttached}][\text{CDC20}] - k_{41}[\text{MCC}][\text{APC/C}]$$
(24)

$$\frac{d[APC/C]}{dt} = -(k_{38}[CDC20] + k_{41}[MCC])[APC/C] + \frac{k_{39}([APC/C:CDC20] + [APC/C:MCC])}{k_{40} + [CDC20] + [APC/C:CDC20] + [APC/C:MCC]}$$
(25)

$$\frac{d[\text{APC/C:CDC20}]}{dt} = k_{38}[\text{CDC20}][\text{APC/C}]$$

$$\frac{\text{C:CDC20]}}{t} = k_{38}[\text{CDC20}][\text{APC/C}]$$

$$-\frac{k_{39}[\text{APC/C:CDC20}]}{k_{40} + [\text{CDC20}] + [\text{APC/C:CDC20}] + [\text{APC/C:MCC}]}$$
(26)

 $\frac{d[\text{APC/C:MCC}]}{dt} = k_{41}[\text{MCC}][\text{APC/C}]$

$$-\frac{k_{39}[\text{APC/C:MCC}]}{k_{40} + [\text{CDC20}] + [\text{APC/C:CDC20}] + [\text{APC/C:MCC}]}$$
(27)

Species	Initial concentration	Reference
	molecules/cell	
CDK1:CycB	$4.0 \times 10^3 \times a_0^{[b]}$	1
p-CDK1:CycB	$4.0 \times 10^3 \times (1 - a_0)$	1
CDK1	0	-
p-CDK1	0	-
Wee1	$2.5 \times 10^4 \times (1 - a_1)$	1
p-Wee1	$2.5 imes 10^4 imes a_1$	1
p-CDC25	$1.0 imes 10^4 imes a_2$	1
CDC25	$1.0 \times 10^4 \times (1 - a_2)$	1
p-PLK1	$9.6 \times 10^3 \times a_3$	1
PLK1	$9.6 \times 10^3 \times (1 - a_3)$	1
p-AurkA-cs ^[a]	0	-
p-AurkA-cp ^[a]	$7.2 imes 10^3 imes a_4$	1
AurkA	$7.2 \times 10^3 \times (1 - a_4)$	1
Bora	$4.5 imes 10^3$	1
p-MYPT1-PP1C	$6.0 imes 10^3 imes a_5$	2
MYPT1-PP1C	$6.0 \times 10^3 \times (1 - a_5)$	2
p-AurkB	$3.6 \times 10^3 \times a_6$	3
AurkB	$3.6 \times 10^3 \times (1 - a_6)$	3
p-BUBR1	$1.2 \times 10^4 \times a_7$	4
BUBR1	$1.2 \times 10^4 \times (1 - a_7)$	4
Attached	0	-
UnAttached	1	-
CDC20	$2.8 imes 10^5 imes a_8$	5
MCC	$2.8 \times 10^5 \times (1 - a_8)$	5
APC/C	$8 \times 10^4 \times (1 - a_9 - a_{10})$	5
APC/C:CDC20	$8 imes 10^4 imes a_9$	5
APC/C:MCC	$8 imes 10^4 imes a_{10}$	5

Table S2Initial concentrations of the species

^[a] Different localization of Aurora A: cs = centrosome; cp = cytoplasm.

^[b] a_i : initial concentration proportion parameter, possible value 0 to 1.

Table S3Penalty Functions in the Objective Function

$$P_1 = max \left(0,100 \frac{sum \left([Attached] \mid_{k_{30}=0} \right)}{sum \left([Attached] \right)} - 0.7 \right)$$

 $P_2 = max \left(0, 100 \left(a_9 + a_{10} - 1\right)\right)$

$$P_3 = max \left(0, 100 \left(0.8 - \left| \left([\text{AurkA}] \left|_{t=120} - [\text{AurkA}] \left|_{t=5} \right) \right| \right) \right) \right)$$

$$P_4 = max \left(0, 100 \left(0.9 - [Attached] |_{t=120}\right)\right)$$

$$P_5 = max (0, 100 (0.2 - [p-MYPT1-PP1C] |_{t=120}))$$

$$P_6 = max\left(0, 100\left(0.8 - \frac{min\left([\text{p-PLK1}]\right)}{[\text{p-PLK1}]|_{t=0}}\right)\right)$$

 $P_7 = max (0, 100 (max ([p-AurkB]) - 1.1))$

Figure S1 (Part 1) Distribution Range of Parameters

log Parameter

Figure S1 (Part 2) Distribution Range of Parameters

Figure S2 Simulated curves of species not used in fitting

Figure S3 Kinetochore-microtubule attachment of HeLa cells interfered by nocodazole (NOC) and/or BI 2536. **A**. Singly nocodazole (*S*-trityl-L-cysteine, STLC, is used to generate mono-astral spindles as control of BI 2536); **B**. Singly BI 2536; **C**. Combination of nocodazole 10 ng with BI 2536 at different concentrations; **D**. Combination of BI 2536 10 nM with nocodazole at different concentrations

Reference

- 1. J. Zou, S. D. Luo, Y. Q. Wei and S. Y. Yang, Mol. Biosyst., 2011, 7, 169-179.
- A. Muranyi, J. A. MacDonald, J. T. Deng, D. P. Wilson, T. A. Haystead, M. P. Walsh, F. Erdodi, E. Kiss, Y. Wu and D. J. Hartshorne, *Biochem. J.*, 2002, 366, 211-216.
- M. G. Manfredi, J. A. Ecsedy, K. A. Meetze, S. K. Balani, O. Burenkova, W. Chen, K. M. Galvin, K. M. Hoar, J. J. Huck, P. J. LeRoy, E. T. Ray, T. B. Sells, B. Stringer, S. G. Stroud, T. J. Vos, G. S. Weatherhead, D. R. Wysong, M. Zhang, J. B. Bolen and C. F. Claiborne, *Proc. Natl. Acad. Sci. U. S. A.*, 2007, **104**, 4106-4111.
- 4. G. Fang, Mol. Biol. Cell, 2002, 13, 755-766.
- 5. B. Ibrahim, S. Diekmann, E. Schmitt and P. Dittrich, *PLoS ONE*, 2008, 3, e1555.