## SUPPLEMENTARY INFORMATION

## Probing the effect of an inhibitor of an ATPase domain of Hsc70 on clathrin-mediated

### endocytosis

Hyungseoph J. Cho,<sup>1,+</sup> Gun-Hee Kim,<sup>1,+</sup> Seong-Hyun Park,<sup>1</sup> Ji Young Hyun,<sup>1</sup> Nak-Kyoon

Kim,<sup>2</sup> and Injae Shin<sup>1,\*</sup>

# Synthesis of Az derivatives



R = 2 NH2

### General procedure for synthesis of diketones



A stirred solution of aldehyde (10 mmol, 1 equiv) and KCN (0.5 equiv) in EtOH and H<sub>2</sub>O (5:1, 25 mL) was heated under reflux for 2 days. The reaction mixture was cooled to room temperature and concentrated under reduced pressure. A stirred solution of the crude product,  $Cu(OAc)_2$  (0.3 equiv) and NH<sub>4</sub>NO<sub>3</sub> (1.1 equiv) in acetic acid and H<sub>2</sub>O (2:1, 25 mL) was heated under reflux for 2 h. The reaction mixture was cooled to room temperature, diluted with EtOAc, and washed with water, saturated NaHCO<sub>3</sub> and brine. The organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (EtOAc : hexane = 1:10) to give diketone in 15–20% yield.

**D-1**: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ 9.01 (d, J = 3.2 Hz, 2 H), 8.59 (s, 2 H), 8.46 (d, J = 8.0 Hz, 2 H), 8.41 (d, J = 9.2 Hz, 2 H), 8.22 (d, J = 8.8 Hz, 2 H), 7.64-7.60 (m, 2 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 194.2, 154.2, 151.0, 139.8, 139.7, 134.4, 131.8, 130.6, 128.7, 128.7, 123.5; MALDI-TOF-MS calcd for C<sub>20</sub>H<sub>13</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup> 313.09, found 313.35. **D-2**: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ 8.46 (s, 2 H), 8.16 (d, J = 8.0 Hz, 2 H), 7.98 (d, J = 8.4 Hz, 2 H), 7.91-7.88 (m, 4 H), 7.63 (t, J = 7.2 Hz, 2 H), 7.54 (t, J = 7.6 Hz, 2 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 194.9, 136.6, 133.8, 132.5, 130.6, 130.1, 129.7, 129.3, 128.1, 127.3, 123.9; MALDI-TOF-MS calcd for C<sub>22</sub>H<sub>15</sub>O<sub>2</sub> [M+H]<sup>+</sup> 311.10, found 311.15. **D-3**: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ 7.39-7.36 (m, 4 H), 7.07 (d, J = 8.0 Hz, 2 H), 6.19 (s, 4 H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) δ 193.1, 153.6, 148.7, 128.1, 127.2, 108.8, 107.2, 102.8; MALDI-TOF-MS calcd for C<sub>16</sub>H<sub>11</sub>O<sub>6</sub> [M+H]<sup>+</sup> 299.05, found 299.12.

### Solid-phase synthesis of Az derivatives



A solution of 4-nitrophenyl chloroformate (0.81 g, 4 mmol) in anhydrous  $CH_2Cl_2$  was added to a Wang resin (1 mmol) in  $CH_2Cl_2$  (9 mL) and lutidine (0.5 mL, 6 mmol) at 0 °C. After shaking for 12 h, the resin was washed with DMF and  $CH_2Cl_2$  several times. A solution of 2,2'-(ethylenedioxy)bisethylenediamine (0.6 mL, 5 mmol) and diisopropylethylamine (DIEA, 2 mL, 10 mmol) in DMF was added to the resin. After shaking for 12 h, the resin was washed with DMF and  $CH_2Cl_2$  several times. A solution of Fmoc-*p*-aminomethyl benzoic acid (1.2 g, 3 equiv), HBTU (1.3g, 3 equiv), HOBt (0.48 g, 3 equiv) and DIEA (1.2 ml, 6 equiv) in DMF was added to the amine conjugated resin (1 mmol). After shaking for 6 h, the resin was washed with DMF and  $CH_2Cl_2$  several times. Fmoc group on the resin was removed by treatment with 20% piperidine in DMF.

The amino-containing resin (30  $\mu$ mol), aldehyde (10 equiv), diketone (10 equiv) and ammonium acetate (40 equiv) was placed in a reaction vial (2 mL) and suspended in acetic acid (400  $\mu$ L). The reaction vial was placed in a heat block on a shaker at 100 °C. After shaking for 8 h, the resin was filtered and washed with DMF, MeOH and CH<sub>2</sub>Cl<sub>2</sub> several times. The product was cleaved from a solid support by treatment with TFA for 1.5 h. The crude product was analyzed by LC-MS with a gradient of 35–100% CH<sub>3</sub>CN (0.1% TFA) in water (0.1% TFA) over 10 min.

Apoptozole: ESI-MS calcd for  $C_{33}H_{25}F_6N_2O_4 [M+H]^+ 627.17$ , found 627.12. Compound 1: ESI-MS calcd for  $C_{39}H_{39}F_6N_4O_5 [M+H]^+ 757.36$ , found 757.53. Compound 2: ESI-MS calcd for  $C_{38}H_{40}F_3N_4O_5 [M+H]^+ 689.29$ , found 689.52. Compound 3: ESI-MS calcd for  $C_{39}H_{45}N_4O_5 [M+H]^+ 689.29$ , found 689.45. Compound 4: ESI-MS calcd for  $C_{39}H_{45}N_4O_7 [M+H]^+ 681.32$ , found 681.49. Compound 5: ESI-MS calcd for  $C_{39}H_{45}N_4O_5 [M+H]^+ 649.33$ , found 649.53. Compound 6: ESI-MS calcd for  $C_{41}H_{45}N_4O_9 [M+H]^+ 737.31$ , found 737.60. Compound 7: ESI-MS calcd for  $C_{40}H_{47}N_4O_8 [M+H]^+ 711.33$ , found 711.56. Compound 8: ESI-MS calcd for  $C_{37}H_{33}Cl_2F_6N_4O_3 [M+H]^+ 765.18$ , found 765.49. Compound 9: ESI-MS calcd for  $C_{37}H_{33}Br_2F_6N_4O_3 [M+H]^+ 725.28$ , found 783.85. Compound 10: ESI-MS calcd for  $C_{41}H_{45}F_6N_6O_3 [M+H]^+ 783.34$ , found 783.85. Compound 12: ESI-MS calcd for  $C_{43}H_{37}F_6N_6O_3 [M+H]^+ 797.28$ , found 799.52. Compound 13: ESI-MS calcd for  $C_{45}H_{39}F_6N_4O_3 [M+H]^+ 797.28$ , found 797.46. Compound 14: ESI-MS calcd for  $C_{39}H_{35}F_6N_4O_7 [M+H]^+ 785.23$ , found 797.46.



Compound 1





Compound 3

**Compound 4** 















Compound 11





Compound 13

Compound 14





Fig. S1. Purified Hsp40 and Hsp90.