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Method 1: The GMM Model. 

To deconvolute the overlapped peaks of the distributions of the L1000 analyte fluorescent intensities, 

we assumed that the fluorophore intensities of each analyte type (corresponding to a specific mRNA 

type) subjected to a Gaussian distribution. The distribution of the mixture of analytes GeneH(i) and 

GeneL(i) corresponding to the expression levels of GeneH and GeneL, respectively, should subject to a 

two Gaussian mixture, with the proportion of 1.25 to 0.75: 

   HHLL ppxf  ,)1(,)( 

where  is the cumulative distribution function of the analytes GeneH(i) and GeneL(i) of the same )(xf

analyte color i, x is the fluorescent intensity value (i.e., the measure of the gene expression levels) of 

beads, and is the cumulative Gaussian distribution function of the fluorescent intensity of an ),( N

analyte type. The parameter p was initialized as 0.375 based on the prior knowledge of bead portions. 

The objective function for GMM optimization was: 
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Parameters , , , and  were initialized by the fuzzy c-means clustering [10]. The L H H H

expression levels of the two transcripts were determined by solving  and  through optimizing the L H

objective function using the Nelder–Mead method[11]. 
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Method 2: The EGEM score. 

Figure S1. EGEM score construction. The up- and down- DEGs 
after a gene knockdown treatment are used as two feature sets. 
The locations of up- and down feature sets in the ascendant- and 
descendant-sorted gene list after a compound treatment are 
measured by Kolmogorov-Smirnov statistic. The value is 
normalized by the total size of up- and down feature sets.

We defined the EGEM score to describe the similarity between the treatments of a compound and 

an shRNA targeting a gene using the mutual enrichment of their resultant differential expressed 

landmark genes. The EGEM metric was derived from the rank-based gene set enrichment analysis 

(GSEA) [1] and the connectivity analysis[2]. Compound treatments could be taken as “phenotypes” 

and the differentially expressed genes (DEGs) of a single gene knocking down treatment as a 

“signature gene set” in the GSEA terminology. The EGEM metric enabled gene set enrichment 

analysis against the LINCS target gene reference library. 

The construction of EGEM score was shown in Figure S1. A signature gene set of a target gene, 

which was composed of  DEGs after the knockdown of a target gene, among them  were up-n upt

regulated and  down-regulated. DEGs were detected according to the LFCs of the L1000 downt

landmark genes using 1.5 IQR (interquartile range) as the threshold, which was robust against 

outliers. For a small molecule compound, two lists of landmark genes were used to represent the 

patterns of the compound-induced L1000 gene expression changes, one ( ) sorted ascendantly upp

and the other ( ) descendantly based on according to the LFCs. downp
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, such,  and  were the positions of the jth up- and down-regulated DEGs, respectively, )(1 jp )(2 jp

in their corresponding probe gene lists. The EGEM score was defined as

1 2

1 2

1: 1:
1 2 1 2 1 2 1 2
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The EGEM score ranges from -1 to 1. The absolute value of an EGEM score represents the 

enrichment degree. The positive or negative sign of an EGEM score indicates that the change of gene 

expression pattern due to knocking down the corresponding gene is similar or reversely similar to that 

induced by the drug treatment. The statistical significance of an EGEM score was determined by t-test 

against permutations of 100 times. The EGEM scores were kept only if the associated p-values were 

less than 0.05 and otherwise were set to zero. 

We constructed an EGEM matrix by pairwisely calculating the EGEM score between each 

compound and each knockdown gene. We assumed that both the positive and negative EGEM scores 

followed normal distributions. We also assumed that the EGEM matrix was sparse by observing the 

fact that, among the 3,000 proteins, a compound usually only targets a limited number of them. Hence, 

we chose the EGEM scores with single-side p-values less than 0.05. Other scores were forced to 

zeroes. 
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Method 3: The NMF algorithm. 

The basic NMF problem can be solved according to the multiplicative update rules proposed by Lee 
and Seung[3]:
Theorem 1 The Euclidean distance  is non-increasing under the update rules:A WH‖‖

S1
( ) ( )

, .
( ) ( )

T T
rj ir

rj rj ir irT T
rj ir

W A AH
H H W W

W WH WHH
 

The Euclidean distance is invariant under these updates if and only if W and H are at a stationary point 
of the distance. 
We solve the csNMF problem according to Eq. S1. Construct the following matrixes ,  and so  A W H

that:
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where is a row vector with all components equal to one and  is a zero vector,  is an 1
1

k
ke R 
  10 n kI

identity matrix of size  and is a zero matrix of size .k k 0k m k m

Then, the objective function can be written as:
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According to Eq. S1, the problem of csNMF can be solved by the multiplicative update rules:
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Determine the optimal signatures. We constructed the adjacency matrix :
𝐶𝑀 ∈ {𝐶𝑡(𝑊𝑆),𝐶𝑡(𝑊𝑅),𝐶𝐻}

S4
𝐶𝑀(𝑟,𝑗) = {1, if  

𝑋(𝑟,𝑗) ‒ 𝑚𝑒𝑎𝑛(𝑋(𝑟,:))
𝑠𝑑(𝑋(𝑟,:))

> 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑢𝑙𝑑;

0, others �
to determine the clustering results. Since the optimization might converge to local minimum, in order 

to decompose the EGEM matrix into  clusters, we permuted the original orders of the EGEM matrix, 𝑘



Page 5 of 14

repeated the optimization process for 30 times, and used the average of the calculated adjacency 

matrixes  to determine the final clustering results (Eq. S5) ̅𝐶𝑀,𝑘

S5

̅𝐶𝑀,𝑘(𝑟,𝑗) = {1, if  

𝑁

∑
𝑢 = 1

𝐶𝑀,𝑘,𝑢(𝑟,𝑗)

𝑁
> 0.5;

0, others
�

Determine the optimal signature number. We used the cophenetic correlation coefficient (CCC) 

method [4] to measure the stability of the clustering results and thus to determine the optimal cluster 

number. Briefly, the cosine similarity[5] between each adjacency matrix  and the average 𝐶𝑀,𝑘,𝑢(𝑟,𝑗)

 . The cosine similarity was chosen over Pearson’s correlation because it has been shown ̅𝐶𝑀,𝑘

insensitive to zeroes [6] which were abundant in adjacency matrixes. 

Adjacency matrix construction and signature number determination 

After performing csNMF approach, EGEM matrix is decomposed into weight and coefficient matrixes. 

The next is to assigning the elements (compounds and genes) to different signatures. This fulfils by a 

adjacency matrix C, which is a 0-1 matrix of size k x n,  if element j is clustered to signature i, 1, jiC

and if not [7]. As to the adjacency matrixes CM (M is V, t(W1), t(W2) of the csNMF results, t(M) 0, jiC

is the transpose matrix of M), if the value of one element j is of the top p quartile of signature i, 

, otherwise . Since the objective function of csNMF is not convex in W1, W2 and V, the 1, M
jiC 0, M

jiC

algorithm may converge to different local minimums on each run of optimization, based on different 

random initial conditions. Thus, different adjacency matrixes are obtained based on different 

initializations.  However, it is estimated that 20-100 runs suffice for a stable average adjacency matrix 

 [4]. Hence, we randomly reorder the compounds and genes of EGEM matrix 30 runs, and perform C

csNMF.  Only if one element related with one signature in at least 15 runs is one in the average 

adjacency matrix, otherwise, it is zero. That is to say, 

,

Ci, j 
1 if Cij

u 15
u1..30


0 else






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where u is the index of run times, . ]30:1[u

Another crucial matter of csNMF is the chosen of signature number k, which needs to be 

determined prior to optimization. Suppose the clustering of k signatures is strong, the assignments of 

genes and compounds should vary little among different runs. Hence, we set a list of candidate 

signature numbers . Then, we compute the average consistence degree as to each signature Kkr 

number kr. A consistence degree relating to a signature in the uth run based on kr signature number is 

defined as the cosine value between the adjacency matrix value of that signature of run  and uC

those of the average adjacency matrix . The average consistence degree of kr is the average C

consistence degree of all the signatures and all the 30 runs. Hence, the stronger clustering is the one 

with larger consistence degree, and the corresponding k is the best signature number among . Kkr 
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Additional Table S1: Algorithm for EGEM and csNMF

Algorithm: The Algorithm of compound signature discovery
1. Determine the up- and down- DEGs after the gene perturbations.
2. Construct EGEM matrix based on the DEGs after the gene perturbations and the gene 
expression patterns after the compound treatments.
3. Estimate the significance of EGEM scores and adjust the EGEM matrix.
4. Construct the PPI matrix according to the genes in the EGEM matrix.
5. Construct the objective function of csNMF, and provide the candidate number of signatures 

as well as the replication number .𝑘 𝑁

6. while do
while do

Disorder the genes and compounds of the EGEM matrix randomly.
Solve the csNMF problem based on Eq. S2 and Eq. S3.
Build the ith connectivity matrix CH , Ct(Ws), Ct(wr).

end while
Determine the signature detection results based on k.
Calculate the consistence degrees based on k.

end while
7. Determine the stable signatures of each  based on Eq. S5𝑘

8. Determine the optimal  and obtain the signature detection result. 𝑘

9. The Biological analysis of each signature.
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Additional Table S2 : Correlations of inhibitors of Sig 2.

Combination (1,2) (1,3) (1,4) (2,3) (2,4) (3,4) randMean randSD

Cov(target) 0.79 0.81 0.04 0.74 0.04 0.05 0.10 0.17

Cov(exp) 0.35 0.26 0.21 0.18 0.16 0.20 0.08 0.14

Cov(egem) 0.47 0.49 0.38 0.52 0.43 0.46 0.14 0.21

1. “ALW-II-38-3”; 2."ALW-II-49-7”; 3. “QL-XI-92”; 4. “CP724714”. Cov(target) was the correlation of the 

two inhibitors’ interacting rate to 450 kinases. Cov(exp) was the correlation of gene expression pattern 

after two inhibitors’ perturbagens. Cov(egem) was the correlation of EGEM scores of two inhibitors. 

randMean and randSD were the average and standard deviation of correlation of each two inhibitors 

combination. 
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Additional Figure S2: Comparison of EGEM-based and experimentally measured kinase inhibitor target 
similarity.
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Figure S2. Comparison of EGEM-based and experimentally 
measured kinase inhibitor target similarity. Cov(EGEM): the 
similarity among kinase inhibitors ALW-II-38-3, ALW-II-49-7, QL-
XI-92, and CP724714 predicted by the covariance of their EGEM 
scores. Cov(kinase target): the similarity among their direct 
kinase inhibitor assayed by KINOMEscan®. 



Page 10 of 14

Additional Table S3: The p-value of target gene GO similarities of each signature

Sig 1 Sig 2 Sig 3 Sig 4 Sig 5 Sig 6

BP 0.15 0.28 0.71 2.66e-5 0.04 0.24

MF 0.18 0.01 0.90 3.68e-3 0.49 0.77

CC 0.11 0.04 0.72 9.49e-3 0.02 0.76

GO similarities were evaluated in three categories: the biological process (BP), the molecular function 

(MF), and the cellular component (CC). Statistically significant similarities (≤0.05) were labeled in bold 

font. 
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Additional Table S4: Univariable and multivariable survival analysis using compound signatures as well 
as conventional clinical features for chemotherapy.

Variables Relative risk p-value Relative risk p-value
Cl Cu (z) Cl Cu  (z)

age 1 1 1.1 1.9 0.0678 1 0.98 1.1 1.1 0.25
size 1 1 1 1.8 0.101 1 0.99 1 0.68 0.49
pam50 1.2 0.44 3.5 0.26 0.343 0.052 0.0024 1.1 -1.9 0.06
subtype 0.92 0.29 3.4 -0.25 0.328 23 0.91 > 100 1.9 0.057
lymphnode 2.2 0.99 4.7 1.9 0.0386 2.8 0.74 10 1.5 0.13
ER 0.72 0.38 1.4 -1 0.307 0.33 0.1 1.1 -1.8 0.067
grade 1 0.23 4.6 0.025 0.979 0.41 0.041 4.1 -0.76 0.45
Sig1 0.99 0.53 1.9 -0.04 0.968 0.55 0.2 1.6 -1.1 0.27
Sig2 0.78 0.42 1.5 -0.77 0.443 0.98 0.32 3 -0.035 0.97
Sig3 0.95 0.5 1.8 -0.16 0.871 0.55 0.19 1.6 -1.1 0.28
Sig4 2.3 1.2 4.5 2.5 0.00956 3.8 1.4 10 2.6 0.0092
Sig5 2 1.1 3.7 2.1 0.0331 1.5 0.56 3.8 0.78 0.43
Sig6 1.2 0.64 2.3 0.59 0.558 1.8 0.63 5.4 1.1 0.27
Sig7 0.97 0.52 1.8 -0.088 0.93 0.96 0.27 3.4 -0.071 0.94
Sig8 1.2 0.62 2.2 0.5 0.616 0.46 0.13 1.6 -1.2 0.22

Univariable Multivariable
Hazard Ratio (95% CI) Hazard Ratio (95% CI)
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Additional Table S5: Univariable and multivariable survival analysis using compound signatures as well 
as conventional clinical features for Tamoxifen treatment.

Variables Relative risk p-value Relative risk p-value
Cl Cu  (z) Cl Cu (z)

age 1 0.99 1 0.92 0.359 1 0.98 1 0.35 0.73
size 1 1 1 6.9 < 0.0001 1 1 1 4 < 0.0001
pam50 1 0.51 2.2 -0.34 < 0.0001 2.1 0.92 4.8 1.8 0.076
subtype 0.81 0.42 1.6 -1.2 < 0.0001 0.22 0.067 0.7 -2.6 0.011
lymphnode 2.4 1.7 3.3 5 < 0.0001 1.7 1.1 2.6 2.4 0.018
ER 0.39 0.22 0.71 -3.1 0.00651 0.52 0.24 1.1 -1.7 0.097
grade 5.4 2.3 13 3.9 < 0.0001 2.4 0.99 6 1.9 0.054
Sig1 0.88 0.63 1.2 -0.73 0.466 0.9 0.57 1.4 -0.47 0.64
Sig2 1.1 0.78 1.5 0.5 0.616 1.6 0.96 2.6 1.8 0.069
Sig3 1.1 0.8 1.6 0.67 0.501 1.3 0.85 2 1.2 0.21
Sig4 1.2 0.83 1.6 0.89 0.372 1.4 0.89 2.1 1.4 0.15
Sig5 0.93 0.66 1.3 -0.44 0.657 0.84 0.55 1.3 -0.82 0.41
Sig6 0.98 0.7 1.4 -0.14 0.888 0.81 0.53 1.2 -0.95 0.34
Sig7 0.97 0.69 1.4 -0.17 0.866 1.4 0.84 2.3 1.3 0.2
Sig8 0.84 0.6 1.2 -1 0.303 0.63 0.39 1 -2 0.05

Hazard Ratio (95% CI) Hazard Ratio (95% CI)
Univariable Multivariable
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Additional Figure S3: Association between breast cancer compound signatures and clinical traits.
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Figure S3. Association between breast cancer compound signatures and clinical traits. 
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