Electronic Supporting Information

N1-benzyl Substituted Cambinol Analogues as Isozyme Selective Inhibitors of the Sirtuin Family of Protein Deacetylases

Federico Medda,^{+a} Thomas L. Joseph,^{+b} Lisa Pirrie,^a Maureen Higgins,^c Alexandra M. Z. Slawin,^a Sonia Lain,^{c,d}Chandra Verma^{*b} and Nicholas J. Westwood^{*a}

^aSchool of Chemistry and the Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, Scotland KY16 9ST, UK; Fax: +44 1334 462595; Tel: +44 1334 463816; E-mail: <u>njw3@st-andrews.ac.uk</u>

^b3 Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01, Singapore 138671

^cDepartment of Surgery and Molecular Oncology, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK

^dKarolinska Institute, Stockholm SE-171 77, Sweden

*Corresponding authors

+ Authors contributed in equal way to this work

Contents

Page S1Contents

Page S2-S7Computational Procedures

Page S8Chemistry: Instrumentation and General Techniques

Page S9-S33 Chemistry: Experimental Procedures and Analytical Data

Page S33X-ray Crystal Structure of Analogue 4iv

Page S33 HPLC Assessment of Purity

Page S34-36 **Biology protocols**

Page S37 References

Computational Procedures

Compounds were docked into SIRT2 using a flexible docking approach.¹ SIRT2 (PDBID: 1J8F, chain-A residues 57-356) was used for our molecular docking as well as molecular dynamics simulation. The neighbouring residues around the C pocket were identified from the previously reported work and these residues used to define a sphere (15 Å) in the flexible docking.² The selected residues were also allowed to be flexible during docking. The CHARMm force field was used to generate conformers of the protein.^{2a}The grid resolution was set to 0.5 Å (default), and the ligand accessible grid was defined such that the minimum distance between a grid point and the protein was 2.0 Å for hydrogen and 2.5 Å for heavy atoms. The docking procedure started with the generation of random ligand conformations. After a new conformation was generated, the fitting was carried out by comparing the shape of the ligand to the shape of the active site and if acceptable, a dock energy was computed between the protein and the ligand trial conformation.^{3b} Docking refinement was done using simulated annealing from 300K to 700K. The top ten poses were saved for each ligand after docking and 100 steps of rigid body minimization followed by simulated annealing. Each of the 10 poses saved after docking were rescored with the best score for each molecule retained and subsequently used for further molecular dynamics study. An analogous method was used to study the SIRT2-4xv complex.

SIRT1 (uniprot Q96EB6 residues 236-495) was modeled using Modeler keeping 1J8F chain A as template.⁴ Molecular docking and dynamics were done using the same protocol as mentioned for SIRT2. The top 2 poses of **3a** bound to both SIRT1 and SIRT2 were selected for the subsequent molecular dynamics study. The N- and C-termini of SIRT1 and 2 were capped with acetyl (ACE) and *N*-methyl (NME) respectively to keep them neutral; Molecular dynamics simulations were performed with the SANDER module of the AMBER9 package employing the all-atom Cornell force field.^{5,6} Compound parameters were built using antechamber.^{7, 8} Each system was solvated with a TIP3P water box whose sides were at least 8 Å from any protein atom.9 Particle Mesh Ewald method (PME) was used for treating long range electrostatics.¹⁰ All bonds involving hydrogen atoms were constrained by SHAKE.¹¹ A time step of 2fs was used for the integration. Initially, the whole system was minimized for 4,000 steps, to remove any unfavourable interactions. Subsequently, the systems were heated to 300 K for 75 ps under NPT conditions. After this, each system was simulated for 20 ns at constant temperature (300 K) and pressure (1 atm) and structures were stored every 1 ps. The free energies of binding (ΔG_{bind}) of **3a** to SIRTs 1 and 2 were computed using the MM-GBSA (Molecular Mechanics/Generalized Born surface area) method using the GB module in Amber; the non-polar component was estimated from the solvent accessible surface area using the program MOLSURF with $\Delta G_{solv nn} = 0.00542 * SASA + 0.92$.¹²⁻¹⁶ Each energy term was averaged over frames taken every 10 ps from the simulations. The vibrational entropy was estimated using normal mode analysis (Nmode module of Amber) and averaged over 100 ps intervals.¹⁷

	Sirtui	n2-						
	cambi	inol	Sirtu	in2	Cambiı	nol	Delta	ı
	Mean	Std	Mean	Std	Mean	Std	Mean	Std
ELE	-8025.4	92.9	-7997.3	92.3	-18.8	0.6	-9.3	3.1
VDW	-1329.5	29.3	-1293.0	29.0	20.9	2.8	-57.4	3.1
INT	5163.3	53.9	5086.9	53.3	76.3	5.8	0.0	0.0
GAS	-4191.6	103.7	-4203.3	103.4	78.4	5.4	-66.7	4.3
GBSUR	82.3	1.3	84.0	1.4	4.5	0.1	-6.2	0.1
GB	-3821.1	83.3	-3835.6	82.7	-9.1	0.6	23.6	3.3
GBSOL	-3738.9	82.9	-3751.6	82.3	-4.6	0.6	17.4	3.3
	-		-					
GBELE	11846.5	30.8	11832.9	30.8	-27.9	0.4	14.3	1.6
GBTOT	-7930.4	54.6	-7954.9	53.8	73.8	5.4	-49.3	2.9
TSTRA	17.1	0.0	17.1	0.0	13.2	0.0	-13.2	0.0
TSROT	17.7	0.0	17.7	0.0	10.9	0.0	-10.9	0.0
TSVIB	3386.2	9.4	3351.8	9.8	28.4	0.2	6.1	7.4
TSTOT	3421.1	9.4	3386.6	9.9	52.4	0.2	-18.0	7.4
ΔG_{bind}							-31.3	

Table S1 Components of binding free energy (in kcal/mol) of SIRT2 with 3a

Table S2 Components of binding free energy (in kcal/mol) of SIRT1 with 3a

	Sirtui	n1-						
	cambi	nol	Sirtu	in1	Cambi	nol	Delt	a
	Mean	Std	Mean	Std	Mean	Std	Mean	Std
ELE	-7350.7	83.3	-7330.1	83.3	-18.7	0.5	-2.0	2.8
VDW	-1010.5	27.0	-983.1	26.6	19.8	2.6	-47.2	3.1
INT	4636.4	40.9	4557.1	40.6	79.3	5.1	0.0	0.0
GAS	-3724.9	92.9	-3756.1	93.0	80.5	5.1	-49.2	4.3
GBSUR	83.7	1.4	85.1	1.4	4.5	0.0	-5.9	0.1
GB	-3496.9	73.9	-3504.5	73.9	-8.9	0.4	16.5	2.7
GBSOL	-3413.2	73.1	-3419.3	73.1	-4.4	0.4	10.6	2.7
	-		-					
GBELE	10847.6	23.6	10834.5	23.3	-27.6	0.5	14.5	0.9
GBTOT	-7138.0	44.7	-7175.5	44.5	76.1	5.2	-38.6	3.0
TSTRA	17.0	0.0	17.0	0.0	13.2	0.0	-13.2	0.0
TSROT	17.6	0.0	17.6	0.0	10.9	0.0	-10.9	0.0
TSVIB	2977.1	12.1	2945.7	9.9	28.5	0.2	2.9	12.5
TSTOT	3011.7	12.1	2980.2	9.9	52.6	0.2	-21.1	12.5
ΔG_{bind}							-17.5	

Residue	$\Delta G_{ m vdw}$	$\Delta G_{ m ele}$	$\Delta G_{ele,sol}$	$\Delta G_{nonpol,sol}$	ΔG_{bind}
Phe96	-1.50	-0.18	0.73	-0.12	-1.08
Arg97	-2.93	-0.55	1.59	-0.23	-2.12
Glu116	-1.75	0.74	0.60	-0.20	-0.60
Phe119	-2.97	-0.07	0.97	-0.25	-2.32
Gln167	-1.83	-0.58	1.62	-0.08	-0.88
Ile169	-1.60	0.06	0.00	-0.11	-1.64
His187	-3.58	-1.70	3.37	-0.28	-2.19
Val266	-0.77	-0.19	0.12	-0.11	-0.94

Table S3 Energy contributions of SIRT2 residues to the binding of 3a

Table S4 Energy contributions of SIRT1 residues to the binding of 3a

Residue	$\Delta G_{ m vdw}$	$\Delta G_{\rm ele}$	$\Delta G_{ele,sol}$	$\Delta G_{nonpol,sol}$	ΔG_{bind}
Ile281	-2.00	-0.02	0.00	-0.14	-2.15
Gln296	-1.56	-0.28	1.38	-0.13	-0.59
Phe299	-3.34	0.21	0.87	-0.24	-2.50
Phe314	-1.41	-0.08	0.54	-0.10	-1.06
Ile318	-1.43	0.07	-0.04	-0.13	-1.53
Ile349	-2.35	-0.21	0.24	-0.28	-2.60

Table S5 Components of binding free energy (in kcal/mol) of SIRT2 with 4xv

	Sirtuin2 comp	2-4xv lex	Sirtu	iin2	4xv		Delta	
	Mean	Std	Mean	Std	Mean	Std	Mean	Std
ELE	-7962.8	94.7	-7927.0	94.5	-23.3	0.6	-12.5	2.7
VDW	-1314.9	27.9	-1276.8	27.9	22.8	2.8	-60.9	2.8
INT	5184.4	53.0	5100.3	52.8	84.2	6.6	0.0	0.0
GAS	-4093.3	110.9	-4103.6	110.8	83.7	6.1	-73.4	3.8
GBSUR	83.9	1.2	85.8	1.2	4.9	0.0	-6.9	0.2
GB	-3889.1	88.5	-3906.2	88.8	-12.0	0.5	29.1	2.5
GBSOL	-3805.2	87.8	-3820.4	88.0	-7.1	0.5	22.3	2.5
	-		-					
GBELE	11851.9	24.1	11833.2	24.3	-35.3	0.5	16.6	2.1
GBTOT	-7898.5	55.3	-7924.0	54.2	76.6	6.2	-51.1	3.3
TSTRA	17.1	0.0	17.1	0.0	13.3	0.0	-13.3	0.0
TSROT	17.7	0.0	17.7	0.0	11.2	0.0	-11.2	0.0
TSVIB	3402.6	11.7	3360.9	12.4	35.3	0.1	6.4	7.9
тятот	3437.4	11.7	3395.7	12.4	59.9	0.1	-18.1	7.9
ΔG_{bind}							-32.9	

Table S6 Comparison of the components of the binding free energy (in kcal/mol) of SIRT2 with 3a and 4xv

	Delta SIRT2-3a		Delta SIRT2-4xv		
	Mean	Std	Mean	Std	
ELE	-9.3	3.1	-12.5	2.7	
VDW	-57.4	3.1	-60.9	2.8	
INT	0.0	0.0	0.0	0.0	
GAS	-66.7	4.3	-73.4	3.8	
GBSUR	-6.2	0.1	-6.9	0.2	
GB	23.6	3.3	29.1	2.5	
GBSOL	17.4	3.3	22.3	2.5	
GBELE	14.3	1.6	16.6	2.1	
GBTOT	-49.3	2.9	-51.1	3.3	
TSTRA	-13.2	0.0	-13.3	0.0	
TSROT	-10.9	0.0	-11.2	0.0	
TSVIB	6.1	7.4	6.4	7.9	
TSTOT	-18.0	7.4	-18.1	7.9	
ΔG_{bind}	-31.3		-32.9		

Residue	$\Delta G_{ m vdw}$	$\Delta G_{ m ele}$	$\Delta G_{ele,sol}$	$\Delta G_{nonpol,sol}$	ΔG_{bind}
Phe96	-1.4	0.0	0.5	-0.2	-1.1
Arg97	-0.9	0.6	-0.2	-0.1	-0.7
Glu116	-1.7	0.1	1.4	-0.2	-0.4
Phe119	-4.1	-0.0	1.2	-0.3	-3.3
Gln167	-1.8	-0.8	1.6	-0.1	-1.2
Ile169	-2.0	-0.4	0.4	-0.1	-2.1
His187	-3.2	-1.3	2.9	-0.2	-1.9
Val266	-0.8	-0.3	0.2	-0.1	-1.0

Table S7 Energy contributions of SIRT2 residues to the binding of 4xv

Table S8. Comparison of the energy contributions of SIRT2 residues to the binding of 3a and 4xv

	3 a	4xv	3a	4xv	3 a	4xv
Residue	$\Delta G_{ m vdw}$	$\Delta G_{ m vdw}$	$\Delta G_{ m ele}$	$\Delta G_{ m ele}$	$\Delta G_{ele,sol}$	$\Delta G_{ele,sol}$
Phe96	-1.5	-1.4	-0.2	0.0	0.7	0.5
Arg97	-2.9	-0.9	-0.6	0.6	1.6	-0.2
Glu116	-1.8	-1.7	0.7	0.1	0.6	1.4
Phe119	-3.0	-4.1	-0.1	-0.0	1.0	1.2
Gln167	-1.8	-1.8	-0.6	-0.8	1.6	1.6
Ile169	-1.6	-2.0	0.1	-0.4	0.0	0.4
His187	-3.6	-3.2	-1.7	-1.3	3.4	2.9
Val266	-0.8	-0.8	-0.2	-0.3	0.1	0.2
	3 a	4xv	3 a	4xv		
Residue	3a $\Delta G_{nonpol,sol}$	4xv $\Delta G_{nonpol,sol}$	3a ΔG_{bind}	4xv ΔG_{bind}		
Residue Phe96	3a $\Delta G_{nonpol,sol}$ -0.1	4xv $\Delta G_{nonpol,sol}$ -0.2	3a ΔG _{bind} -1.1	4xv ΔG _{bind} -1.1		
Residue Phe96 Arg97	3a ∆G _{nonpol,sol} -0.1 -0.2	4xv ΔG _{nonpol,sol} -0.2 -0.1	3a ΔG _{bind} -1.1 -2.1	4xv ΔG _{bind} -1.1 -0.7		
Residue Phe96 Arg97 Glu116	$\begin{array}{c} \textbf{3a} \\ \Delta G_{nonpol,sol} \\ \textbf{-0.1} \\ \textbf{-0.2} \\ \textbf{-0.2} \end{array}$	4xv ΔG _{nonpol,sol} -0.2 -0.1 -0.2	3a ΔG _{bind} -1.1 -2.1 -0.6	4xv ΔG _{bind} -1.1 -0.7 -0.4		
Residue Phe96 Arg97 Glu116 Phe119	$\begin{array}{c} {\bf 3a} \\ \Delta G_{nonpol,sol} \\ -0.1 \\ -0.2 \\ -0.2 \\ -0.3 \end{array}$	$\begin{array}{c} {\bf 4xv} \\ \Delta G_{nonpol,sol} \\ {\bf -0.2} \\ {\bf -0.1} \\ {\bf -0.2} \\ {\bf -0.3} \end{array}$	3a ∆G _{bind} -1.1 -2.1 -0.6 -2.3	$\begin{array}{c} {\bf 4xv} \\ \Delta G_{\rm bind} \\ {-1.1} \\ {-0.7} \\ {-0.4} \\ {-3.3} \end{array}$		
Residue Phe96 Arg97 Glu116 Phe119 Gln167	$\begin{array}{c} \textbf{3a} \\ \Delta G_{nonpol,sol} \\ \textbf{-0.1} \\ \textbf{-0.2} \\ \textbf{-0.2} \\ \textbf{-0.3} \\ \textbf{-0.1} \end{array}$	$\begin{array}{c} {\bf 4xv} \\ \Delta G_{nonpol,sol} \\ -0.2 \\ -0.1 \\ -0.2 \\ -0.3 \\ -0.1 \end{array}$	$\begin{array}{c} \textbf{3a} \\ \Delta G_{bind} \\ \textbf{-1.1} \\ \textbf{-2.1} \\ \textbf{-0.6} \\ \textbf{-2.3} \\ \textbf{-0.9} \end{array}$	$\begin{array}{c} {\bf 4xv} \\ \Delta G_{bind} \\ -1.1 \\ -0.7 \\ -0.4 \\ -3.3 \\ -1.2 \end{array}$		
Residue Phe96 Arg97 Glu116 Phe119 Gln167 Ile169	$\begin{array}{c} \textbf{3a} \\ \Delta G_{nonpol,sol} \\ \textbf{-0.1} \\ \textbf{-0.2} \\ \textbf{-0.2} \\ \textbf{-0.3} \\ \textbf{-0.1} \\ \textbf{-0.1} \end{array}$	$\begin{array}{c} {\bf 4xv} \\ \Delta G_{nonpol,sol} \\ -0.2 \\ -0.1 \\ -0.2 \\ -0.3 \\ -0.1 \\ -0.1 \\ -0.1 \end{array}$	$\begin{array}{c} \textbf{3a} \\ \Delta G_{bind} \\ \textbf{-1.1} \\ \textbf{-2.1} \\ \textbf{-0.6} \\ \textbf{-2.3} \\ \textbf{-0.9} \\ \textbf{-1.6} \end{array}$	$\begin{array}{c} {\bf 4xv} \\ \Delta G_{\rm bind} \\ -1.1 \\ -0.7 \\ -0.4 \\ -3.3 \\ -1.2 \\ -2.1 \end{array}$		
Residue Phe96 Arg97 Glu116 Phe119 Gln167 Ile169 His187	$\begin{array}{c} \textbf{3a} \\ \Delta G_{nonpol,sol} \\ \textbf{-0.1} \\ \textbf{-0.2} \\ \textbf{-0.2} \\ \textbf{-0.3} \\ \textbf{-0.1} \\ \textbf{-0.1} \\ \textbf{-0.3} \end{array}$	$\begin{array}{c} {\bf 4xv} \\ \Delta G_{nonpol,sol} \\ -0.2 \\ -0.1 \\ -0.2 \\ -0.3 \\ -0.1 \\ -0.1 \\ -0.2 \end{array}$	$\begin{array}{c} \textbf{3a} \\ \Delta G_{bind} \\ \textbf{-1.1} \\ \textbf{-2.1} \\ \textbf{-0.6} \\ \textbf{-2.3} \\ \textbf{-0.9} \\ \textbf{-1.6} \\ \textbf{-2.2} \end{array}$	$\begin{array}{c} {\bf 4xv} \\ \Delta G_{\rm bind} \\ {\bf -1.1} \\ {\bf -0.7} \\ {\bf -0.4} \\ {\bf -3.3} \\ {\bf -1.2} \\ {\bf -2.1} \\ {\bf -1.9} \end{array}$		

Chemistry: Instrumentation and General Techniques

All chemicals and solvents were purchased from Aldrich (UK) or Alfa-Aesar and used without further purification. All reactions were carried out under a positive pressure of nitrogen or argon in flame or oven-dried glassware. Ethanol was dried over Mg/I₂; pyridine was dried over KOH pellets; all the other solvents were dried on a MBRAWN SPS-800 apparatus. nBu_4Iwas recrystalised from hot toluene and dried in a vacuum oven at 40° C.

Thin layer chromatography (TLC) analysis was performed on silica pre-coated SIL G-25 UV₂₅₄ sheets (layer: 0.25 mm silica gel with fluorescent indicator UV₂₅₄, Alugram, UK). Compounds were visualized by UV light (UV lamp, model UVGL-58, Mineralight LAMP, Multiband UV-254/365 nm) and stained with potassium permanganate. Flash column chromatography was carried out on silica gel (40-63 μ m, Fluorochem, UK) or, where indicated, on basic alumina (Brockmann I, Sigma-Aldrich).

Melting points were measured with an Electrothermal 9100 capillary melting point apparatus and are uncorrected.

Fourier Transform infra-red spectra (FT-IR) were acquired on a Perkin Elmer paragon 1000 FT spectrometer. Absorption maxima are reported in wavenumbers (cm⁻¹).

Unless otherwise stated, ¹H NMR spectra were measured at room temperature (298 K) on a Bruker DPX 400 (1 H = 400 MHz) and Bruker Avance 300 (1 H = 300.1 MHz) instruments. Deuterated solvents were used and ¹H NMR chemical shifts were internally referenced to CHCl₃ (7.26 ppm) in chloroform-d₁ solution. Chemical shifts are expressed as δ in unit of ppm.

¹³C NMR spectra were recorded in the same conditions and in the same solvents using the PENDANT sequence mode on a Bruker DPX 400 (13 C = 100 MHz). Data processing was carried out using TOPSPIN 2 NMR version (Bruker UK, Ltd). In ¹H NMR assignment the multiplicity used is indicated by the following abbreviations: s = singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quartet, m = multiplet, brs = broad singlet. Signals of protons and carbons were assigned, as far as possible, by using the following two-dimensional NMR spectroscopy techniques: [¹H-¹H] COSY, [¹H-¹³C] COSY (HSQC: Heteronuclear Single Quantum Coherence) and long range [¹H-¹³C] COSY (HMBC: Heteronuclear Multiple Bond Connectivity).

Mass spectrometry (electrospray mode, ES; chemical ionization mode, CI) were recorded on a high performance orthogonal acceleration reflecting TOF mass spectrometer operating in positive and negative mode, coupled to a Waters 2975 HPLC.

Chemistry: Experimental Procedures and Analytical Data

Synthesis of Known Compounds 6i, 6ii and 12i

2-Methoxy-naphthalene-1-carbaldehyde (6i)¹⁸

To a stirring solution of 2-hydroxy-1-naphthaldehyde **5** (1 g, 5.8 mmol, 1 eq.) in dry DMF (40 mL), K₂CO₃ (1.60 g, 11.6 mmol, 2 eq.) was added and the resulting suspension stirred at rt for 15 min. MeI (300 µl, 5.8 mmol, 1 eq.) was added and the reaction stirred at rt for 18 h. A solution of NaOH (aqueous, 5%, 20 mL) was added and the resulting mixture extracted with DCM (3×30 mL). The organic layers were collected and washed with water (3×50 mL), dried (MgSO₄) and concentrated at reduced pressure to afford the crude product as colourless crystals (900 mg, 4.8 mmol, 83%) which was used without further purification. Mp 84-86 °C (*lit.* ¹⁸ 84 °C); $\delta_{\rm H}$ (300 MHz, CDCl₃) 10.86 (s, 1H, CHO), 9.24 (dd, 1H, J = 8.8 Hz, J = 1.0 Hz, ArH), 8.03 (d, 1H, J = 9.1 Hz, ArH), 7.59 (dt, 1H, ²J = 7.7 Hz, ³J = 1.5 Hz, ArH), 7.38 (dt, 1H, ²J = 7.5 Hz, ³J = 1.1 Hz, ArH), 7.23 (d, 1H, J = 6.7 Hz, ArH) and 4.02 (s, 3H, O-CH₃); *m/z* (ES⁺) 208.91 [(M+Na)⁺, 100%].

2-Benzyloxy-naphthalene-1-carbaldehyde (6ii)¹⁹

To a stirring solution of 2-hydroxy-1-naphthaldehyde **5** (2 g, 11.6 mmol, 1 eq.) in acetone (30 mL) was added K₂CO₃ (2.40 g, 17.4 mmol, 1.5 eq.) and the reaction mixture stirred at room temperature for 15 min. Benzyl bromide (2.57 mL, 12.7 mmol, 1.1 eq.) was added and the reaction stirred at reflux for 18 h. After filtering through a celite pad, the resulting acetone solution was concentrated at reduced pressure, the residue partitioned between EtOAc-H₂O (1:1, 100 mL), the organic layer washed with water (3 × 50 mL), brine (50 mL), dried (MgSO₄) and concentrated at reduced pressure. The product was obtained as brown solid (2.45 g, 81%) and used without further purification. Mp 119-121 °C (*lit.* ¹⁹118-119 °C); $\delta_{\rm H}$ (300 MHz, CDCl₃) 10.98 (s, 1H, CHO), 9.23 (d, 1H, *J* = 8.8 Hz, ArH), 8.03 (d, 1H, *J* = 8.9 Hz, ArH), 7.77 (d, 1H, *J* = 7.5 Hz, ArH), 7.66-7.54 (m, 1H, ArH), 7.50-7.33 (m, 7H, ArH) and 5.33 (s, 2H, C<u>H</u>₂-Ph); *m/z* (ES⁺) 284.86 [(M+Na)⁺, 100%].

Electronic Supplementary Material (ESI) for Medical Chemical Communications This journal is © The Royal Society of Chemistry 2011

Ethyl 2-benzyl-3-oxo-3-phenyloxopropanoate (12ii)²⁰

A solution of NaOEt was prepared by addition of Na metal (0.25 g, 10.8 mmol) to dry ethanol (10 mL). Ethyl benzoylacetate (4.6 mL, 40 mmol, 1 eq.) was added and the resulting solution stirred at room temperature for 10 min. Benzyl bromide (1.18 mL, 10 mmol, 0.25 eq.) was added and the reaction heated at reflux for 15 h. After removing the solvent at reduced pressure, the resulting residue was dissolved in ether (10 mL) and washed with water (3×10 mL). The organic layers were collected, dried (MgSO₄) and concentrated at reduced pressure. Purification by Kugelrohr distillation afforded the product as an orange oil (3 g, 10.6 mmol, 27%). $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.92-7.85 (m, 2H, ArH), 7.49 (dt, 1H, ²J = 7.5 Hz, ³J = 1.2 Hz, ArH), 7.37 (dt, 2H, ²J = 8.0 Hz, ³J = 1.4 Hz, ArH), 7.22-7.07 (m, 5H, ArH), 4.55 (t, 1H, J = 7.3 Hz, H-2), 4.02 (q, 2H, J = 7.1 Hz, O-C<u>H</u>₂CH₃), 3.25 (dd, 2H, ²J = 7.6 Hz, ³J = 2.5 Hz, H-1') and 1.04 (t, 3H, J = 7.1 Hz, O-CH₂C<u>H</u>₃); *m/z* (ES⁺) 304.82 [(M+Na)⁺, 100%].

Preparation of Benzylamines 14a-c

Prepared according to the 3 steps synthetic methods described by Coxon, **Scheme S1**. ²¹ All the other benzylamines used were purchased by Aldrich UK and used without further purification.

Scheme S1 - Outline of the three step syntheses of benzyl amines **14a-c**. *Reagents and Conditions*: (i) Alkyl bromide (1.2 eq.), K_2CO_3 (2 eq.), H_2O -MeOH (1:1), 18 h, reflux; (ii) NH₂OHHCl (1.2 eq.), K_2CO_3 (2 eq.), H_2O -EtOH (1:1), 4 h, rt; (iii) Nickel-alluminium alloy, NaOH (10%, aq.), 4 h, rt. (a, R = Et; b, R = Pro; c, R = But).

Synthesis of 4-alkyloxybenzaldehydes15a-c

To a stirring solution of 4-hydroxybenzylaldehyde**17** (9.05 g, 74 mmol, 1 eq.) in water/methanol (1:1, 200 mL) were added the required alkyl bromide (2 eq.), K_2CO_3 (1.2 eq) and the reaction mixture stirred at reflux for 18 h. After cooling to room temperature, the solvent was removed at reduced pressure. The resulting residue was dissolved in diethyl ether (100 mL) and washed with 10% aqueous NaOH (3 × 100 mL). The organic layers were combined, dried (MgSO₄) and concentrated at reduced pressure to afford the crude product **15a-c** as a colourless oil which was used without further purification.

4-Ethoxybenzaldehyde (15a)²¹

From 4-hydroxybenzaldehyde 17 (9.05 g, 74.1 mmol), yielded 15a (8.43 g, 0.56 mmol, 76%) as a yellow oil. $\delta_{\rm H}$ (400 MHz, CDCl₃) 9.85 (s, 1H, CHO), 7.80 (d, 2H, J = 8.8 Hz, AA'BB', H-2, H-6), 6.96 (d, 2H, J = 8.8 Hz, AA'BB', H-3, H-5), 4.09 (q, 2H, J = 7.0 Hz, O-CH₂CH₃) and 1.43 (t, 2H, J = 7.0 Hz, O-CH₂CH₃). Data is in agreement with the literature.²¹

4-Propyloxybenzaldehyde (15b)²²

From 4-hydroxybenzaldehyde 17 (9.05 g, 74.1 mmol), yielded 15b (12.14 g, 74.9 mmol, quant.) as an orange oil. $\delta_{\rm H}$ (400 MHz, CDCl₃) 9.87 (s, 1H, CHO), 7.81 (d, 2H, J = 8.8 Hz, AA'BB', H-2, H-6), 6.98 (d, 2H, J = 8.8 Hz, AA'BB', H-3, H-5), 3.99 (t, 2H, J = 6.5 Hz, O-C $\underline{H_2}$ CH₂CH₃), 1.85-1.80 (m, 2H, O-CH₂C<u>H₂CH₃) and 1.05 (t, 3H, J = 7.4 Hz, O-CH₂CH₂CH₂C). Data is in agreement with the literature.²²</u>

4-Butoxybenzaldehyde (15c)²²

From 4-hydroxybenzaldehyde 17 (4.50 g, 74.1 mmol), yielded 15c (6.50 g, 36.4 mmol, quant.) as an orange oil. $\delta_{\rm H}$ (400 MHz, CDCl₃) 9.86 (s, 1H, CHO), 7.81 (d, 2H, J = 9.0 Hz, AA'BB', H-2, H-6), 6.98 (d, 2H, J = 9.0 Hz, AA'BB', H-3, H-5), 4.03 (t, 2H, J = 6.5 Hz, O-C<u>H₂</u>CH₂CH₂CH₃), 1.86-1.72 (m, 2H, O-CH₂CH₂CH₂CH₃), 1.58-1.42 (m, 2H, O-CH₂CH₂CH₃) and 0.95 (t, 3H, J = 6.5 Hz, O-CH₂CH₂CH₂CH₃). Data is in agreement with the literature.²²

Synthesis of 4-alkyloxybenzaldoxymes16a-c

To a stirring solution of 4-alkoxybenzaldehyde **15a-c** (1 eq.) and K_2CO_3 (2 eq) in water/ethanol (1:1, 200 mL, 0.2 M) was added a solution of hydroxylammonium chloride (1.2 eq.) in water (20 mL). The reaction mixture was stirred at room temperature for 4 h. After removing the suspension of K_2CO_3 by filtration, the reaction was cooled to 0 °C and the aldoxime products **16a-c**obtained as colourless crystals which were filtered, dried and used without further purification.

4-Ethoxybenzaldoxime (16a)²¹

From 4-ethoxybenzaldehyde **15a** (8.43 g, 56.1 mmol), yielded **16a** (5.70 g, 34.5 mmol, 62%) as a white microcrystalline solid. Mp 83-85 °C (*lit.*²¹81-86 °C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.33 (brs, 1H, OH), 8.09 (s, 1H, C<u>H</u>=NOH), 7.50 (d, 2H, J = 8.8 Hz, AA'BB', H-2, H-6), 6.89 (d, 2H, J = 8.8 Hz, AA'BB', H-3, H-5), 4.05 (q, 2H, J = 7.0 Hz, O-C<u>H</u>₂CH₃) and 1.42 (t, 3H, J = 7.0 Hz, O-CH₂C<u>H</u>₃). Data is in agreement with the literature.²¹

4-Propyloxybenzaldoxyme (16b)²³

From 4-propyloxybenzaldehyde **15b**(6.92 g, 42.1 mmol), yielded **16b** (6.00 g, 33.5 mmol, 81%) as a white microcrystalline solid. Mp 80-83 °C (*lit.* ²³ 82-83 °C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.08 (s, 1H, C<u>H</u>=NOH), 7.49 (d, 2H, J = 8.8 Hz, AA'BB', H-2, H-6), 6.89 (d, 2H, J = 8.8 Hz, AA'BB', H-3, H-5), 3.94 (t, 2H, J = 6.6 Hz, O-C<u>H</u>₂CH₂CH₃), 1.85-1.75 (m, 2H, O-CH₂C<u>H</u>₂CH₃) and 1.04 (t, 3H, J = 7.5 Hz, O-CH₂CH₂CH₂C<u>H</u>₃). Data is in agreement with the literature.²³

4-Butoxybenzaldoxyme (16c)²⁴

From 4-butoxybenzaldehyde **15c** (6.90 g, 38.7 mmol), yielded **16c** (5.80 g, 30.0 mmol, 78%) as a white microcrystalline solid. Mp 55-57 °C (*lit.* ²⁴54-56 °C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.08 (s, 1H, C<u>H</u>=NOH), 7.53-7.46 (m, 3H, AA'BB', H-2, H-6, NO<u>H</u>), 6.89 (d, 2H, J = 9.0 Hz, AA'BB', H-3, H-5), 3.98 (t, 2H, J = 6.5 Hz, O-C<u>H</u>₂CH₂CH₂CH₃), 1.82-1.71 (m, 2H, O-CH₂C<u>H</u>₂CH₂CH₃) 1.56-1.43 (m, 2H, O-CH₂CH₂CH₂CH₃) and 0.97 (t, 3H, J = 7.4 Hz, O-CH₂CH₂CH₂CH₂C<u>H₃</u>). Data is in agreement with the literature.²⁴

Synthesis of 4-alkyloxybenzalamines14a-c.

To a stirring solution of 4-alkoxybenzaldoxime **16a-c** (1 eq.) in ethanol (200 mL, 0.12 M) and 10% aqueous NaOH (200 mL) was added *with caution* portionwise nickel aluminium alloy (240 mg per mmol of aldoxyme). The reaction mixture was stirred at room temperature for 4 h, filtered through a pad of celite and the solvent removed at reduced pressure. DCM (200 mL) was added to the residue and the resulting solution washed with brine (3×100 mL). The organic layers were dried (MgSO₄) and concentrated at reduced pressure to afford 4-alkoxybenzylamines **14a-c** as pale yellow oils which were used without further purification.

4-Ethoxybenzylamine (14a)²¹

From 4-ethoxybenzaldoxime **16a** (5.60 g, 33.9 mmol), yielded **14a** (3.20 g, 21.1 mmol, 62%) as a white solid. Mp 224-228 °C (*lit.* ¹⁸226-227 °C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.20 (d, 2H, J = 8.6 Hz, AA'BB', H-2, H-6), 6.85 (d, 2H, J = 8.6 Hz, AA'BB', H-3, H-5), 4.01 (q, 2H, J = 6.8 Hz, O-C<u>H₂</u>CH₃), 3.79 (s, 2H, CH₂), 1.49 (br, 2H, NH₂) and 1.40 (t, 3H, J = 6.8 Hz, O-CH₂C<u>H₃</u>). Data is in agreement with the literature.²¹

4-Propiloxybenzylamine (14b)²⁵

From 4-propyloxybenzaldoxime **16b**(6.00 g, 33.5 mmol), yielded **14b** (3.80 g, 23.0 mmol, 69%) as a colourless oil. $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.20 (d, 2H, J = 8.6 Hz, AA'BB', H-2, H-6), 6.86 (d, 2H, J = 8.6 Hz, AA'BB', H-3, H-5), 3.94 (t, 2H, J = 6.2 Hz, O-C $\underline{H_2}$ CH₂CH₃), 3.78 (s, 2H, CH₂), 1.79-1-71 (m, 2H, O-CH₂CH₂CH₃), 1.44-1.32 (m, 2H, NH₂) and 0.96 (t, 3H, J = 7.4 Hz, O-CH₂CH₂CH₂CH₃). Data is in agreement with the literature.²⁵

4-Butoxybenzylamine (14c)²⁶

From 4-butoxybenzaldoxime **16c**(5.80 g, 30.0 mmol), yielded **14c** (3.50 g, 19.5 mmol, 65%) as a white solid. Mp96-98 °C (*lit.*²⁶95-100 °C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.20 (d, 2H, J = 8.8 Hz, AA'BB', H-2, H-6), 6.86 (d, 2H, J = 8.8 Hz, AA'BB', H-3, H-5), 3.94 (t, 2H, J = 6.6 Hz, O-C<u>H</u>₂CH₂CH₂CH₃), 3.78 (s, 2H, CH₂), 1.82-1-67 (m, 2H, O-CH₂C<u>H</u>₂CH₂CH₃), 1.60-1.41 (m, 4H, O-CH₂CH₂CH₂CH₃ + NH₂) and 0.96 (t, 3H, J = 7.4 Hz, O-CH₂CH₂CH₂CH₂CH₂). Data is in agreement with the literature.²⁶

Synthesis of 7i-iv

To a stirring solution of **6i**or **6ii**(1 eq.) in dry ethanol (10 mL), were added ethyl benzoylacetate (2 eq.) and piperidine (10 drops) and the reaction stirred at reflux for 18 h. After cooling to 0 $^{\circ}$ C, each product was precipitated as a yellow microcrystalline powder which was isolated by filtration and washed with cold ethanol.

Ethyl 2-benzoyl-3-(2"-methoxynaphthalen-1"-yl)acrylate (7i)

Yielded **7i** (250 mg, 0.69 mmol, 32%) from **6i** (0.404 g, 2.1 mmol) as a yellow microcrystalline powder. Mp 128-130 °C; v_{max} cm⁻¹ (KBr) 2940, 2836(C-O-CH₂), 1720 (C=O), 1590, 1510 (C-HAr) ; δ_{H} (300 MHz, CDCl₃) 8.44 (s, 1H, H-3), 7.96 (dd, 1H, ${}^{2}J$ = 8.5 Hz, ${}^{3}J$ = 0.6 Hz, H-8"), 7.90-7.84 (m, 2H, ArH), 7.74 (t, 2H, *J* = 7.7 Hz, ArH), 7.57-7.28 (m, 5H, ArH), 7.02 (d, 1H, *J* = 9.0 Hz, H-3"), 4.25 (q, 2H, *J* = 7.0 Hz, O-C<u>H₂</u>CH₃), 3.35 (s, 3H, CH₃O) and 1.16 (t, 3H, *J* = 7.0 Hz, O-CH₂C<u>H₃</u>); δ_{C} (100 MHz, CDCl₃) 193.2 (C=O), 166.3 (C=O), 154.4 (C2"), 141.5 (C2), 139.0 (C3), 137.5 (C1'a), 133.0 (C8"a), 132.8 (C4'), 132.3 (CH, Ar), 129.0 (C7"), 128.8 (C4"a), 128.7 (C4"), 128.3 (C5"), 127.7 (CH, Ar), 124.3 (C6"), 123.9 (C8"), 116.0 (C1"), 112.6 (C3"), 61.8 (O-<u>C</u>H₂CH₃), 54.9 (O-CH₃) and 14.4 (O-CH₂<u>C</u>H₃); *m/z* (ES⁺) 382.85 [(M+Na)⁺, 100%]; HRMS (ES⁺) [Found: (M+Na)⁺, 383.1271, C₂₃H₂₀O₄Na requires 383.1259] (+3.0 ppm).

Ethyl 2-(4'-chlorobenzoyl)-3-(2''-methoxynaphthalen-1''-yl)acrylate (7ii)

Yielded **7ii** (706 mg, 1.79 mmol, 46%) from **6i** (723 mg, 3.88 mmol) as a yellow microcrystalline solid. Mp 126-128 °C; v_{max} cm⁻¹ (KBr): 2983 (C-O-CH₂), 1715 (C=O), 1679 (C=O), 1613 (C-HAr), 1508 (C-HAr); $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.45 (s, 1H, H-3), 7.94 (d, 1H, J = 8.5 Hz, H-8"), 7.86-7.79 (m, 4H, H-2', H-6', H-5", H-7"), 7.57-7.49 (m, 1H, H-4"), 7.42-7.20 (m, 3H, H-3', H-5', H-6"), 7.04 (d, 1H, J = 9.4 Hz, H-3"), 4.26 (q, 2H, J = 7.1 Hz, O-C<u>H₂</u>CH₃), 3.40 (s, 3H, O-CH₃) and 1.19 (t, 3H, J = 7.1 Hz, O-CH₂C<u>H₃</u>); $\delta_{\rm C}$ (100 MHz, CDCl₃) 192.0 (C=O), 165.7 (C=O), 154.2 (C2"), 139.1 (C3), 138.9 (C4'), 135.7 (C2), 133.8 (C1'a), 132.6 (C8"a), 132.3 (C3', C5'), 130.3 (C2', C6'), 128.7 (C4"a), 128.6 (C4"), 128.5 (C5"), 127.6 (C7"), 124.2 (C6"), 123.6 (C8"), 115.5 (C1"), 112.3 (C3"), 61.6 (O-C<u>H₂CH₃</u>), 54.7 (O-CH₃) and 14.2 (O-CH₂<u>C</u>H₃); m/z (ES⁺) 416.81 [(M+Na)⁺, 100%]; HRMS (ES⁺) [Found: (M+Na)⁺, 417.0874, C₂₃H₁₉O₄NaCl requires 417.0870] (+1.0 ppm).

Ethyl 3-(2"-methoxynaphthalen-1"-yl)-2-(2'-methylbenzoyl)acrylate (7iii)

Yielded **7iii** (386 mg, 1.03 mmol, 43%) from **6i** (447 mg, 2.40 mmol) as a yellow microcrystalline solid. Mp 146-148 °C; v_{max} cm⁻¹ (KBr): 2937, 2841(C-O-CH₂), 1726, 1670 (C=O), 1621 (C-HAr), 1508 (C-HAr); $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.31 (s, 1H, H-3), 7.87 (d, 1H, J = 8.7 Hz, H-8"), 7.76-7.65 (m, 3H, ArH), 7.49 (dt, 1H, ${}^{2}J$ = 7.6 Hz, ${}^{3}J$ = 1.3 Hz, ArH), 7.34 (dt, 1H, ${}^{2}J$ = 7.5 Hz, ${}^{3}J$ = 1.0 Hz, ArH), 7.23-7.18 (m, 1H, ArH), 7.11-6.99 (m, 3H, H-3" + 2 × ArH), 4.21 (q, 2H, J = 7.0 Hz, O-C<u>H₂</u>CH₃), 3.55 (s, 3H, O-CH₃), 2.29 (s, 3H, CH₃) and 1.16 (t, 3H, J = 7.0 Hz, O-CH₂CH₃); $\delta_{\rm C}$ (100 MHz, CDCl₃) 195.2 (C=O), 165.8 (C=O), 153.9 (C2"), 139.4 (C3), 139.2 (C2'), 136.8 (C1'a), 136.3 (C2), 132.4 (C8"a), 131.5 (C4'), 131.3 (C3'), 130.6 (C6'), 128.6 (C4"), 128.4 (C5"), 127.4 (C7"), 124.9 (C5'), 124.0 (C6"), 123.9 (C8"), 116.2 (C1"), 112.3 (C3"), 61.3 (O-C<u>H₂</u>CH₃), 55.2 (O-CH₃), 20.8 (CH₃) and 14.0 (O-CH₂C<u>H₃); m/z (ES⁺) 396.86 [(M+Na)⁺, 100%]; HRMS (ES⁺) [Found: (M+Na)⁺, 397.1414, C₂₄H₂₀O₄Na requires 397.1416] (-0.3 ppm).</u>

Ethyl 2-benzoyl-3-(2"-benzyloxynaphthalen-1"-yl)acrylate (7iv)

Yielded **7iv** (358 mg, 0.82 mmol, 42%) from **6ii** (513 mg, 1.95 mmol) as a yellow microcrystalline solid. Mp 122-124 °C; v_{max} cm⁻¹ (KBr): 3065 (CO-CH), 2982 (C-O-C), 1706 (C=O), 1670 (C=O), 1591 (C-HAr), 1509 (C-HAr); $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.33 (s, 1H, H-3), 7.94 (dd, 1H, J = 8.6 Hz, J = 0.5 Hz, H-8"), 7.81 (dd, 2H, ${}^{2}J$ = 8.4 Hz, ${}^{3}J$ = 1.0 Hz, ArH), 7.66 (d, 1H, J = 8.1 Hz, ArH), 7.61 (d, 1H, J = 9.1 Hz, ArH), 7.50 (dt, 1H, ${}^{2}J$ = 7.7 Hz, ${}^{3}J$ = 1.5 Hz, ArH), 7.39-7.17 (m, 9H, ArH), 6.94 (d, 1H, J = 9.1 Hz, ArH), 4.82 (s, 2H, OC<u>H₂-P</u>h), 4.27 (q, 2H, J = 7.2 Hz, O-C<u>H₂CH₃</u>) and 1.18 (t, 3H, J = 7.2 Hz, O-CH₂C<u>H₃</u>); $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 193.2 (C=O), 165.7 (C=O), 153.3 (C2"), 139.2 (C3), 137.1 (C1'a), 137.0 (C2""a), 135.0 (C2), 132.7 (C8"a), 132.5 (CH, Ar), 131.5 (CH, Ar), 128.8 (CH, Ar), 128.7 (C4"a), 128.6 (CH, Ar), 128.3 (CH, Ar), 128.0 (CH, Ar), 127.8 (CH, Ar), 127.4 (CH, Ar), 126.5 (CH, Ar), 124.2 (C8"), 124.0 (C6"), 116.6 (C1"), 114.0 (C3"), 70.0 (<u>C</u>H₂-Ph), 61.6 (O-<u>C</u>H₂CH₃) and 14.1 (O-CH₂<u>C</u>H₃); m/z (ES⁺) 458.95 [(M+Na)⁺, 100%]; HRMS (ES⁺) [Found: (M+Na)⁺, 459.1574, C₂₉H₂₄O₄Na requires 459.1572] (+0.4 ppm).

Synthesis of 8i-iv

To a stirring solution of acrylates **7i-iv** (1 eq.) in pyridine (10 mL), was added NaBH₄ (1.1 eq.) and the reaction mixture stirred at rt for 2 h. After pouring into cold 2M HCl (40 mL) the mixture was extracted with DCM (3×50 mL), the organic layers dried (MgSO₄) and concentrated at reduced pressure. Purification by column chromatography (Hexane/EtOAc 95:5) afforded the pure products as colourless oils.

Ethyl 2-[2"-methoxynaphthyl-(1")-methyl]-3-oxo-3-phenylpropanoate (8i)

Yielded **8i** (706 mg, 1.94 mmol, 75%) from 7i (936 mg, 2.58 mmol) as a colourless oil after purification by column chromatography (Hexane/EtOAc, 95:5). v_{max} cm⁻¹ (KBr): 3065, 2982 (C-O-CH₂), 1706 (C=O), 1670 (C=O), 1591 (C-HAr), 1509 (C-HAr); $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.04 (dd, 1H, ${}^{2}J$ = 8.7 Hz, ${}^{3}J$ = 0.6 Hz, H-8'), 7.88-7.82 (m, 2H, ArH), 7.78-7.69 (m, 2H, H-4' + 1 × ArH), 7.54-7.42 (m, 2H, ArH), 7.40-7.26 (m, 3H, ArH), 7.18 (d, 1H, J = 9.0 Hz, H-3'), 4.75 (m, 1H, H-2), 4.04-3.80 (m, 6H, H-1', O-C<u>H₂</u>CH₃), 3.72 (d, 1H, J = 6.5 Hz, H-1') and 0.99 (t, 3H, J = 7.2 Hz, O-CH₂C<u>H₃</u>); $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 195.9 (C=O), 170.4 (C=O), 155.2 (C2'), 136.7 (C4), 133.5 (C7), 133.3 (C8'a), 129.4 (C4'a), 128.9 (CH, Ar), 128.8 (CH, Ar), 128.7 (C5'), 128.6 (C4'), 126.8 (C7'), 123.5 (C6'), 123.4 (C8'), 119.7 (C1'a), 112.7 (C3'), 61.6 (O-CH₃), 56.3 (O-<u>C</u>H₂CH₃), 54.0 (C2), 25.0 (C1') and 14.0 (O-CH₂<u>C</u>H₃); m/z (ES⁺) 484.87 [(M+Na)⁺, 100%]; HRMS (ES⁺) [Found: (M+Na)⁺, 385.1428, C₂₃H₂₂O₄Na requires 385.1416] (+3.1 ppm).

Ethyl 3-(4-chlorophenyl)-2-[2"-methoxynaphthyl-(1")-methyl]-3-oxopropanoate (8ii)

Yielded **8ii** (400 mg, 1.00 mmol, 76%) from **7ii** (523 mg, 1.38 mmol) as a colourless oil after purification by column chromatography (Hexane/EtOAc, 95:5). v_{max} cm⁻¹ (KBr): 2800 (C-O-CH₂), 1750 (C=O), 1680 (C=O), 1550 (C-HAr), 1510 (C-HAr); $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.00 (d, 1H, J = 8.0 Hz, H-8'), 7.82-7.67 (m, 4H, H-5, H-9, H-4', H-5'), 7.53-7.45 (m, 1H, H-7'), 7.37-7.22 (m, 3H, H-6, H-8, H-6'), 7.17 (d, 1H, J = 9.0 Hz, H-3'), 4.68 (t, 1H, J = 7.1 Hz, H-2), 3.85 (q, 2H, J = 7.1 Hz, O-C $\underline{H_2}$ CH₃), 3.90-3.80 (m, 4H, O-C $\underline{H_3}$, H-1'), 3.70 (m, 1H, H-1') and 1.01 (t, 3H, J = 7.1 Hz, O-CH₂C $\underline{H_3}$); $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 194.7 (C=O), 169.9 (C=O), 154.9 (C2'), 139.7 (C7), 134.8 (C4), 133.0 (C8'a), 129.9 (C5, C9), 129.2 (C4'a), 128.9 (C8, C6), 128.8 (C4'), 128.6 (C5'), 126.7 (C7'), 123.4 (C8'), 123.2 (C6'), 119.2 (C1'a), 112.5 (C3'), 61.5 (O-CH₂CH₃), 56.1 (C2), 53.7 (O-CH₃), 24.8 (C1') and 13.8 (O-CH₂CH₃); m/z (ES⁺) 418.81 [(M+Na)⁺, 100%]; HRMS (ES⁺) [Found: (M+Na)⁺, 419.1034, C₂₃H₂₁O₄NaCl requires 419.1026] (+1.8 ppm).

Ethyl 2-[2"-methoxynaphtyl-(1")-methyl]-3-oxo-3-(o-tolyl)-propanoate (8iii)

Yielded **8iii** (338 mg, 0.89 mmol, 75%) from **7iii** (448 mg, 1.19 mmol) as a colourless oil after purification by column chromatography (Hexane/EtOAc, 95:5). v_{max} cm⁻¹ (KBr): 2900 (C-O-CH₂), 1739 (C=O), 1514 (C-HAr); $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.05 (d, 1H, J = 8.7 Hz, H-8'), 7.79-7.67 (m, 2H, H-4', H-5'), 7.51-7.40 (m, 2H, H-6', H-7'), 7.36-7.04 (m, 5H, H-3', H-6, H-7, H-8, H-9), 4.70 (t, 1H, J = 7.3 Hz, H-2), 4.06-3.84 (m, 6H, OCH₃, O-C<u>*H*</u>₂CH₃, H-1'), 3.76 (d, 2H, J = 7.3 Hz, H-1'), 2.40 (s, 3H, CH₃) and 0.97 (t, 3H, J = 7.0 Hz, O-CH₂C<u>*H*</u>₃); $\delta_{\rm C}$ (75.5 MHz, CDCl₃) 199.1 (C=O), 170.1 (C=O), 155.0 (C2'), 138.8 (C5), 137.5 (C4), 133.1 (C8'a), 131.8 (CH, Ar), 131.4 (CH, Ar), 129.2 (C4'a), 128.7 (C4'), 128.5 (C5'), 126.6 (C7'), 125.4 (C8), 123.4 (C8'), 123.3 (C6'), 119.6 (C1'a), 112.6 (C3'), 61.2 (O-<u>C</u>H₂CH₃), 56.1 (O-CH₃), 24.5 (C1'), 20.9 (CH₃) and 13.8 (O-CH₂<u>C</u>H₃); m/z (ES⁺) 398.85 [(M+Na)⁺, 100%]; HRMS (ES⁺) [Found: (M+Na)⁺, 399.1567, C₂₄H₂₄O₄Na requires 399.1572] (-1.4 ppm).

Ethyl 2-[2"-benzyloxynaphthyl-(1")-methyl]-3-oxo-3-phenylpropanoate (8iv)

Yielded **8iv** (378 mg, 0.86 mmol, 71%) from **7iv** (537 mg, 1.23 mmol) as a colourless oil after purification by column chromatography (Hexane/EtOAc, 95:5). v_{max} cm⁻¹ (KBr): 3065, 2982 (C-O-CH₂), 1706 (C=O), 1670 (C=O), 1591 (C-HAr), 1509 (C-HAr); $\delta_{\rm H}$ (300 MHz, CDCl₃) 8.06 (d, 1H, J = 8.5 Hz, H-8'), 7.82-7.66 (m, 4H, ArH), 7.54-7.18 (m, 11H, ArH), 5.18 (s, 2H, OC<u>H₂-</u>Ph), 4.85 (dd, 1H, J = 6.4 Hz, H-2), 4.00-3.80 (m, 3H, O-C<u>H₂CH₃, H-1'), 3.76 (d, 1H, J = 6.6 Hz, H-1') and 0.91 (t, 3H, J = 7.2 Hz, O-CH₂C<u>H₃</u>); $\delta_{\rm C}$ (100 MHz, CDCl₃) 195.7 (C=O), 170.0 (C=O), 154.3 (C2'), 137.2 (C2"a), 136.5 (C4), 133.3 (CH, Ar), 133.2 (C8'a), 129.4 (C4'a), 128.7 (CH, Ar), 128.6 (CH, Ar), 128.5 (CH, Ar), 128.0 (CH, Ar), 127.3 (CH, Ar), 126.6 (CH, Ar), 126.4 (CH, Ar), 124.0 (C8'), 123.5 (C6'), 120.1 (C1'a), 113.9 (C3'), 70.9 (<u>CH₂-Ph</u>), 61.3 (O-<u>CH₂CH₃), 53.9 (C2), 25.0 (C1') and 13.8 (O-CH₂<u>CH₃</u>); m/z (ES⁺) 460.90 [(M+Na)⁺, 100%]; HRMS (ES⁺) [Found: (M+Na)⁺, 461.1728, C₂9H₂₆O₄Na requires 461.1729] (-0.2 ppm).</u></u>

Synthesis of Enamines 13i-v.

To a stirring solution of **12i-ii**(1 eq.) in dry ethanol (10 mL), were added the required amine (5 eq.) and acetic acid (5 eq.) and the reaction mixture stirred at reflux for 24 h. After the reaction had gone to completion, the solvent was removed at reduced pressure, the residue dissolved in DCM and washed with 1M HCl (2×20 mL). The organic layers were dried (MgSO₄) and concentrated at reduced pressure to afford the crude enamine which was used in the next step without further purification.

Synthesis of Enamines 9i-xii

Analogous to **13i-v**, starting from **8i-iv**, using 10 equivalents of amine and acetic acid. After removal of the solvent at reduced pressure, purification by basic alumina column chromatography (Hexane/EtOAc, 97.5:2.5 to 95:5) afforded the crude products **9i-xii** which were used in the next step without further purification.

Synthesis of 4i-xii, 10 and 11i-v

Crude enamines **9i-xii** and **13i-v** were dissolved in TMSNCS (2-3 mL) and the reaction mixture stirred at reflux for 3 h. After cooling to room temperature, saturated NaHCO₃ solution (10 mL) was added dropwise. The resulting mixture was extracted with DCM (3×10 mL), the organic layers dried (MgSO₄) and the solvent removed at reduced pressure. The pure products were obtained after purification by silica column chromatography (Hexane/EtOAc).

1-Methyl -5-[2''-methoxynaphthyl-(1'')-methyl]-6-phenyl-2-thioxo-2,3-dihydro-1*H*-pyrimidin-4one (4i)

Yielded **4i**(100 mg, 0.25 mmol, 24%) over 2 steps from **8i** (400 mg, 1.34 mmol) as a white microcrystalline powder after column chromatography (Hexane/EtOAc, 90:10 to 80:20). Mp 235-237 °C; v_{max} cm⁻¹ (KBr): 1650 (C=O), 1267 (C=S), 1140 (C=S); $\delta_{\rm H}$ (400 MHz, DMSO-d₆) 12.78 (brs, 1H, NH), 7.74 (d, 1H, J = 7.7 Hz, H-5"), 7.66 (d, 1H, J = 9.0 Hz, H-4"), 7.62 (d, 1H, J = 8.5 Hz, H-6"), 7.33 (dt, 1H, ${}^{2}J = 7.6$ Hz, ${}^{3}J = 1.6$ Hz, H-7"), 7.29-7.17 (m, 2H, H-8", H-4'), 7.13 (t, 2H, J = 7.8 Hz, H-3', H-5'), 7.01 (d, 1H, J = 9.0 Hz, H-3"), 6.80 (d, 2H, J = 6.9 Hz, H-2', H-6'), 3.92 (s, 2H, H-1"), 3.54 (s, 3H, O-CH₃) and 3.10 (s, 3H, N-CH₃); $\delta_{\rm C}$ (100 MHz, DMSO-d₆) 175.3 (C=S), 160.5 (C=O), 154.1 (C2"), 152.3 (C6), 132.4 (C8"a), 132.1 (C1'), 128.7 (C5"), 128.3 (C4"a), 128.2 (C4"), 128.1 (CH, Ar), 127.8 (CH, Ar), 127.5 (CH, Ar), 125.9 (C7"), 123.1 (C6"), 122.7 (C8"), 119.5 (C1"a), 118.5 (C5), 112.7 (C3"), 55.6 (O-CH₃), 40.1 (N-CH₃) and 20.9 (C1"); *m/z* (ES⁺) 410.78 [(M+Na)⁺, 100%]; HRMS (ES⁺) [Found: (M+Na)⁺, 411.1140, C₂₃H₂₀N₂O₂NaS requires 411.1143] (-0.7 ppm).

1-Butyl-6-(4'-chlorophenyl)-5-[2-methoxynaphthyl-(1'')-methyl)-2-thioxo-2,3-dihydro-1*H*-pyrimidin-4-one (4ii)

Yielded **4ii**(84 mg, 0.18 mmol, 33%) over 2 steps from **8ii** (215 mg, 0.64 mmol) as a white microcrystalline powder after column chromatography (Hexane/EtOAc, 90:10 to 80:20). Mp 172-174 °C; v_{max} cm⁻¹ (KBr): 3399 (CONH), 3069 (CONH), 2958 (CH₂), 1656 (C=O), 1594 (NH), 1488 (CSNH), 1252 (C=S); $\delta_{\rm H}$ (400 MHz, CDCl₃) 9.71 (brs, 1H, NH), 7.69 (d, 1H, *J* = 7.7 Hz, H-5"), 7.62 (d, 1H, *J* = 8.9 Hz, H-4"), 7.46 (d, 1H, *J* = 8.5 Hz, H-8"), 7.34-7.22 (m, 2H, H-6", H-7"), 6.95-6.84 (m, 3H, H-3", H-3', H-5'), 6.42 (d, 2H, *J* = 8.4 Hz, AA'BB', H-2', H-6'), 4.10 (s, 2H, H-1"), 3.70 (brs, 2H, N-CH₂CH₂CH₂CH₂CH₃), 3.64 (s, 3H, O-CH₃), 1.60 (brs, 2H, N-CH₂CH₂CH₂CH₃), 1.40 (brs, 2H, br, 2H, N-CH₂CH₂CH₂CH₃) and 0.60 (t, 3H, *J* = 7.3 Hz, N-CH₂CH₂CH₂CH₃); $\delta_{\rm C}$ (100 MHz, CDCl₃) 174.9 (C=S), 160.1 (C=O), 154.2 (C2"), 151.8 (C6), 135.3 (C4'), 132.8 (C8"a), 129.7 (C1'), 129.1 (CH, Ar), 128.8 (C4"a), 128.4 (CH, Ar), 128.3 (CH, Ar), 128.1 (CH, Ar), 126.7 (C7"), 123.3 (C8"), 123.1 (C6"),

120.7 (C5), 120.0 (C1"a), 112.1 (C3"), 55.7 (O-CH₃), 51.6 (N- \underline{C} H₂CH₂CH₂CH₂CH₃), 29.3 (N-CH₂CH₂CH₂CH₃), 20.7 (N-CH₂CH₂CH₂CH₃), 19.6 (C1") and 13.2 (N-CH₂CH₂CH₂CH₃); *m/z* (ES⁺) 486.74 [(M+Na)⁺, 100%]; HRMS (ES⁺) [Found: (M+Na)⁺, 487.1223, C₂₆H₂₅N₂O₂NaSCl requires 487.1231] (+1.7 ppm).

1-Butyl-5-[2"-methoxynaphthyl-(1")-methyl]-2-thioxo-6-(*o*-tolyl)-2,3-dihydro-1*H*-pyrimidin-4-one (4iii)

Yielded **4iii**(117 mg, 0.26 mmol, 31%) over 2 steps from **8iii** (320 mg, 1.0 mmol) as a white microcrystalline powder after column chromatography (Hexane/EtOAc, 90:10 to 80:20). Mp 176-178 °C; $v_{max} \text{ cm}^{-1}$ (KBr): 2954 (CH₂), 1659 (C=O), 1493 (CSNH), 1252 (C=S); δ_{H} (400 MHz, CDCl₃) 9.78 (brs, 1H, NH), 7.66 (dd, 1H, ${}^{2}J$ = 7.7 Hz, ${}^{3}J$ = 1.7 Hz, H-5"), 7.56 (d, 1H, J= 9.0 Hz, H-4"), 7.51 (d, 1H, J= 8.4 Hz, H-6"), 7.34-7.18 (m, 2H, H-7", H-8"), 7.04 (dt, 1H, ${}^{2}J$ = 7.6 Hz, ${}^{3}J$ = 1.2 Hz, ArH), 6.87-6.74 (m, 3H, H-3", ArH), 6.50 (d, 1H, J= 7.3 Hz, ArH), 4.28-4.02 (m, 3H, H1", N-C<u>H₂</u>CH₂CH₂CH₃), 3.56 (s, 3H, O-CH₃), 3.10 (m, 1H, N-C<u>H₂</u>CH₂CH₂CH₃), 1.58 (m, 1H, N-CH₂C<u>H₂CH₂CH₃), 1.07 (m, 1H, N-CH₂C<u>H₂CH₂CH₃), 0.87-0.69 (m, 2H, N-CH₂C<u>H₂CH₂CH₃) and 0.54 (t, 3H, J = 7.4 Hz, N-CH₂CH₂CH₂CH₂CH₂); δ_{C} (100 MHz, CDCl₃) 175.1 (C=S), 160.4 (C=O), 153.0 (C2"), 152 (C6), 135.8 (C2'), 133.1 (C8"a), 130.9 (C1'), 129.7 (CH, ArH), 129.5 (CH, ArH), 128.8 (C4"a), 128.4 (CH, Ar), 128.3 (CH, Ar), 128.0 (CH, Ar), 126.5 (C7"), 125.4 (CH, Ar), 123.2 (C6"), 123.0 (C8"), 120.0 (C1"a), 119.7 (C5), 112.1 (C3"), 55.6 (O-CH₃), 51.2 (N-CH₂CH₂CH₂CH₃), 28.9 (N-CH₂C<u>H</u>₂CH₂CH₃), 19.6 (N-CH₂C<u>H</u>₂CH₂CH₃), 18.7 (CH₃) and 13.1 (N-CH₂CH₂CH₂CH₃); m/z (ES⁺) 466.84 [(M+Na)⁺, 100%]; HRMS (ES⁺) [Found: (M+Na)⁺, 467.1755, C₂₇H₂₈N₂O₂NaS requires 467.1769] (-3.0 ppm).</u></u></u>

1-Benzyl-5-[2''-methoxynaphthyl-(1'')-methyl]-6-phenyl-2-thioxo-2,3-dihydro-1*H*-pyrimidin-4-one (4iv)

Yielded**4iv**(30 mg, 0.66 mmol, 23%) over 2 steps from **8i** (100 mg, 0.33mmol) as a white microcrystalline powder after column chromatography (Hexane/EtOAc, 90:10 to 80:20). Mp 211-214 °C; v_{max} cm⁻¹ (KBr): 3172, 3071 (CONH), 2952 (CH₂), 2831 (C-O-CH₂), 1655 (C=O), 1592 (NH), 1493 (CSNH), 1251 (C=S), 1172 (C=S); $\delta_{\rm H}$ (400 MHz, CDCl₃) 9.77 (brs, 1H, NH), 7.64 (dd, 1H, ²*J* = 8.4 Hz, ³*J* = 1.1 Hz, H-5"), 7.55 (d, 1H, *J* = 8.9 Hz, H-4"), 7.49 (d, 1H, *J* = 8.3 Hz, H-6"), 7.35-7.20 (m, 2H, H-7" + 1 × ArH), 7.18-7.08 (m, 3 H-8" + 2 × ArH), 6.98 (dt, 1H, ²*J* = 7.5 Hz, ³*J* = 1.0 Hz, ArH), 6.84 (d, 1H, *J* = 8.9 Hz, ArH), 6.82-6.71 (m, 2H, H-3" + 1 × ArH), 6.68 (dd, 2H, ²*J* = 7.8 Hz, ³*J* = 1.8 Hz, ArH), 6.26 (brs, 2H, ArH), 4.07 (s, 2H, H-1") and 3.60 (s, 3H, O-CH₃); $\delta_{\rm C}$ (100 MHz, CDCl₃) 176.4 (C=S), 160.1 (C=O), 154.4 (C2"), 153.1 (C6), 135.6 (C1"a), 132.9 (C8"a), 131.1 (C1'), 128.9 (CH, Ar), 128.8 (C4"a), 128.4 (CH, Ar), 128.3 (CH, Ar), 128.2 (C4"), 127.9 (C5"), 127.6 (CH, Ar), 127.4 (CH, Ar), 126.4 (C4""), 126.1 (C8"), 123.2 (C6"), 123.0 (C7"), 120.9 (C1"a), 120.1 (C5), 112.4 (C3"), 55.8 (O-CH₃) and 21.5 (C1"); *m/z* (ES⁺) 486.79 [(M+Na)⁺, 100%]; HRMS (ES⁺) [Found: (M+Na)⁺, 487.1447, C₂₉H₂₄N₂O₂NaS requires 487.1456] (-1.9 ppm).

1-(4'''-Methoxybenzyl)-5-[2''-methoxynaphtyl-(1'')-methyl]-6-phenyl-2-thioxo-2,3-dihydro-1*H*-pyrimidin-4-one (4v)

Yielded**4**v(90 mg, 0.18 mmol, 33%) over 2 steps from **8i** (200 mg, 0.67 mmol) as a white microcrystalline powder after column chromatography (Hexane/EtOAc, 80:20). Mp 159-161 °C; v_{max} cm⁻¹ (KBr): 3446 (CONH), 3058 (CONH), 2937 (CH₂), 1651 (C=O), 1591 (NH), 1486 (CSNH), 1251 (C=S), 1165 (C=S); $\delta_{\rm H}$ (400 MHz, CDCl₃) 9.76 (brs, 1H, NH), 7.64 (dd, 1H, ²*J* = 7.7 Hz, ³*J* = 1.5 Hz, H-5"), 7.54 (d, 1H, *J* = 9.0 Hz, H-4"), 7.48 (d, 1H, *J* = 8.4 Hz, H-6"), 7.35-7.17 (m, 2 H, ArH), 7.00 (dt, 1H, ²*J* = 7.5 Hz, ³*J* = 1.0 Hz, ArH), 6.90-6.70 (m, 3H, H-3' + 2 × ArH), 6.70-6.55 (m, 4H, H-2", H-3", H-5", H-6"), 6.26 (brs, 2H, ArH), 4.06 (s, 2H, H-1"), 3.74 (s, 3H, O-CH₃) and 3.60 (s, 3H, O-CH₃); $\delta_{\rm C}$ (100 MHz, CDCl₃) 176.4 (C=S), 160.2 (C=O), 158.9 (C4"'), 154.0 (C2"), 153.0 (C6),

132.9 (C8"a), 131.1 (C1'), 129.0 (C4"a), 128.8 (C1""a), 128.8 (C4"), 128.3 (C5"), 128.2 (CH, ArH 127.9 (C2"', C6"'), 127.6 (CH, ArH), 127.5 (CH, ArH), 126.3 (C7"), 123.2 (C6"), 123.1 (C8"), 120.8 (C1"a), 120.1 (C5), 113.8 (C3"', C5"'), 112.4 (C3"), 55.8 (O-CH₃), 55.3 (O-CH₃) and 21.4 (C1"); m/z (ES⁺) 516.81 [(M+Na)⁺, 100%]; HRMS (ES⁺) [Found: (M+Na)⁺, 517.1550, C₃₀H₂₆N₂O₃NaS requires 517.1562] (-2.4 ppm).

1-(4'''-Ethoxybenzyl)-5-[2''-methoxynaphthyl-(1'')-methyl]-6-phenyl-2-thioxo-2,3-dihydro-1*H*-pyrimidin-4-one (4vi)

Yielded **4vi**(79 mg, 0.15 mmol, 26%) over 2 steps from **8i** (220 mg, 0.73 mmol) as a white microcrystalline powder after column chromatography (Hexane/EtOAc, 90:10 to 80:20). Mp 112-115 °C; v_{max} cm⁻¹ (KBr): 3059 (CONH), 2934 (CH₂), 1659 (C=O), 1593 (NH), 1475 (CSNH), 1250 (C=S), 1165 (C=S); δ_{H} (400 MHz, CDCl₃) 10.01 (brs, 1H, NH), 7.54 (d, 1H, *J* = 7.9 Hz, H-5"), 7.44 (d, 1H, *J* = 9.0 Hz, H-4"), 7.39 (d, 1H, *J* = 8.4 Hz, H-8"), 7.26-7.09 (m, 2H, H-6", H-7"), 6.89 (t, 1H, *J* = 7.6 Hz, H-4'), 6.74 (d, 1H, *J* = 9.0 Hz, H-3"), 6.69 (brs, 2H, H-3', H-5'), 6.55 (d, 2H, *J* = 8.9 Hz, AA'BB', H-3", H-5"), 6.48 (d, 2H, *J* = 8.9 Hz, AA'BB', H-2", H-6"), 6.16 (brs, 2H, H-2', H-6'), 3.97 (s, 2H, H-1"), 3.84 (q, 2H, *J* = 6.9 Hz, O-C*H*₂CH₃), 3.49 (s, 3H, O-CH₃) and 1.27 (t, 3H, *J* = 6.9 Hz, O-C*H*₂CH₃), 6.63 (C=O), 158.2 (C4"), 154.4 (C2"), 153.1 (C6), 132.8 (C8"a), 131.1 (C1'), 128.9 (C4"a), 128.8 (C4'), 128.3 (C5"), 128.1 (C4"), 127.9 (C2', C6'), 127.6 (C1"a), 127.5 (C3', C5'), 127.2 (C2"'', C6'''), 126.3 (C7"), 123.2 (C6"), 123.0 (C8"), 120.8 (C1"a), 120.0 (C5), 114.3 (C3"', C5"''), 112.4 (C3"), 63.5 (O-*C*H₂CH₃), 55.8 (O-CH₃), 21.4 (C1") and 14.9 (O-CH₂*C*H₃); *m/z* (ES⁺) 530.78 [(M+Na)⁺, 100%]; HRMS (ES⁺) [Found: (M+Na)⁺, 531.1728, C₃₁H₂₈N₂O₃NaS requires 531.1718] (+1.8 ppm).

1-(4'''-Propoxybenzyl)-5-[2''-methoxynaphthyl-(1'')-methyl]-6-phenyl-2-thioxo-2,3-dihydro-1*H*-pyrimidin-4-one (4vii)

Yielded **4vii**(181 mg, 0.34 mmol, 39%) over 2 steps from**8i**(325mg, 1.0 mmol) as a white microcrystalline powder after column chromatography (Hexane/EtOAc, 90:10 to 80:20). v_{max} cm⁻¹ (KBr): 3420 (CONH), 2963 (CH₂), 1656 (C=O), 1512 (NH), 1474 (CSNH), 1251 (C=S), 1175 (C=S); $\delta_{\rm H}$ (400 MHz, CDCl₃) 10.04 (brs, 1H, NH), 7.64 (d, 1H, *J* = 8.0 Hz, H-5"), 7.54 (d, 1H, *J* = 9.1 Hz, H-4"), 7.48 (d, 1H, *J* = 8.4 Hz, H-8"), 7.32-7.19 (m, 2H, H-6", H-7"), 7.14 (d, 1H, *J* = 8.5 Hz, ArH), 6.99 (dt, 1H, ²*J* = 7.5 Hz, ³*J* = 1.1 Hz, ArH), 6.88-6.74 (m, 2H, H-3" + 1 × ArH), 6.67-6.55 (m, 4H, H-2"', H-3"', H-5"', H-6"'), 6.27 (brs, 2H, ArH), 4.05 (s, 2H, H-1"), 3.85 (t, 2H, *J* = 6.6 Hz, O-C<u>*H*</u>₂CH₂CH₃), 3.60 (s, 3H, O-CH₃), 1.85-1.69 (m, 2H, O-CH₂C<u>*H*</u>₂CH₃) and 1.01 (t, 3H, *J* = 5.3 Hz, O-CH₂C<u>*H*</u>₂(CH₃), 3.60 (s, 3H, O-CH₃), 176.4 (C=S), 160.3 (C=O), 158.4 (C4"'a), 154.4 (C2"), 153.1 (C6), 132.9 (C8"a), 131.1 (C1'), 129.0 (CH, Ar), 128.8 (CH, ArH), 128.7 (C1"'a), 128.3 (CH, Ar), 128.1 (CH, Ar), 128.0 (CH, Ar), 127.5 (C2"', C6"'), 126.3 (C7"), 123.2 (C6"), 123.0 (C8"), 120.8 (C1"a), 120.0 (C5), 114.9 (C3"', C5"'), 112.4 (C3"), 69.6 (O-<u>C</u>H₂CH₂CH₃), 55.8 (O-CH₃), 22.6 (O-CH₂<u>C</u>H₂CH₃), 21.4 (C1") and 10.6 (O-CH₂<u>C</u>H₂CH₃); *m/z* (ES⁺) 544.78 [(M+Na)⁺, 100%]; HRMS (ES⁺) [Found: (M+Na)⁺, 545.1879, C₃₂H₃₀N₂O₃NaS requires 545.1875] (+ 0.7 ppm).

1-(4'''-Butoxybenzyl)-5-[2''-methoxynaphthyl-(1'')-methyl]-6-phenyl-2-thioxo-2,3-dihydro-1*H*-pyrimidin-4-one (4viii)

Yielded **4viii**(94 mg, 0.17 mmol, 20%) over 2 steps from **8i** (325 mg, 1.08 mmol) as a white microcrystalline powder after column chromatography (Hexane/EtOAc, 90:10 to 80:20). Mp 95 °C (decomposes); v_{max} cm⁻¹ (KBr): 3426 (CONH), 2958 (CH₂), 1679 (C=O), 1613 (NH), 1512, 1473 (CSNH), 1176 (C=S); $\delta_{\rm H}$ (400 MHz, CDCl₃) 9.82 (brs,1H, NH), 7.64 (d, 1H, J = 7.9 Hz, H-5"), 7.55 (d, 1H, J = 9.0 Hz, H-4"), 7.47 (d, 1H, J = 8.5 Hz, H-6"), 7.33-7.17 (m, 2H, H-7", H-8"), 6.99 (m, 1H, ArH), 6.90-6.73 (m, 3H, H-3" + 2 × ArH), 6.66-6.54 (m, 4H, H-2", H-3", H-5", H-6"), 6.28 (brs, 2H, ArH), 4.06 (s, 2H, H-1"), 3.87 (t, 2H, J = 6.5 Hz, O-C \underline{H}_2 CH₂CH₂CH₃), 3.60 (s, 3H, O-CH₃), 1.79-1.65

(m, 2H, O-CH₂C<u>H₂</u>CH₂CH₃), 1.53-1.40 (m, 2H, O-CH₂CH₂CH₂CH₃) and 0.96 (t, 3H, J = 7.4 Hz, O-CH₂CH₂CH₂CH₂C<u>H₃</u>); δ_{C} (100 MHz, CDCl₃) 176.6 (C=S), 160.4 (C=O), 158.7 (C4'''), 154.6 (C2''), 153.3 (C6), 133.1 (C8"a), 131.3 (C1'), 129.1 (C4"a), 129.0 (CH, Ar), 128.5 (CH, Ar), 128.4 (CH, Ar), 127.8 (CH, Ar), 127.7 (CH, Ar), 127.6 (C1'''a), 126.5 (C7''), 123.4 (C6''), 123.2 (C8''), 120.7 (C1"a), 119.9 (C5), 114.6 (CH, ArH), 112.6 (C3''), 68.0 (O-<u>C</u>H₂CH₂CH₂CH₂CH₃), 56.0 (O-CH₃), 31.6 (O-CH₂<u>C</u>H₂CH₂CH₃), 21.7 (C1''), 19.5 (O-CH₂CH₂CH₂CH₃) and 14.2 (O-CH₂CH₂CH₂CH₃); *m/z* (ES⁺) 558.77 [(M+Na)⁺, 100%]; HRMS (ES⁺) [Found: (M+Na)⁺, 559.2036, C₃₃H₃₂N₂O₃NaS requires 559.2031] (+0.9 ppm).

1-Benzyl-5-[2''-benzyloxynaphthyl-(1'')-methyl]-6-phenyl-2-thioxo-2,3-dihydro-1*H*-pyrimidin-4-one (4ix)

Yielded **4ix**(313 mg, 0.57 mmol, 31%) over 2 steps from **8iv** (820 mg, 2.1 mmol) as a white microcrystalline powder after column chromatography (Hexane/EtOAc, 90:10 to 80:20). Mp 189-191 °C; v_{max} cm⁻¹ (KBr): 3062 (CONH), 1593 (NH), 1646 (C=O), 1495 (CSNH), 1249 (C=S), 1171 (C=S); $\delta_{\rm H}$ (400 MHz, CDCl₃) 10.43 (brs, 1H, NH), 7.53 (d, 1H, J = 8.1 Hz, H-5"), 7.42 (t, 2H, J = 9.8 Hz, H-6" + 1 × ArH), 7.35-7.07 (m, 8H, ArH), 7.04-6.96 (m, 3H, ArH), 6.84 (t, 1H, J = 7.6 Hz, ArH), 6.78 (d, 1H, J = 9.0 Hz, H-3"), 6.62-6.49 (m, 3H, ArH), 6.06 (brs, 2H, ArH), 4.73 (s, 2H, H-2") and 4.03 (s, 2H, H-1"); $\delta_{\rm C}$ (100 MHz, CDCl₃) 176.3 (C=S), 160.5 (C=O), 153.5 (C2"), 153.1 (C6), 137.1 (C2""a), 135.6 (C1""a), 132.8 (C8"a), 131.1 (C1'), 129.0 (C4"a), 128.6 (CH, Ar), 128.3 (C5"), 128.0 (CH, Ar × 2), 127.7 (C4"), 127.5 (CH, Ar × 2), 127.4 (CH, Ar), 127.2 (CH, Ar), 127.1 (CH, Ar), 126.3 (CH, Ar), 126.1 (C7"), 123.3 (C6"), 123.1 (C8"), 120.6 (C1"a), 120.4 (C5), 113.3 (C3"), 70.3 (C2"") and 21.6 (C1"); *m/z* (ES⁺) 562.77 [(M+Na)⁺, 100%].

1-(4'''-Methoxybenzyl)-5-[2''-benzyloxynaphthyl-(1'')-methyl]-6-phenyl-2-thioxo-2,3-dihydro-1*H*-pyrimidin-4-one (4x)

Yielded **4x**(131 mg, 0.23 mmol, 25%) over 2 steps from **8iv** (400 mg, 1.06 mmol) as a white microcrystalline powder after column chromatography (Hexane/EtOAc, 90:10 to 80:20). Mp 100 °C (decomposes); v_{max} cm⁻¹ (KBr): 3420 (CONH), 2933 (CH₂), 1663 (C=O), 1594 (NH), 1513, 1431 (CSNH), 1248 (C=S), 1176 (C=S), 1084; $\delta_{\rm H}$ (300 MHz, CDCl₃) 9.74 (brs, 1H, NH), 7.64 (dd, 1H, $J^2 = 8.0$ Hz, $J^3 = 1.0$ Hz, H-5"), 7.56-7.44 (m, 2H, H-4" + 1 × ArH), 7.46-7.21 (m, 7H, H-6", H-7" + 5 × ArH), 7.00-6.87 (m, 2H, H-3" + 1 × ArH), 6.76-6.66 (m, 2H, H-2' + 1 × ArH), 6.65-6.52 (m, 4H, H-2", H-3"', H-5"', H-6"'), 6.30-6.09 (m, 2, ArH), 4.85 (s, 2H, H-2''), 4.12 (s, 2H, H-1'') and 3.75 (s, 3H, O-CH₃) $\delta_{\rm C}$ (100 MHz, CDCl₃) 176.3 (C=S), 160.1 (C=O), 158.8 (C4"'), 153.5 (C2"), 152.9 (C6), 137.1 (C2""a), 132.9 (C8"a), 131.1 (C1'), 129.1 (C4"a), 128.7 (CH, Ar × 2), 128.3 (C5"), 128.2 (CH, Ar), 128.1 (CH, Ar), 127.9 (CH, Ar), 127.6 (CH, Ar), 127.5 (CH, Ar), 126.3 (C7"), 123.3 (C8"), 123.2 (C6"), 120.7 (C1"a), 120.5 (C5), 113.7 (C3"', C5"'), 113.5 (C3"), 70.4 (C2""), 55.3 (O-CH₃) and 21.7 (C1"); *m/z* (ES⁺) 592.99 [(M+Na)⁺, 100%].

1-(4'''-Ethoxybenzyl)-5-[2''-benzyloxynaphthyl-(1'')-methyl]-6-phenyl-2-thioxo-2,3-dihydro-1*H*-pyrimidin-4-one (4xi)

Yielded **4xi**(80 mg, 0.13 mmol, 39%) over 2 steps from **8iv** (442 mg, 1.18 mmol) as a white microcrystalline powder after column chromatography (Hexane/EtOAc, 90:10 to 80:20). Mp 85-90 °C (decomposes); v_{max} cm⁻¹ (KBr): 3446 (CONH), 1655 (C=O), 1513 (CSNH), 1177 (C=S); $\delta_{\rm H}$ (400 MHz, CDCl₃) 9.58 (brs, 1H, NH), 7.64 (d, 1H, J = 7.8 Hz, ArH), 7.58-7.46 (m, 2H, ArH), 7.46-7-19 (m, 7H, ArH), 6.99-6.87 (m, 2H, ArH), 6.71 (brs, 2H, ArH), 6.61 (d, 2H, J = 8.7 Hz, ArH), 6.55 (d, 2H, J = 8.7 Hz, ArH), 6.19 (brs, 2H, ArH), 4.85 (s, 2H, H-2""), 4.11 (s, 2H, H-1"), 3.94 (q, 2H, 2H)

J = 7.0 Hz, O-C $\underline{H_2}$ CH₃) and 1.37 (t, 3H, J = 7.0 Hz, O-CH₂C $\underline{H_3}$); δ_C (100 MHz, CDCl₃) 176.3 (C=S), 160.0 (C=O), 158.2 (C4"'), 153.5 (C2"), 152.9 (C6), 137.1 (C2""a), 132.9 (C8"a), 131.1 (C1'), 130.1 (C4"a), 128.7 (CH, Ar), 128.6 (CH, Ar), 128.4 (CH, Ar), 128.1 (CH, Ar), 128.0 (CH, Ar), 127.8 (CH, Ar), 127.7 (CH, ArH), 127.6 (CH, Ar), 127.5 (CH, Ar), 127.5 (C1""a), 126.3 (CH, Ar), 123.3 (CH, Ar), 123.2 (CH, Ar), 120.8 (C1"a), 120.5 (C5), 114.3 (CH, Ar), 113.4 (CH, Ar), 70.5 (\underline{C} H₂-Ph), 63.5 (O- \underline{C} H₂CH₃), 21.7 (C1") and 14.9 (O-CH₂ \underline{C} H₃); m/z (ES⁺) 607.10 [(M+Na)⁺, 100%]; HRMS (ES⁺) [Found: (M+Na)⁺, 607.2032, C₃₇H₃₂N₂O₃NaS requires 607.2031] (0.1 ppm).

1-(4'''-Propoxybenzyl)-5-[2''-benzyloxynaphthyl-(1'')-methyl]-6-phenyl-2-thioxo-2,3-dihydro-1*H*-pyrimidin-4-one (4xii)

Yielded **4xii**(90 mg, 0.15 mmol, 21%) over 2 steps from **8iv** (246 mg, 0.65 mmol) as a white microcrystalline powder after column chromatography (Hexane/EtOAc, 90:10 to 80:20). Mp 85-90 °C (decomposes); v_{max} cm⁻¹ (KBr): 3420, 2963 (CH₂), 1678 (C=O), 1594 (CONH), 1512 (NH), 1474 (CSNH), 1274 (C=S), 1176 (C=S); δ_{H} (400 MHz, CDCl₃) 9.75 (brs, 1H, NH), 7.64 (d, 1H, J = 7.6 Hz, ArH), 7.52 (t, 2H, J = 9.3 Hz, ArH), 7.47-7.20 (m, 7H, ArH), 7.00-6.88 (m, 2H, ArH), 6.71 (brs, 2H, ArH), 6.62 (d, 2H, J = 8.7 Hz, ArH), 6.55 (d, 2H, J = 8.7 Hz, ArH), 6.20 (brs, 2H, ArH), 4.86 (s, 2H, H-2ⁱⁱⁱⁱ), 4.12 (s, 2H, H-1ⁱⁱⁱ), 3.82 (t, 2H, J = 6.6 Hz, O-C $\underline{H_2}$ CH₂CH₃), 1.80-1.72 (m, 2H, O-CH₂C $\underline{H_2}$ CH₃) and 1.04 (t, 3H, J = 7.5 Hz, O-CH₂CH₂CH₂); δ_C (100 MHz, CDCl₃) 176.3 (C=S), 160.1 (C=O), 158.5 (C4ⁱⁱⁱⁱ), 153.5 (C2ⁱⁱⁱⁱ), 152.9 (C6), 137.1 (C2ⁱⁱⁱⁱⁱ), 132.9 (C8ⁱⁱⁱⁱ), 131.1 (C1ⁱⁱⁱⁱ), 129.0 (CH, Ar), 128.7 (CH, Ar), 128.3 (CH, Ar), 128.1 (CH, Ar), 128.0 (CH, Ar), 127.9 (CH, Ar), 120.7 (C1ⁱⁱⁱⁱⁱ), 120.5 (C5), 114.3 (CH, Ar), 113.5 (CH, Ar), 70.4 ($\underline{CH_2}$ -Ph), 69.6 (O- $\underline{CH_2}$ CH₂CH₃), 22.6 (O-CH₂CH₂CH₃), 21.7 (C1ⁱⁱⁱ) and 10.6 (O-CH₂CH₂CH₃); m/z (ES⁺) 620.74 [(M+Na)⁺, 100%]; HRMS (ES⁺) [Found: (M+Na)⁺, 621.2180, C₃₈H₃₄A₂O₃NaS requires 621.2188] (-1.2 ppm).

1-Benzyl-6-phenyl-2-thioxo-2,3-dihydropyrimidin-4(1*H*)-one (10)

Yielded**10**(175 mg, 0.59 mmol, 80%) from enamine **13i** (210 mg, 0. 74 mmol) as a white microcrystalline powder after column chromatography (Hexane/EtOAc, 80:20). Mp 184-186 °C; v_{max} cm⁻¹ (KBr): 3180 (CONH), 3060 (CONH), 2928 (CH₂), 1670 (C=O), 1594 (NH), 1489 (CSNH), 1411 (CSNH), 1246 (C=S); $\delta_{\rm H}$ (300 MHz, CDCl₃) 10.77 (brs, 1H, NH), 7.48-7.37 (m, 1H, ArH), 7.36-7.14 (m, 5H, ArH), 7.11-7.00 (m, 2H, ArH), 6.92-6.81 (m, 2H, ArH), 5.90 (s, 1H, H-5) and 5.52 (brs, 2H, H-1"); $\delta_{\rm C}$ (100 MHz, CDCl₃) 178.5 (C=S), 159.6 (C=O), 157.7 (C6), 135.5 (C1"a), 133.2 (C1'), 130.3 (CH, Ar), 128.7 (CH, Ar), 128.6 (CH, Ar), 127.9 (CH, Ar), 127.7 (CH, Ar), 126.5 (CH, C4'), 109.1 (C5) and 54.6 (C1"); *m/z* (ES⁺) 316.89 [(M+Na)⁺, 100%]; HRMS (ES⁺) [Found: (M+Na)⁺, 317.0722, C₁₇H₁₄N₂ONaS requires 317.0725] (-0.9 ppm).

1,5-Dibenzyl-6-phenyl-2-thioxo-2,3-dihydro-1*H*-pyrimidin-4-one (11i)

Yielded**11i**(117 mg, 0.30 mmol, 76%) from enamine **13ii** (150 mg, 0.40 mmol) as a white microcrystalline powder after column chromatography (Hexane/EtOAc, 80:20). Mp135-137 °C; v_{max} cm⁻¹ (KBr): 3060 (CONH), 2930 (CH₂), 1662 (C=O), 1494 (CSNH), 1259 (C=S); $\delta_{\rm H}$ (300 MHz, CDCl₃) 9.66 (brs, 1H, NH), 7.39 (dt, 1H, ²*J* = 5.5 Hz, ³*J* = 1.2 Hz, ArH), 7.31-7.07 (m, 9H, ArH), 6.89-6.70 (m, 5H, ArH) and 3.41 (s, 2H, H-1"); $\delta_{\rm C}$ (100 MHz, CDCl₃) 176.9 (C=S), 159.9 (C=O), 154.1 (C6), 138.8 (C1"a), 135.5 (C1"a), 131.5 (C1'), 130.0 (CH, Ar), 128.7 (CH, Ar), 128.5 (CH, Ar), 128.6 (CH, Ar × 2), 128.5 (CH, Ar), 128.4 (CH, Ar), 127.6 (CH, Ar), 126.4 (CH, Ar), 119.6 (C5) and 32.1 (C1"); *m/z* (ES⁺) 406.92 [(M+Na)⁺, 100%]; HRMS (ES⁺) [Found: (M+Na)⁺, 407.1194, C₂₄H₂₀N₂ONaS requires 407.1194] (-0.1 ppm).

1-(4"'-Methoxybenzyl)-5-benzyl-6-phenyl-2-thioxo-2,3-dihydro-1*H*-pyrimidin-4-one (11ii)

Yielded **11ii**(298 mg, 0.71 mmol, 60%) over 2 steps from**12ii** (510 mg, 1.27 mmol) as a white microcrystalline powder after column chromatography (Hexane/EtOAc, 90:10 to 80:20). Mp 192-195 °C; v_{max} cm⁻¹ (KBr): 3108 (CONH), 2953 (CH₂), 2832 (C-O-CH₂), 1697 (C=O), 1595 (NH), 1489 (CSNH), 1244 (C=S); δ_{H} (500 MHz, CDCl₃) 9.90 (brs, 1H, NH), 7.41 (dt, 1H, ²*J* = 5.7 Hz, ³*J* = 1.1 Hz, ArH), 7.32-7.23 (m, 2H, ArH), 7.15-7.10 (m, 3H, ArH), 6.89-6.67 (m, 8H, H-2^{III}, H-3^{III}, H-5^{III}, H-6^{III} + 4 × ArH), 3.76 (s, 3H, O-CH₃) and 3.40 (s, 2H, H-1^{II}); δ_{C} (100 MHz, CDCl₃) 176.8 (C=S), 160.0 (C=O), 159.1 (C4^{III}), 154.1 (C6), 138.8 (C1^{II}a), 131.5 (C1^{II}), 130.0 (CH, Ar), 128.7 (CH, Ar), 128.5 (CH, Ar), 128.4 (CH, Ar), 128.3 (CH, Ar), 127.9 (CH, Ar), 127.5 (C1^{III}a), 126.4 (CH, Ar), 119.5 (C5), 113.9 (CH, Ar), 55.4 (O-CH₃) and 32.1 (C1^{II}); *m*/*z* (ES⁺) 436.76 [(M+Na)⁺, 100%]; HRMS (ES⁺) [Found: (M+Na)⁺, 437.1308, C₂₅H₂₂N₂O₂NaS requires 437.1300] (+1.9 ppm).

1-(4"'-Ethoxybenzyl)-5-benzyl-6-phenyl-2-thioxo-2,3-dihydro-1*H*-pyrimidin-4-one (11iii)

Yielded **11iii**(359 mg, 0.83 mmol, 68%) over 2 steps from **12ii** (512 mg, 1.23 mmol) as a white microcrystalline powder after column chromatography (Hexane/EtOAc, 90:10 to 80:20). Mp 203-206 °C; v_{max} cm⁻¹ (KBr): 3450 (NH), 3092 (CH₂), 2976 (C-O-CH₂), 1696 (C=O), 1594 (NH), 1491 (CSNH), 1247 (C=S); δ_{H} (400 MHz, CDCl₃) 9.70 (brs, 1H, NH), 7.40 (dt, 1H, ²*J* = 7.5 Hz, ³*J* = 1.2 Hz, ArH), 7.33-7.22 (m, 2H, ArH), 7.17-7.07 (m, 3H, ArH), 6.91-6.64 (m, 8H, H-2''', H-3''', H-5''', H-6''' + 4 × ArH), 3.97 (q, 2H, *J* = 7.0 Hz, O-C<u>*H*</u>₂CH₃), 3.40 (s, 2H, H-1'') and 1.39 (t, 3H, *J* = 7.0 Hz, O-CH₂C<u>*H*</u>₃); δ_{C} (100 MHz, CDCl₃) 177.1 (C=S), 160.0 (C=O), 158.5 (C4'''), 154.1 (C6), 138.8 (C1''a), 131.6 (C1'), 130.0 (CH, Ar), 128.7 (CH, Ar), 128.6 (CH, Ar), 128.5 (CH, Ar), 128.3 (CH, Ar), 127.9 (CH, Ar), 127.4 (C1''a), 126.4 (CH, Ar), 119.6 (C5), 114.5 (CH, Ar), 63.6 (O-CH₂CH₃), 32.1 (C1'') and 14.9 (O-CH₂CH₃); *m/z* (ES⁺) 450.80 [(M+Na)⁺, 100%]; HRMS (ES⁺) [Found: (M+Na)⁺, 451.1440, C₂₆H₂₄N₂O₂NaS requires 451.1452] (-0.1 ppm).

1-(4'''-Butoxybenzyl)-5-benzyl-6-phenyl-2-thioxo-2,3-dihydro-1*H*-pyrimidin-4-one (11iv)

Yielded **11iv**(263 mg, 0.57 mmol, 57%) over 2 steps from **12ii** (450 mg, 1.0 mmol) as a white microcrystalline powder after column chromatography (Hexane/EtOAc, 90:10 to 80:20). Mp 140-142 °C; v_{max} cm⁻¹ (KBr): 2944 (CH₂), 1673 (C=O), 1508 (NH), 1228 (C=S); δ_{H} (300 MHz, CDCl₃) 9.69 (brs, 1H, NH), 7.40 (t, 1H, J = 7.6 Hz, ArH), 7.35-7.20 (m, 2H, ArH), 7.18-7.06 (m, 3H, ArH), 6.91-6.64 (m, 8H, H-2"', H-3"', H-5"', H-6"' + 4 × ArH), 3.90 (t, 2H, J = 6.6 Hz, O-C<u>H₂CH₂CH₂CH₂CH₃), 3.40 (s, 2H, H-1"), 1.81-1.66 (m, 2H, O-CH₂C<u>H₂CH₂CH₂CH₃), 1.53-1.38 (m, 2H, O-CH₂CH₂C<u>H₂CH₂CH₃)</u> and 0.96 (t, 3H, J = 7.5 Hz, O-CH₂CH₂CH₂CH₂C₂G) (CH, Ar), 128.7 (CH, Ar), 128.6 (CH, Ar), 158.7 (C4"'), 154.1 (C6), 138.8 (C1"a), 131.5 (C1'), 129.9 (CH, Ar), 128.7 (CH, Ar), 128.6 (CH, Ar), 128.4 (CH, Ar), 128.3 (CH, Ar), 127.8 (CH, Ar), 127.4 (C1"'a), 126.4 (CH, Ar), 119.6 (C5), 114.5 (CH, Ar), 67.8 (O-<u>C</u>H₂CH₂CH₂CH₃); m/z (ES⁺) 478.80 [(M+Na)⁺, 100%]; HRMS (ES⁺) [Found: (M+Na)⁺, 479.1760, C₂₈H₂₈N₂O₂NaS requires 479.1769] (-1.9 ppm).</u></u>

Synthesis of 4xiii-xvi

To a stirring solution of **4ix-xii** (1 eq) in DCM (4 mL) at -78 °C was added nBu_4NI (1.1 eq.) and the resulting solution stirred for 5 min at -78 °C. BCl₃ (1.0 M in heptane, 2.5 eq.) was added dropwise and the reaction stirred for 5 min at the same temperature. After warming to 0 °C, the reaction mixture was stirred for further 2 h. After this time, an ice-water mixture was added, DCM removed at reduced pressure and the aqueous layer extracted with diethyl ether (3 × 5 mL). The organic layers were collected, washed with brine, dried (MgSO₄) and concentrated at reduced pressure. The product was obtained as a white microcrystalline powder after purification by column chromatography (Hexane/EtOAc, 85:15).

1-Benzyl-5-[2"-hydroxynaphthyl-(1")-methyl]-6-phenyl-2-thioxo-2,3-dihydro-1*H*-pyrimidin-4-one (4xiii)

Yielded **4xiii**(15 mg, 0.03 mmol, 53%) from **4ix** (41 mg, 0.07 mmol) as a white microcrystalline powder after column chromatography (Hexane/EtOAc, 85:15 to 80:20). Mp 94 °C (decomposes); v_{max} cm⁻¹ (KBr): 3420 (CONH or OH), 1655 (C=O), 1482 (CSNH), 1166 (C=S); δ_{H} (400 MHz, CDCl₃) 8.69 (brs, 1H, OH), 7.64 (d, 1H, J = 7.8 Hz, H-5"), 7.59 (d, 1H, J = 8.7 Hz, H-4"), 7.44-7.36 (m, 1H, H-4'), 7.31-7.09 (m, 8H, H-3", H-6" + 6 × ArH), 6.98 (dt, 2H, ${}^{2}J = 7.7$ Hz, ${}^{3}J = 1.1$ Hz, ArH), 6.91 (brs, 1H, ArH), 6.76 (dd, 1H, ${}^{2}J = 7.8$ Hz, ${}^{3}J = 1.8$ Hz, ArH), 6.71 (d, 1H, J = 8.8 Hz, ArH) and 3.90 (s, 2H, H-1"); δ_{C} (100 MHz, CDCl₃) 176.2 (C=S), 162.7 (C=O), 155.5 (C2"), 153.8 (C6), 135.2 (C1"a), 133.2 (C1'), 131.2 (C8"a), 130.6 (CH, Ar), 129.3 (C4"a), 129.2 (CH, Ar), 129.0 (CH, Ar), 128.9 (CH, Ar), 128.6 (C4"), 128.5 (C5"), 127.7 (CH, Ar), 126.2 (CH, Ar), 125.7 (C7"), 122.5 (C6"), 122.4 (C8"), 120.5 (C3"), 118.2 (C1"a), 116.3 (C5) and 23.1 (C1"); *m/z* (ES⁺) 472.81 [(M+Na)⁺, 100%]; *m/z* (ES⁻) 448.78 [(M-H)⁺, 100%]; HRMS (ES⁻) [Found: (M-H)⁻, 449.1323, C₂₈H₂₁N₂O₂S requires 449.1324] (-0.2 ppm).

1-(4'''-Methoxybenzyl)-5-[2''-hydroxynaphthyl-(1'')-methyl]-6-phenyl-2-thioxo-2,3-dihydro-1*H*-pyrimidin-4-one (4xiv)

Yielded **4xiv**(25 mg, 0.05 mmol, 46%) from **4x** (65 mg, 0.11 mmol) as a white microcrystalline powder after column chromatography (Hexane/EtOAc, 85:15 to 80:20). Mp90 °C (decomposes); v_{max} cm⁻¹ (KBr): 3201 (CONH or OH), 1655 (C=O), 1513 (NH), 1176 (C=S); $\delta_{\rm H}$ (400 MHz, CDCl₃) 10.15 (brs, 1H, NH), 8.70 (s, 1H, OH), 7.64 (d, 1H, J = 8.0 Hz, H-5"), 7.59 (d, 1H, J = 8.8 Hz, H-4"), 7.43 (t, 1H, J = 7.4 Hz, H-4'), 7.28 (brs, 2H, ArH), 7.21-7.07 (m, 2H, H-6" + 1 × ArH), 7.04-6.84 (m, 3H, H-3", H-7" + 1 × ArH), 6.73-6.65 (m, 5H, H-2", H-3", H-5", H-6", H-8"), 3.89 (s, 2H, H-1") and 3.75 (s, 3H, O-CH₃); $\delta_{\rm C}$ (100 MHz, CDCl₃) 176.2 (C=S), 162.7 (C=O), 159.2 (C4""), 155.6 (C2"), 153.8 (C6), 133.2 (C8"a), 131.2 (C1'), 130.6 (CH, Ar), 129.3 (CH, Ar), 129.3 (C4"a), 129.0 (C4"),

128.9 (C2^{III}, C6^{III}), 128.5 (C5^{II}), 127.8 (CH, Ar), 127.2 (C1^{III}a), 125.3 (C7^{II}), 122.6 (C6^{II}), 122.5 (C8^{II}), 120.5 (C3^{II}), 118.3 (C1^{II}a), 116.4 (C5), 113.9 (C3^{III}, C5^{III}), 55.4 (O-CH₃) and 23.2 (H-1^{II}); *m/z* (ES^{II}) 478.84 [(M-H)⁻, 100%]; HRMS (ES⁺) [Found: (M-H)⁻, 479.1439, C₂₉H₂₃N₂O₃S requires 479.1429] (+1.9 ppm).

1-(4'''-Ethoxybenzyl)-5-[2''-hydroxynaphthyl-(1'')-methyl]-6-phenyl-2-thioxo-2,3-dihydro-1*H*-pyrimidin-4-one (4xv)

Yielded **4xv**(10 mg, 0.02 mmol, 22%) from **4xi** (54 mg, 0.09 mmol) as a white microcrystalline powder after column chromatography (Hexane/EtOAc, 85:15). Mp 185 °C (decomposes); $\delta_{\rm H}$ (400 MHz, CDCl₃) 9.87 (brs, 1H, NH), 8.72 (brs, 1H, OH), 7.64 (d, 1H, J = 7.8 Hz, H-5"), 7.59 (d, 1H, J = 8.8 Hz, H-4"), 7.44 (t, 1H, J = 7.5 Hz, H-4'), 7.34-7.22 (m, 2H, H-6", H-7"), 7.19-7.10 (m, 2H, ArH), 7.02-6.83 (m, 3H, ArH), 6.73-6.60 (m, 5H, H-2"', H-3"', H-5"', H-6"', H-8"), 3.89 (s, 2H, H-1"), 3.97 (q, 2H, J = 7.0 Hz, O-C $\underline{H_2}$ CH₃) and 1.39 (t, 3H, J = 7.0 Hz, O-CH₂C $\underline{H_3}$); $\delta_{\rm C}$ (100 MHz, CDCl₃) 176.0 (C=S), 162.7 (C=O), 158.4 (C4"'), 155.4 (C2"), 153.7 (C6), 133.1 (C8"a), 131.1 (C1'), 130.5 (CH, Ar), 129.3 (CH, Ar), 129.0 (CH, Ar), 128.8 (CH, ArH), 128.4 (CH, Ar), 127.7 (CH, Ar), 126.9 (C), 125.7 (C7"), 122.4 (C8"), 122.3 (C6"), 120.4 (C3"), 118.2 (C1"a), 116.2 (C5), 114.4 (C3"', C5"'), 67.7 (O- \underline{C} H₂CH₃), 23.3 (C1"), 14.8 (O-CH₂ \underline{C} H₃); m/z (ES⁻) 493.11 [(M-H)⁻, 100%]; m/z (ES⁺) 517.12 [(M+Na)⁺, 100%]; HRMS (ES⁻) [Found: (M-H)⁻, 493.1581, C₃₀H₂₅N₂O₃S requires 493.1586] (-1.0 ppm).

1-(4'''-Propoxybenzyl)-5-[2''-hydroxynaphthyl-(1'')-methyl]-6-phenyl2-thioxo-2,3-dihydro-1*H*-pyrimidin-4-one (4xvi)

Yielded **4xvi**(14 mg, 0.02 mmol, 25%) from **4xii** (67 mg, 0. 11 mmol) as a white microcrystalline powder after column chromatography (Hexane/EtOAc, 85:15). Mp 185 °C (decomposes); $\delta_{\rm H}$ (400 MHz, CDCl₃) 9.75 (brs, 1H, NH), 8.72 (brs, 1H, OH), 7.64 (d, 1H, J = 7.9 Hz, H-5"), 7.59 (d, 1H, J = 8.9 Hz, H-4"), 7.46-7.39 (m, 1H, H-4'), 7.34-7.22 (m, 2H, H-6", H-7"), 7.19-7.10 (m, 2H, ArH), 7.02-6.85 (m, 3H, ArH), 6.73-6.59 (m, 5H, H-2", H-3", H-5", H-6", H-7"), 7.19-7.10 (m, 2H, ArH), 7.02-6.85 (m, 3H, ArH), 6.73-6.59 (m, 5H, H-2", H-3", H-5", H-6", H-8"), 3.89 (s, 2H, H-1"), 3.85 (t, 2H, J = 6.5 Hz, $O-C\underline{H_2}CH_2CH_3$), 1.84-1.71 (m, 2H, $O-CH_2C\underline{H_2}CH_3$) and 1.02 (t, 3H, J = 7.6 Hz, $O-CH_2C\underline{H_2}CH_3$); δ_C (100 MHz, CDCl₃) 176.0 (C=S), 162.7 (C=O), 158.6 (C4"), 155.4 (C2"), 153.7 (C6), 133.1 (C8"a), 131.1 (C1'), 130.5 (CH, Ar), 129.2 (CH, Ar), 128.9 (CH, Ar), 128.8 (CH, Ar), 128.4 (CH, Ar), 127.7 (CH, Ar), 126.9 (C), 125.6 (CH, Ar), 122.4 (CH, Ar), 122.3 (CH, Ar), 120.4 (CH, Ar), 118.1 (C), 116.3 (C), 114.4 (C3"', C5"'), 69.5 ($O-\underline{CH_2}CH_2CH_3$), 29.7 ($O-CH_2\underline{CH_2}CH_3$), 22.5 (C1"), 10.5 ($O-CH_2CH_2\underline{C}H_3$).

X-ray Crystal Structure of Analogue 4iv

Figure S1 - Crystal structure determination of 4iv. Crystals were obtained by slow evaporation from ethanol.

HPLC Analysis of Purity

HPLC analyses were performed on a GILSON UV-VIS 155 HPLC system under gradient conditions. Method A (RP, reverse phase), XTerra RP 18 5 μ M column (3.0 × 50 mm, Waters). The concentration of the compounds were *ca*. 4 mmol, injection volumes were 20 μ L, flow rate was 1 mL/min and detection was acquired using UV spectroscopy (254 nm).

Table S9						
Method A (RP)						
Time (min)	% H ₂ O ^a	% CH ₃ CN				
0	80	20				
7	20	80				
8	20	80				
9	80	20				
10	80	20				
а	With 0.1% TE	٨				

 With	0.1%	TFA

Table S10, Retention Times and Purities of Tested Compounds.

Compound	HPLC Method A (RP)		
	Rt	Purity (%)	
4i	1.07	> 95	
4 ii	1.24	> 95	
4 iii	1.26	> 95	
4iv	1.13	> 95	
$4\mathbf{v}$	1.11	> 95	
4vi	1.12	> 95	
4vii	1.24	> 95	
4viii	1.12	> 95	
4ix	1.09	> 95	
4x	1.17	> 95	
4xi	1.15	> 95	
4xii	1.20	> 95	
4xiii	0.87	> 95	
4xiv	1.11	> 95	
4xv	1.07	> 95	
4xvi	1.17	> 95	
10	1.04	> 95	
11i	1.06	> 95	
11ii	1.09	> 95	
11iii	1.11	> 95	
11iv	1.08	> 95	

In Vitro SIRT1 and SIRT2 Inhibition Assay

Compounds were tested for inhibition of SIRT1 and SIRT2 using the human recombinant SIRT1 and SIRT2 enzymes provided with the Fluor de LysTM fluorescent-based assay kit (BML AK555, BML AK556, Enzo LifeSciences, UK).¹⁰⁵ All the other required reagents were provided with the kit. All kit components were stored at -78 °C to ensure stability. Positive controls were provided by the known SIRT1/T2 inhibitors cambinol (**2**)and analogues **3a** and **3b**.

Fresh dilutions of cambinol analogues were prepared in DMSO (Aldrich), added to the assay buffer and pipetted (10 μ L) into a white 96 well white microplate. Enzyme (15 μ L, 0.02 U/ μ L for SIRT1, 0.1 U/ μ L for SIRT2) and Fluor de Lys SIRT1 or SIRT2 (15 μ M, 12.5 μ L) plus NAD⁺ (1 mM, 12.5 μ L) in assay buffer were added. After incubating for 1 h at 37 °C, a developer solution (250 μ L developer and 2 mM, 50 μ L of nicotinamide in 950 μ L of buffer) was added (50 μ L) to each well and the microplate incubated for a further 45 min at room temperature. Plates were read in a microplate Thermo Scientific Multiskan FC fluorimeter with an excitation wavelength of 355 nm and an emission wavelength of 460 nm.

Cell Culture and Western Blotting

Human cancer cell line H1299 cells were cultured in RPMI supplemented with 10% fetal calf serum (FCS, Hyclone, UK) and gentamycin (complete medium). Cells were seeded at a concentration of $6 \times$ 10⁴ in a 6 well collagen pre-coated plates (TPP, Helena Biosciences, UK) and incubated in a humidified atmosphere containing 5% CO2:95% air at 37 °C for 24 h. A range of concentrations of the target compounds in DMSO were added to H1299 cells with 40 nM trichostatin A (TSA) also being added and the mixture incubated for a further 24 h. After lysing the cells with 1 × LDS sample buffer (200 µL per well, Invitrogen, UK), the protein concentration was assessed with a BCA protein assay kit (Pierce, UK) and the concentration of proteins equalised with $1 \times LDS$ sample buffer. Proteins were separated with 4-12% bis-tris gels (Invitrogen, USA) and electrophoretically transferred to PVDF transfer membranes (Millipore, UK). Membranes were blocked with Marvel non-fat milk (45 min, 5% solution in PBS/0.1% tween) and immunoblotted using anti-K40 acetylated tubulin (SIGMA) and anti a-tubulin (SIGMA). All the primary antibodies were diluted in Marvel non-fat milk (5% solution in PBS/0.1% tween). The secondary antibody used against the remaining primary antibodies was a HRP-tagged polyclonal rabbit anti-mouse IgG (DAKO, UK). After incubation with primary (1 h) and secondary antibodies (45 min), bound antibody was visualized with enhanced chemiluminescence (ECL) western blotting developer (Amersham, UK) in a darkroom.

Figure S2.Comparison of the ability of 3a and 14xvto increase tubulin acetylation in cells. H1299 cells were treated with trichostatin A (40 nM) to inhibit HDAC6 deacetylase activity together with vehicle (DMS0) (lane 1), 10, 30, 50 or 60 μ M 3a or 14xv for 16 hours (lanes 2-5). K40Ac α -tubulin and total α -tubulin were detected by Western blot as described.¹

Figure S3. Comparison of the ability of 3a and 14xvto increase tubulin acetylation in cells.

References

- 1) Medda, F.; Russell, R. J. M.; Higgins, M.; McCarthy, A. R.; Campbell, J.; Slawin, A. M. Z.; Lane, D. P.; Lain, S.; Westwood, N. J. J. Med. Chem., 2009, 52 (9), 2673–2682.
- a) Brooks, B.R.; Bruccoleri, R.E.; Olafson, B.D.; States, D.J.; Swaminathan, S.; Karplus, M. J. Comp. Chem. 1983, 4, 187–217; b) Finnin, M. S.; Donigian, J. R.; Pavletich, N. P. Nat. Struct. Biol. 2001, 8 (7), 621-625; Avalos, J. L.; Celic, I.; Muhammad, S.; Cosgrove, M. S.; Boeke, J. D.; Wolberger, C. Mol. Cell 2002, 10(3), 523-535.
- Rao, S. N.; Head, M. S.; Kulkarny, A.; LaLonde, J. M. J. Chem. Inf. Model. 2007, 47 (6), 2159– 2171.
- 4) Sali, A.; T. L. J. Mol. Biol. 1993, 234, 779-815.
- 5) Case, D. A.; Darden, T. A.; Cheatham, T. E.; Simmerling, C. L. III. AMBER 9, University of California, **2006**, San Francisco.
- Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M., Jr.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. J. Am. Chem. Soc. 1995, 117, 5179-5197.
- 7) Wang J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.;Case, D. A.J. Comput. Chem. 2004, 25, 1157-1174.
- 8) Wang J.; Wang, W.; Kollman, P. A.; Case, D. A. J. Mol. Graph. Model2006, 25, 247-260.
- Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem, Phys. 1983, 79, 926-935.
- 10) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 10089-10092.
- 11) van Gunsteren, W. F.; Berendsen, H. J. C. Mol. Phys. 1977, 34, 1311-1327.
- 12) Bashford, D.; Case, D. A. Annu. Rev. Phys. Chem. 2000, 51, 129-152.
- 13) Tsui, V.; Case, D. A. J. Am. Chem. Soc. 2000, 122, 2489-2498.
- 14) Jayaram, B.; Sprous, D.; Beveridge, D. L. J. Phys. Chem. B1998, 102, 9571-9576.
- 15) Connolly, M. L. Science 1983, 221, 709-713.
- 16) Sanner, M. F.; Olson, A. J.; Spehner, J. C. Biopolymers1996, 38, 305-320.
- 17) Case, D. A. Curr. Opin. Struct. Biol. 1994, 4, 285-290.
- 18) Barger, G.; Starling, W. W. J. Chem. Soc. Trans. 1911, 99, 2030-2033.
- 19) Bergeron, R. J.; Wiegand, J.; Wollenweber, M.; McManis, J. S.; Algee, S. E.; Ratliff Thompson, K. J. Med. Chem. 1996, 39, 1575-1581.
- 20) Jacobson, S.; Grosh, B. J. Chem. Soc. Trans. 1915, 107, 959-966.
- 21) Coxon, G. D.; Furman, B. L.; Harvey, A. L.; McTavish, J.; Mooney, M. H.; Arastoo, M.; Kennedy, A. R.; Tettey, J. M.; Waigh, R. D. J. Med. Chem. 2009, 52, 3457-3463.
- 22) Lüchr, S.; Vilches-Herrera, M.; Fierro, A.; Ramsay, R. R.; Edmondson, D., E.; Reyes-Parada, M.; Cassels, K.; Iturriaga-Vásquez, P. *Bioorg. Med. Chem. Lett.*2010, 18, 1388-1395.
- 23) Gibbons, L. K.; Peake, C., J.; Harnish, W. N. USXXAM US 3983246 19760928.1976.
- 24) Weissflog, V. W.; Schubert, H. Journal f. Prakt. Chem. 1976, 318, 785-794.
- 25) Profft, E.; Runge, F.; Jumar, A. F. J. f. Prakt. Chem. 1954, 1, 57-86.
- 26) Surrey, A. R.; Lesher, J. Y. J. Am. Chem. Soc. 1956, 78, 2573-2576.