Supporting information

Antimycobacterial activity of spirooxindolo-pyrrolidine, pyrrolizine and pyrrolothiazole hybrids obtained by a three-component regio- and stereoselective 1,3-dipolar cycloaddition

Stephen Michael Rajesh^a, Subbu Perumal,^{*a} J. Carlos Menéndez,^{*b} Perumal Yogeeswari^c and Dharmarajan Sriram^c

^aDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India

Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain.

^cMedicinal Chemistry & Antimycobacterial Research Laboratory, Pharmacy Group, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad– 500 078, Andhra Pradesh, India

Experimental Section

General

The melting points were measured in open capillary tubes and are uncorrected. The ¹H, ¹³C and the 2D NMR spectra were recorded in CDCl₃ and DMSO-d₆ on a Bruker (Avance) 300 MHz NMR instrument using TMS as internal standard. Standard Bruker software was used throughout. Chemical shifts are given in parts per million (δ -scale) and the coupling constants are given in Hertz. Silica gel-G plates (Merck) were used for TLC analysis with a mixture of petroleum ether (60–80 °C) and ethyl acetate as eluent. Elemental analyses were performed on a Perkin Elmer 2400 Series II Elemental CHNS analyzer. Crystals suitable for X-ray crystallographic studies were obtained by crystallisation from methanol. Ten fold serial dilutions of each test compound/drug were prepared and incorporated into Middlebrook 7H11 agar medium with OADC Growth Supplement. Inoculum of *Mycobacterium tuberculosis* H37Rv were prepared from fresh Middlebrook 7H11 agar slants with OADC Growth Supplement adjusted to 1mg/mL (wet weight) in Tween 80 (0.05%) saline diluted to 10⁻² to give a

concentration of approximately 10^7 cfu/mL. A 5 µL amount of bacterial suspension was spotted into 7H11 agar tubes containing 10-fold serial dilutions of drugs per mL. The tubes were incubated at 37°C, and final readings were recorded after 28 days. The minimum inhibitory concentration (MIC) is defined as the minimum concentration of compound required to completely inhibit the bacterial growth.

Structural assignment of 4 and 5 using NMR spectroscopic data:

The ¹H and ¹³C NMR chemical shifts of 2'-(aryl)-1'-nitro-1',2',5',6',7',7a'hexahydrospiro[indoline-3,3'- pyrrolizin]-2-one (4) and 6'-(aryl)-7'-nitro-3',6',7',7a'-tetrahydro-1'H-spiro[indoline-3,5'-pyrrolo[1,2-*c*]thiazol]-2-one (5) have also been done by the straightforward considerations as done' for 3-(aryl)-4'-nitro-5'-phenylspiro[indoline-3,2'pyrrolidin]-2-one (3). As representative examples ortep diagram for 3f (Figure 1), ¹H and ¹³C NMR chemical shifts and HMB correlations of 4i (Figure 2 & 3), ortep diagram for 4i (Figure 4), and 5a (Figure 5 & 6) are shown below.

Figure 1. Ortep diagram for 3f

Figure 2. Selected ¹H and ¹³ C NMR chemical shifts of 4i

Figure 4. Selected HMBCs of 4i

Figure 5. Selected ¹H and ¹³C NMR chemical shifts of 5a

Figure 6. Selected HMBCs of 5a

General procedure for the synthesis of 3'-(aryl)-4'-nitro-5'-phenylspiro[indoline-3,2'pyrrolidin]-2-one (3):

A mixture of β -nitrostyrene **1** (1 mmol), isatin **2** (1 mmol) and phenylglycine (1 mmol) dissolved in methanol (10 mL) was heated to reflux for 40 min. After completion of the reaction (TLC), the mixture was poured into crushed ice, the precipitated solid filtered and washed with water (100 mL) to obtain pure **3** as pale yellow solid.

3'-(4-Methoxyphenyl)-4'-nitro-5'-phenylspiro[indoline-3,2'-pyrrolidin]-2-one (3a)

Obtained as yellow solid. Yield: 86%; m.p. = 231 °C. IR (KBr): 1359, 1548, 1704, 3185, 3205 cm⁻¹; (300 MHz, DMSO-d₆) $\delta_{\rm H}$ 2.75 (d, 1H, *J*=5.7 Hz, 1'-NH), 3.69 (s, 3H), 4.52 (d, 1H, *J*=10.1 Hz), 5.86 (dd, 1H, *J*=10.0, 5.7 Hz), 6.36 (t, 1H, *J*=10.1 Hz), 6.65-6.69 (m, 2H), 6.97 (d, 2H, *J*=8.7 Hz), 7.16-7.22 (m, 2H), 7.31-7.39 (m, 4H), 7.59 (d, 2H, *J*=6.6 Hz), 7.72-7.75 (d, 1H, *J*=7.2 Hz), 9.94 (br s, 1H, 1-NH). ¹³C NMR (75 MHz, DMSO-d₆) $\delta_{\rm C}$ 53.5, 53.6, 59.1, 70.2,

89.8, 108.5, 112.3, 120.8, 122.5, 122.9, 126.5, 126.6, 126.7, 127.0, 127.6, 127.9, 137.7, 141.0, 157.6, 178.6. Anal. Calcd for $C_{24}H_{21}N_3O_4$: C, 69.39; H, 5.10; N, 10.11%. Found C, 69.30; H, 5.18; N, 10.17%.

3'-(4-Chlorophenyl)-4'-nitro-5'-phenylspiro[indoline-3,2'-pyrrolidin]-2-one (3b)

Obtained as pale yellow solid. Yield: 85%; m.p. = 223 °C. IR (KBr): 1332, 1588, 1710, 3172, 3242 cm⁻¹ ;(300 MHz, DMSO-d₆) $\delta_{\rm H}$ 3.51 (d, 1H, *J*=5.7 Hz, 1'-NH), 4.50 (d, 1H, *J*=10.2 Hz), 5.80 (dd, 1H, *J*=9.6, 5.7 Hz), 6.39 (t, 1H, *J*=10.2 Hz), 6.69 (d, 1H, *J*=7.5 Hz), 7.03 (d, 2H, *J*=8.7 Hz), 7.11-7.37 (m, 7H), 7.60 (d, 2H, *J*=7.8 Hz), 7.73 (d, 1H, *J*=7.2 Hz), 9.90 (br s, 1H, 1-NH). ¹³C NMR (75 MHz, DMSO-d₆) $\delta_{\rm C}$ 54.0, 59.8, 70.8, 89.8, 109.2, 121.6, 122.9, 127.0, 127.1, 127.3, 127.5, 128.4, 128.7, 130.3, 132.7, 137.6, 141.3, 178.9. Anal. Calcd for C₂₃H₁₈ClN₃O₃: C, 65.79; H, 4.32; N, 10.01%. Found C, 65.72; H, 4.41; N, 9.93%

3'-(3-Nitrophenyl)-4'-nitro-5'-phenylspiro[indoline-3,2'-pyrrolidin]-2-one (3c)

Obtained as yellow solid. Yield: 81%; m.p. = 241 °C. IR (KBr): 1351, 1546, 1704, 3176, 3322 cm⁻¹; (300 MHz, DMSO-d₆) $\delta_{\rm H}$ 3.28 (d, 1H, *J*=5.1 Hz, 1'-NH), 4.65 (d, 1H, *J*=9.9 Hz), 5.81-5.83 (m, 1H), 6.45-6.52 (m, 1H), 6.66 (d, 1H, *J*=6.9 Hz), 7.17-7.23 (m, 1H), 7.33-7.45 (m, 5H), 7.63 (d, 2H, *J*=6.8 Hz), 7.80 (d, 1H, *J*=6.8 Hz), 7.93-8.08 (m, 3H), 10.1 (br s, 1H, 1-NH). ¹³C NMR (75 MHz, DMSO-d₆) $\delta_{\rm C}$ 53.8, 59.7, 70.6, 89.5, 109.1, 121.4, 121.5, 122.0, 122.8, 126.6, 126.9, 127.3, 128.5, 128.7, 133.5, 133.9, 137.3, 141.0, 146.8, 178.5. Anal. Calcd for C₂₃H₁₈N₄O₅: C, 64.18; H, 4.22; N, 13.02%. Found C, 64.27; H, 4.14; N, 13.10%.

3'-(3-Chlorophenyl)-4'-nitro-5'-phenylspiro[indoline-3,2'-pyrrolidin]-2-one (3d)

Obtained as pale yellow solid. Yield: 85%; m.p. = 240 °C. IR (KBr): 1369, 1546, 1714, 3160, 3331 cm⁻¹; (300 MHz, DMSO-d₆) $\delta_{\rm H}$ 2.69 (br s, 1H, 1 -NH), 4.57 (d, 1H, *J*=9.9 Hz), 5.88 (d, 1H, *J*=9.6 Hz), 6.32 (t, 1H, *J*=9.9 Hz), 6.69-6.71 (m, 1H), 6.90-6.95 (m, 1H), 7.05-7.30 (m, 6H), 7.36-7.42 (m, 3H, 1-NH and ArH), 7.55-7.64 (m, 2H), 7.79 (d, 1H, *J*=6.9 Hz). ¹³C NMR (75 MHz, DMSO-d₆) $\delta_{\rm C}$ 55.2, 60.8, 71.5, 90.7, 110.0, 122.4, 123.5, 126.3, 127.5, 127.7, 127.8, 127.9, 128.2, 129.3, 129.6, 133.8, 134.5, 137.7, 142.0, 179.4 Anal. Calcd for C₂₃H₁₈ClN₃O₃: C, 65.79; H, 4.32; N, 10.01%. Found C, 65.87; H, 4.25; N, 10.09%.

3'-(4-Fluorophenyl)-4'-nitro-5'-phenylspiro[indoline-3,2'-pyrrolidin]-2-one (3e)

Obtained as pale yellow solid. Yield: 88%; m.p. = 224 °C. IR (KBr): 1363, 1554, 1706, 3199, 3347 cm⁻¹; (300 MHz, DMSO-d₆) $\delta_{\rm H}$ 2.58 (br s, 1H, 1'-NH), 4.51 (d, 1H, *J*=10.3 Hz), 5.81 (dd, 1H, *J*=9.6, 5.7 Hz), 6.38 (t, 1H, *J*=10.3 Hz), 6.67 (d, 1H, *J*=7.8 Hz), 6.84 (m, 2H), 7.04-7.09 (m, 2H), 7.12-7.24 (m, 2H), 7.28-7.39 (m, 3H), 7.60 (d, 2H, *J*=6.3 Hz), 7.73 (d, 1H, *J*=6.9 Hz), 9.82 (br s, 1H,1- NH). ¹³C NMR (75 MHz, DMSO-d₆) $\delta_{\rm C}$ 55.8, 61.4, 71.9, 91.3, 115.4, 115.7, 123.5, 124.4, 127.8, 128.0, 128.2, 128.3, 128.8, 129.6, 129.7, 137.7, 140.7, 161.1, 179.5. Anal. Calcd for C₂₃H₁₈FN₃O₃: C, 68.48; H, 4.50; N, 10.42%. Found C, 68.37; H, 4.59; N, 10.35%.

3'-Phenyl-4'-nitro-5'-phenylspiro[indoline-3,2'-pyrrolidin]-2-one (3f)

Obtained as pale yellow solid. Yield: 80%; m.p. = 239 °C. IR (KBr): 1363, 1550, 1704, 3264, 3342 cm⁻¹; (300 MHz, DMSO-d₆) $\delta_{\rm H}$ 2.58 (br s, 1H, 1'-NH), 4.53 (d, 1H, *J*=10.1 Hz), 5.82 (dd, 1H, *J*=9.9, 5.7 Hz), 6.43 (t, 1H, *J*=10.1 Hz), 6.67 (d, 1H, *J*=7.2 Hz), 7.05-7.38 (m, 11H), 7.61 (d, 2H, *J*=7.2 Hz), 7.74 (d, 1H, *J*=7.2 Hz), 9.80 (br s, 1H, 1-NH). ¹³C NMR (75 MHz, DMSO-d₆) $\delta_{\rm C}$ 54.9, 60.1, 71.0, 90.2, 109.3, 121.7, 123.1, 127.1, 127.2, 127.6, 127.7, 128.8, 131.7, 137.8, 141.5, 179.3. Anal. Calcd for C₂₃H₁₉N₃O₃: C, 71.67; H, 4.97; N, 10.90%. Found C, 71.58; H, 4.91; N, 10.99%.

3'-(4-Methylphenyl)-4'-nitro-5'-phenylspiro[indoline-3,2'-pyrrolidin]-2-one (3g)

Obtained as pale yellow solid. Yield: 83%; m.p. = 240 °C. IR (KBr): 1363, 1552, 1706, 3147, 3326 cm⁻¹; (300 MHz, DMSO-d₆) $\delta_{\rm H}$ 2.21 (s, 3H), 2.57 (br s, 1H, 1 -NH), 4.48 (d, 1H, *J*=10.2 Hz), 5.79 (dd, 1H, *J*=9.5, 5.7 Hz), 6.40 (t, 1H, *J*=10.2 Hz), 6.67 (d, 1H, *J*=7.5 Hz), 6.94-7.37 (m, 9H), 7.60 (d, 2H, *J*=6.6 Hz), 7.73 (d, 1H, *J*=6.9 Hz), 9.83 (br s, 1H, 1-NH). ¹³C NMR (75 MHz, DMSO-d₆) $\delta_{\rm C}$ 20.0, 54.4, 59.9, 70.8, 90.2, 109.2, 121.5, 123.0, 126.9, 127.0, 127.1, 127.5, 127.7, 128.1, 128.5, 128.6, 136.7, 137.8, 141.4, 179.2. Anal. Calcd for C₂₄H₂₁N₃O₃: C, 72.16; H, 5.30; N, 10.52%. Found C, 72.09; H, 5.37; N, 10.61%.

3'-(4-Bromophenyl)-4'-nitro-5'-phenylspiro[indoline-3,2'-pyrrolidin]-2-one (3h)

Obtained as pale yellow solid. Yield: 84%; m.p. = 219 °C. IR (KBr): 1363, 1548, 1705, 3104, 3334 cm⁻¹; (300 MHz, DMSO-d₆) $\delta_{\rm H}$ 3.45 (d, 1H, *J*=5.7 Hz, 1'-NH), 4.49 (d, 1H, *J*=10.0 Hz), 5.80 (dd, 1H, *J*=9.6, 5.7 Hz), 6.39 (t, 1H, *J*=10.0 Hz), 6.71 (d, 1H, *J*=7.2 Hz), 6.96-6.98 (m, 2H), 7.13-7.38 (m, 7H), 7.60 (d, 2H, *J*=6.9 Hz), 7.73 (d, 1H, *J*=6.9 Hz), 9.89 (br s, 1H, 1-NH). ¹³C

NMR (75 MHz, DMSO-d₆) δ_{C} 54.2, 59.9, 70.8, 89.9, 109.4, 121.1, 121.7, 123.0, 127.0, 127.1, 127.3, 127.5, 128.9, 130.5, 130.9, 137.6, 141.3, 179.0. Anal. Calcd for C₂₃H₁₈BrN₃O₃: C, 59.50; H, 3.91; N, 9.05%. Found C, 59.58; H, 3.84; N, 9.12%.

3'-(2,5-Dimethoxyphenyl)-4'-nitro-5'-phenylspiro[indoline-3,2'-pyrrolidin]-2-one (3i)

Obtained as orange solid. Yield: 81%; m.p. = 231 °C. IR (KBr): 1349, 1549, 1701, 3181, 3347 cm⁻¹; (300 MHz, DMSO-d₆) $\delta_{\rm H}$ 2.58 (br s, 1H, 1'-NH), 3.33 (s, 3H), 3.70 (s, 3H), 5.24 (d, 1H, *J*=9.9 Hz), 5.81 (dd, 1H, *J*=9.3, 5.4 Hz), 6.28 (t, 1H, *J*=9.9 Hz), 6.57-6.67 (m, 3H), 7.02-7.18 (m, 3H), 7.29-7.35 (m, 3H), 7.60 (d, 2H, *J*=7.2 Hz), 7.72 (d, 1H, *J*=7.2 Hz), 9.93 (br s, 1H, 1-NH). ¹³C NMR (75 MHz, DMSO-d₆) $\delta_{\rm C}$ 46.6, 54.5, 54.9, 60.4, 70.7, 91.4, 108.7, 111.0, 112.2, 113.2, 120.8, 121.6, 124.1, 126.9, 127.1, 127.3, 128.1, 141.1, 151.1, 152.1, 179.4. Anal. Calcd for C₂₅H₂₃N₃O₅: C, 67.41; H, 5.20; N, 9.43%. Found C, 67.48; H, 5.11; N, 9.34%.

General procedure for the synthesis of 2'-(aryl)-1'-nitro-1',2',5',6',7',7a'hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (4) and 6'-(aryl)-7'-nitro-3',6',7',7a'tetrahydro-1'*H*-spiro[indoline-3,5'-pyrrolo[1,2-*c*]thiazol]-2-one (5).

A mixture of β -nitrostyrene **1** (1 mmol), isatin **2** (1 mmol) and proline/thiaproline (1 mmol) in methanol (10 mL) was heated to reflux for 1 h. After completion of the reaction (TLC), the mixture was poured into crushed ice, the precipitated solid was filtered and washed with water (100 mL) to obtain pure **4/5** as solid.

2'-(4-Methoxyphenyl)-1'-nitro-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2one (4a)

Obtained as yellow solid. Yield: 87%; m.p. = 179 °C (200-202 °C).^{15a} IR (KBr): 1342, 1546, 1706, 3181 cm⁻¹; (300 MHz, DMSO-d₆) $\delta_{\rm H}$ 1.46-1.54 (m, 1H), 1.78-1.87 (m, 1H), 1.96-2.00 (m, 1H), 2.09-2.16 (m, 1H), 2.84-2.89 (m, 1H), 3.21-3.30 (m, 1H), 3.67 (s, 3H), 4.46 (d, 1H, *J*=10.2 Hz), 4.80-4.88 (m, 1H), 6.24 (t, 1H, *J*=10.2 Hz), 6.62 (d, 2H, *J*=7.8 Hz), 6.69(d, 1H, *J*=7.8Hz), 7.00 (d, 2H, *J*=7.8 Hz), 7.10 (d, 1H, *J*=7.5 Hz), 7.23 (d, 1H, *J*=7.5 Hz), 7.55 (d, 1H, *J*=7.5 Hz), 7.73 (br s, 1H, NH). ¹³C NMR (75 MHz, DMSO-d₆) $\delta_{\rm C}$ 25.6, 27.8, 51.0, 52.6, 55.0, 64.1, 75.1, 91.9, 110.2, 113.9, 122.4, 124.3, 125.3, 126.1, 129.3, 130.0, 141.8, 159.1, 178.0. Anal. Calcd for C₂₁H₂₁N₃O₄: C, 66.48; H, 5.58; N, 11.08%. Found C, 66.38; H, 5.50; N, 11.02%.

2'-(4-Chlorophenyl)-1'-nitro-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrro-lizin]-2one (4b)

Obtained as pale yellow solid. Yield: 83%; m.p. = 173 °C (202-204 °C).^{15a} IR (KBr): 1338, 1546, 1710, 3160 cm⁻¹; (300 MHz, DMSO-d₆) $\delta_{\rm H}$ 1.51-1.56 (m, 1H), 1.77-1.87 (m, 1H), 1.98-2.00 (m, 1H), 2.11-2.20 (m, 1H), 2.86-2.90 (m, 1H), 3.20-3.29 (m, 1H), 4.47 (d, 1H, *J*=10.5 Hz), 4.81-4.90 (m, 1H), 6.21-6.27 (m, 1H), 6.71 (d, 1H, *J*=7.5 Hz), 7.02-7.14 (m, 5H), 7.23-7.28 (m, 1H), 7.55 (d, 1H, *J*=7.5Hz), 7.67 (br s, 1H, NH). ¹³C NMR (75 MHz, DMSO-d₆) $\delta_{\rm C}$ 25.6, 27.8, 51.1, 52.6, 64.2, 75.1, 91.6, 110.4, 122.6, 124.9, 126.1, 128.8, 129.6, 130.2, 131.1, 133.9, 141.7, 177.5. Anal. Calcd for C₂₀H₁₈ClN₃O₃: C, 62.58; H, 4.73; N, 10.95%. Found C, 62.66; H, 4.65; N, 10.88%.

2'-(3-Nitrophenyl)-1'-nitro-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (4c)

Obtained as yellow solid. Yield: 81%; m.p. = 208 °C (210-211 °C).^{15a}. IR (KBr): 1354, 1546, 1707, 3108 cm⁻¹; (300 MHz, DMSO-d₆) $\delta_{\rm H}$ 1.34-1.49 (m, 1H), 1.62-1.80 (m, 1H), 1.92-2.10 (m, 2H), 2.67-2.72 (m, 1H), 3.20-3.40 (m, 1H), 4.69-4.76 (m, 2H), 6.45 (t, 1H, *J*=9.6 Hz), 6.65 (d, 1H, *J*=7.8 Hz), 7.04 (t, 1H, *J*=7.5 Hz), 7.20 (t, 1H, *J*=7.5 Hz), 7.46-7.49 (m, 1H), 7.62 (d, 1H, *J*=7.2 Hz), 7.87 (d, 1H, *J*=7.2 Hz), 8.00-8.05 (m, 2H), 10.37 (br s, 1H, NH). ¹³C NMR (75 MHz, DMSO-d₆) $\delta_{\rm C}$ 23.4, 26.1, 36.9, 49.0, 61.6, 72.9, 88.8, 108.2, 119.9, 120.9, 121.1, 122.3, 125.0, 128.0, 128.2, 133.3, 134.0, 141.1, 145.9, 175.2. Anal. Calcd for C₂₀H₁₈N₄O₅: C, 60.91; H, 4.60; N, 14.21%. Found C, 70.02; H, 4.66; N, 14.14%.

2'-(3-Chlorophenyl)-1'-nitro-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2one (4d)

Obtained as pale yellow solid. Yield: 85%; m.p. = 205 °C. IR (KBr): 1342, 1542, 1707, 3191 cm⁻¹; (300 MHz, DMSO-d₆) $\delta_{\rm H}$ 1.39-1.50 (m, 1H), 1.71-1.79 (m, 1H), 1.96-1.98 (m, 1H), 2.04-2.13 (m, 1H), 2.75-2.80 (m, 1H), 3.23-3.36 (m, 1H), 4.48 (d, 1H, *J*=10.8 Hz), 4.72-4.80 (m, 1H), 6.27-6.34 (m, 1H), 6.68 (d, 1H, *J*=7.8 Hz), 7.02-7.22 (m, 6H), 7.65 (d, 1H, *J*=7.2 Hz), 10.11 (br s, 1H, NH). ¹³C NMR (75 MHz, DMSO-d₆) $\delta_{\rm C}$ 23.9, 26.4, 49.5, 50.2, 62.1, 73.3, 89.8, 108.7, 120.3, 123.1, 124.8, 125.6, 126.4, 126.6, 128.4, 128.5, 132.2, 134.1, 141.7, 175.9. Anal. Calcd for C₂₀H₁₈ClN₃O₃: C, 62.58; H, 4.73; N, 10.95%. Found C, 62.69; H, 4.80; N, 11.02%.

2'-(4-Fluorophenyl)-1'-nitro-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2one (4e)

Obtained as pale yellow solid. Yield: 83%; m.p. = 209 °C. IR (KBr): 1346, 1531, 1705, 3183 cm⁻¹; (300 MHz, DMSO-d₆) $\delta_{\rm H}$ 1. 42-1.51 (m, 1H), 1.72-1.86 (m, 1H), 1.95-2.03 (m, 1H), 2.05-2.14 (m, 1H), 2.78-2.83 (m, 2H), 4.46 (d, 1H, *J*=10.8 Hz), 4.73-4.82 (m, 1H), 6.25-6.31 (m, 1H), 6.68 (d, 1H, *J*=7.5 Hz), 6.81-6.87 (m, 2H), 7.02-7.07 (m, 1H), 7.11-7.22 (m, 3H), 7.60 (d, 1H, *J*=7.5 Hz), 10.11 (br s, 1H). ¹³C NMR (75 MHz, DMSO-d₆) $\delta_{\rm C}$ 25.6, 27.8, 51.0, 52.7, 52.9, 64.2, 75.1, 91.8, 110.3, 115.4, 115.7, 122.5, 125.1, 126.1, 128.3, 129.8, 129.9, 130.2, 141.8, 164.0, 177.7. Anal. Calcd for C₂₀H₁₈FN₃O₃: C, 65.39; H, 4.94; N, 11.44%. Found C, 65.46; H, 4.86; N, 11.54%.

2'-(Phenyl)-1'-nitro-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (4f)

Obtained as pale yellow solid. Yield: 90%; m.p. = 210 °C (208-210 °C).^{15a} IR (KBr): 1369, 1547, 1702, 3127 cm⁻¹; (300 MHz, DMSO-d₆) $\delta_{\rm H}$ 1.46-1.53 (m, 1H), 1.72-1.83 (m, 1H), 1.99-2.03 (m, 1H), 2.07-2.14 (m, 1H), 2.82-2.87 (m, 1H), 3.15- 3.21 (m, 1H), 4.47 (d, 1H, *J*=10.5 Hz), 4.81-4.87 (m, 1H), 6.30-6.36 (m, 1H), 6.69 (d, 1H, *J*=7.8 Hz), 7.03-7.22 (m, 7H), 7.57-7.61 (m, 1H), 9.95 (br s, 1H, NH). ¹³C NMR (75 MHz, DMSO-d₆) $\delta_{\rm C}$ 24.9, 27.1, 50.4, 52.0, 63.2, 74.3, 90.9, 109.7, 121.1, 124.3, 125.2, 127.1, 127.6, 127.7, 129.2, 132.2, 142.4, 177.1. Anal. Calcd for C₂₀H₁₉N₃O₃: C, 68.75; H, 5.48; N, 12.03%. Found C, 68.68; H, 5.56; N, 11.94%.

2'-(4-Methylphenyl)-1'-nitro-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2one (4g)

Obtained as pale yellow solid. Yield: 87%; m.p. = 212 °C (217-218 °C).^{15a} IR (KBr): 1342, 1547, 1705, 3172 cm⁻¹; (300 MHz, DMSO-d₆) $\delta_{\rm H}$ 1.46-1.57 (m, 1H), 1.78-1.91 (m, 1H), 1.98-2.04 (m, 1H), 2.10-2.17 (m, 1H), 2.19 (s, 3H), 2.85-2.90 (m, 1H), 3.22-3.30 (m, 1H), 4.48 (d, 1H, *J*=10.2 Hz), 4.81-4.89 (m, 1H), 6.28 (t, 1H, *J*=10.2 Hz), 6.69 (d, 1H, *J*=7.8 Hz), 6.88-7.35 (m, 6H), 7.57 (d, 1H, *J*=7.2 Hz), 7.74 (br s, 1H, NH). ¹³C NMR (75 MHz, DMSO-d₆) $\delta_{\rm C}$ 20.9, 25.6, 27.8, 51.1, 52.8, 64.1, 75.1, 91.7, 110.2, 122.4, 125.3, 126.1, 128.0, 129.2, 130.0, 137.6, 141.8, 177.9. Anal. Calcd for C₂₁H₂₁N₃O₃: C, 69.41; H, 5.82; N, 11.56%. Found C, 69.49; H, 5.91; N, 11.45%.

2'-(4-Bromophenyl)-1'-nitro-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2one (4h)

Obtained as pale yellow solid. Yield: 88%; m.p. = 206 °C. IR (KBr): 1342, 1545, 1705, 3147 cm⁻¹; (300 MHz, DMSO-d₆) $\delta_{\rm H}$ 1.40-1.53 (m, 1H), 1.77-1.86 (m, 1H), 1.98-2.00 (m, 1H), 2.08-2.18 (m, 1H), 2.84-2.91 (m, 1H), 3.21-3.29 (m, 1H), 4.43 (d, 1H, *J*=10.0 Hz), 4.80-4.88 (m, 1H), 6.28 (t, 1H, *J*=10.0 Hz), 6.72 (d, 1H, *J*=7.5 Hz), 7.00-7.08 (m, 3H), 7.19-7.26 (m, 2H), 7.45-7.46 (m, 1H), 7.54 (d, 1H, *J*=7.5 Hz), 9.77 (br s, 1H, NH). ¹³C NMR (75 MHz, DMSO-d₆) $\delta_{\rm C}$ 25.1, 27.4, 50.7, 51.8, 63.5, 74.6, 91.0, 110.2, 121.3, 121.5, 124.3, 125.4, 129.6, 129.7, 131.0, 131.6, 177.2. Anal. Calcd for C₂₀H₁₈BrN₃O₃: C, 56.09; H, 4.24; N, 9.81%. Found C, 56.17; H, 4.33; N, 9.90%.

2'-(2,5-Dimethoxyphenyl)-1'-nitro-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin] -2-one (4i)

Obtained as green solid. Yield: 94%; m.p. = 217 °C. IR (KBr): 1342, 1543, 1705, 3191 cm⁻¹; (300 MHz, DMSO-d₆) $\delta_{\rm H}$ 1.40-1.48 (m, 1H), 1.72-1.75 (m, 1H), 1.96-2.02 (m, 1H), 2.05-2.12 (m, 1H), 2.72-2.77 (m, 1H), 3.26-3.27 (m, 1H), 3.51 (s, 3H), 3.66 (s, 3H), 4.69-4.77 (m, 1H), 5.22 (d, 1H, *J*=10.5 Hz), 6.18 (t, 1H, *J*=10.5 Hz), 6.62-6.67 (m, 3H), 6.95-7.00 (m, 2H), 7.15 (t, 1H, *J*=7.5 Hz), 7.57 (d, 1H, *J*=7.5 Hz), 10.26 (br s, 1H, NH). ¹³C NMR (75 MHz, DMSO-d₆) $\delta_{\rm C}$ 23.7, 26.1, 41.5, 49.3, 53.6, 54.2, 61.9, 73.1, 90.9, 108.1, 110.4, 111.2, 112.5, 119.3, 121.0, 123.0, 125.6, 127.9, 141.4, 150.1, 151.4, 176.1. Anal. Calcd for C₂₂H₂₃N₃O₅: C, 64.54; H, 5.66; N, 10.26%. Found C, 64.43; H, 5.75; N, 10.19%.

2'-(3,4,5-Trimethoxyphenyl)-1'-nitro-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'pyrrolizin]-2-one (4j)

Obtained as brown solid. Yield: 86%; m.p. = 123 °C. IR (KBr): 1367, 1542, 1708, 3166 cm⁻¹; (300 MHz, DMSO-d₆) $\delta_{\rm H}$ 1.43-1.58 (m, 1H), 1.79-1.85 (m, 1H), 1.95-2.08 (m, 1H), 2.11-2.21 (m, 1H), 2.88-2.92 (m, 1H), 3.24-3.30 (m, 1H), 3.62 (s, 6H), 3.73 (s, 3H), 4.45 (d, 1H, *J*=10.5 Hz), 4.83-4.91 (m, 1H), 6.26-6.31 (m, 3H), 6.66-6.73 (m, 1H), 7.09-7.14 (m, 1H), 7.23-7.27 (m, 1H), 7.59 (d, 1H, *J*=7.5 Hz), 7.78 (br s, 1H, NH). ¹³C NMR (75 MHz, DMSO-d₆) $\delta_{\rm C}$ 25.6, 27.8, 51.1, 53.4, 55.8, 60.7, 64.1, 75.1, 91.3, 104.9, 110.4, 122.3, 125.4, 126.1, 127.9, 130.1, 137.3, 152.8, 177.7. Anal. Calcd for C₂₃H₂₅N₃O₆: C, 62.86; H, 5.73; N, 9.56%. Found C, 62.94; H, 5.82; N, 9.45%.

6'-(4-Methoxyphenyl)-7'-nitro-3',6',7',7a'-tetrahydro-1'H-spiro[indoline-3,5'-pyrrolo-

[1,2-*c*]thiazol]-2-one (5a)

Obtained as yellow solid. Yield: 91%; m.p. = 243 °C. IR (KBr): 1369, 1547, 1707, 3239 cm⁻¹; (300 MHz, DMSO-d₆) $\delta_{\rm H}$ 2.90-2.97 (m, 1H), 3.08-3.15 (m, 1H), 3.70 (s, 3H), 3.99 (d, 1H, *J*=10.2 Hz), 4.17 (d, 1H, *J*=10.2 Hz), 4.25 (d, 1H, *J*=11.7 Hz), 4.55-4.62 (m, 1H), 6.48 (dd, 1H, *J*=11.7, 7.2 Hz), 6.64-6.71 (m, 3H), 6.81-6.84 (m, 2H), 7.07 (br s, 1H, NH), 7.18-7.26 (m, 1H), 7.29-7.34 (m, 1H), 7.82 (d, 1H, *J*=7.2 Hz). ¹³C NMR (75 MHz, DMSO-d₆) $\delta_{\rm C}$ 32.3, 52.2, 53.7, 54.1, 66.3, 73.6, 83.5, 109.0, 112.3, 120.9, 122.5, 123.1, 124.4, 127.6, 129.2, 141.7, 157.8, 176.1. Anal. Calcd for C₂₀H₁₉N₃O₄S: C, 60.44; H, 4.82; N, 10.57%. Found C, 60.37; H, 4.89; N, 10.49%.

6'-(4-Chlorophenyl)-7'-nitro-3',6',7',7a'-tetrahydro-1'H-spiro[indoline-3,5'-pyrrolo-

[1,2-*c*]thiazol]-2-one (5b)

Obtained as pale yellow solid. Yield: 90%; m.p. = 185 °C. IR (KBr): 1332, 1547, 1703, 3184 cm⁻¹; (300 MHz, DMSO-d₆) $\delta_{\rm H}$ 2.89-2.92 (m, 1H), 3.02-3.09 (m, 1H), 4.00 (d, 1H, *J*=10.2 Hz), 4.15 (d, 1H, *J*=10.2 Hz), 4.24 (d, 1H, *J*=11.7 Hz), 4.56-4.63 (m, 1H), 6.55 (dd, 1H, *J*=11.7, 7.2 Hz), 6.74 (d, 1H, *J*=7.8 Hz), 6.89 (d, 2H, *J*=7.5 Hz), 7.11-7.17 (m, 3H), 7.21-7.32 (m, 1H), 7.77 (d, 1H, *J*=7.5 Hz), 9.90 (br s, 1H, NH). ¹³C NMR (75 MHz, DMSO-d₆) $\delta_{\rm C}$ 33.0, 52.8, 54.8, 66.9, 74.2, 83.6, 109.8, 121.7, 123.2, 124.9, 127.6, 128.4, 129.9, 132.9, 142.1, 176.5. Anal. Calcd for C₁₉H₁₆ClN₃O₃S: C, 56.79; H, 4.01; N, 10.46 %. Found C, 57.68; H, 4.10; N, 10.53%.

6'-(3-Nitrophenyl)-7'-nitro-3',6',7',7a'-tetrahydro-1'H-spiro[indoline-3,5'-pyrrolo-

[1,2-*c*]thiazol]-2-one (5c)

Obtained as pale yellow solid. Yield: 93%; m.p. = 255 °C. IR (KBr): 1344, 1547, 1707, 3187 cm⁻¹; (300 MHz, DMSO-d₆) $\delta_{\rm H}$ 2.86-2.92 (m, 1H), 3.14-3.20 (m, 1H), 4.02 (d, 1H, *J*=10.2 Hz), 4.15 (d, 1H, *J*=10.2 Hz), 4.38 (d, 1H, *J*=11.7 Hz), 4.62-4.69 (m, 1H), 6.65-6.74 (m, 2H), 7.16-7.21 (m, 1H), 7.28-7.33 (m, 2H), 7.38-7.43 (m, 1H), 7.70-7.85 (m, 2H), 8.07 (d, 1H, *J*=8.1 Hz), 10.05 (br s, 1H, NH). ¹³C NMR (75 MHz, DMSO-d₆) $\delta_{\rm C}$ 33.0, 52.5, 54.8, 66.6, 74.1, 83.4, 109.8, 121.6, 122.1, 122.5, 124.9, 128.6, 130.0, 133.4, 133.6, 141.8, 146.8, 176.1. Anal. Calcd for C₁₉H₁₆N₄O₅S: C, 55.33; H, 3.91; N, 13.58%. Found C, 55.41; H, 3.85; N, 13.51%.

6'-(3-Chlorophenyl)-7'-nitro-3',6',7',7a'-tetrahydro-1'*H*-spiro[indoline-3,5'-pyrrolo-[1,2-*c*]thiazol]-2-one (5d)

Obtained as pale yellow solid. Yield: 81%; m.p. = 257 °C. (300 MHz, DMSO-d₆) $\delta_{\rm H}$ 2.85 -3.14 (m, 2H), 4.02 (d, 1H, *J*=10.5 Hz), 4.15 (d, 1H, *J*=10.5 Hz), 4.24 (d, 1H, *J*=11.6 Hz), 4.57-4.62 (m, 1H), 6.55 (dd, 1H, *J*=11.6, 7.2 Hz), 6.74 (d, 1H, *J*=7.5 Hz), 6.79 (d, 1H, *J*=7.8 Hz), 6.97-7.32 (m, 5H), 7.79 (d, 1H, *J*=7.5 Hz), 9.93 (br s, 1H, NH). ¹³C NMR (75 MHz, DMSO-d₆) $\delta_{\rm C}$ 33.0, 53.1, 55.0, 67.0, 74.3, 83.8, 110.0, 121.9, 123.3, 125.1, 125.7, 127.0, 127.6, 129.0, 130.1, 133.2, 133.6, 142.2, 176.7. Anal. Calcd for C₁₉H₁₆ClN₃O₃S: C, 56.79; H, 4.01; N, 10.46%. Found C, 56.88; H, 4.12; N, 10.38%.

6'-(4-Fluorophenyl)-7'-nitro-3',6',7',7a'-tetrahydro-1'H-spiro[indoline-3,5'-pyrrolo-

[1,2-*c*]thiazol]-2-one (5e)

Obtained as pale yellow solid. Yield: 82%; m.p. = 215 °C. IR (KBr): 1336, 1547, 1705, 3100 cm⁻¹; (300 MHz, DMSO-d₆) 2.88-3.10 (m, 2H), 3.99 (d, 1H, *J*=10.5 Hz), 4.11 (d, 1H, *J*=10.5 Hz), 4.18 (d, 1H, *J*=11.7 Hz), 4.27-4.56 (m, 1H), 6.51-6.58 (m, 1H), 6.74 (d, 1H, *J*=7.2 Hz), 6.94-7.03 (m, 1H), 7.10-7.16 (m, 2H), 7.28-7.34 (m, 1H), 7.51-7.6 (m, 2H), 7.78 (d, 1H, *J*= 6.9 Hz), 10.00 (br s, 1H, NH). ¹³C NMR (75 MHz, DMSO-d₆) $\delta_{\rm C}$ 33.2, 53.1, 55.1, 67.2, 74.5, 84.1, 110.0, 114.6, 120.0, 121.9, 125.1, 126.4, 128.9, 131.0, 142.5, 164.3, 177.1. Anal. Calcd for C₁₉H₁₆FN₃O₃S: C, 59.21; H, 4.18; N, 10.90%. Found C, 59.11; H, 4.09; N, 11.01%.

Spectral Details

Fig.	List of Figuros	Ροσο
No.	List of Figures	1 age
6.1	¹ H NMR Spectrum of 3a	14
6.2	¹ H NMR Spectrum of 3a (expanded)	14
6.3	¹ H NMR Spectrum of 3a (D ₂ O)	15
6.4	¹ H NMR Spectrum of 3a (D ₂ O) (expanded)	15
6.5	¹³ C NMR Spectrum of 3a	16
6.6	DEPT-135 Spectrum of 3a	16
6.7	H,H-COSY Spectrum of 3a	17
6.8	H,H-COSY Spectrum of 3a (expanded)	17
6.9	C,H-COSY Spectrum of 3a	18
6.10	HMBC Spectrum of 3a	18
7.1	¹ H NMR Spectrum of 4i	19
7.2	¹ H NMR Spectrum of 4i (expanded)	19
7.3	¹³ C NMR Spectrum of 4i	20
7.4	DEPT-135 Spectrum of 4i	20
7.5	H,H-COSY Spectrum of 4i	21
7.6	H,H-COSY Spectrum of 4i (expanded)	21
7.7	C,H-COSY Spectrum of 4i	22
7.8	C,H-COSY Spectrum of 4i (expanded)	22
7.9	HMBC Spectrum of 4i	23
7.10	HMBC Spectrum of 4i (expanded)	23
8.1	¹ H NMR Spectrum of 5a	24
8.2	¹ H NMR Spectrum of 5a (expanded)	24
8.3	¹³ C NMR Spectrum of 5a	25
8.4	DEPT-135 Spectrum of 5a	25
8.5	H,H-COSY Spectrum of 5a	26
8.6	H,H-COSY Spectrum of 5a (expanded)	26
8.7	C,H-COSY Spectrum of 5a	27
8.8	C,H-COSY Spectrum of 5a (expanded)	27
8.9	HMBC Spectrum of 5a	28
8.10	HMBC Spectrum of 5a (expanded)	28
8.11	HMBC Spectrum of 5a (expanded)	29

17

