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Table S1. Overview of statistical methods used in 2D-QSAR 

Method Description 

Stepwise selection Descriptors are added one by one (forward selection) or deleted (backward selection) to 
find significant descriptors yielding the best statistics. 

Replacement method 
Initially, a subset of descriptors are selected randomly and iteratively one of them is 
replaced with one from the other set. Heuristics avoiding full searching increases 
efficiency but there is possibility of being trapped in local minima. 

Genetic algorithm (GA) 

In GA a model is represented as a chromosome and descriptors are genes on the 
chromosome. During reproduction, chromosomes undergo mutations and recombination 
generating diverse descendant chromosomes. Descriptors in high scoring chromosomes 
or frequently appearing descriptors in the entire population are deemed important. 

Multiple linear regression 
(MLR) 

Coefficients (an) are determined in the equation, “Activity = 
a1Descriptor1+a2Descriptor2+…+an” by least square fitting often using the Levenberg-
Marquardt algorithm1. 

Principal component 
regression (PCR) 

Eigenvectors of the covariance matrix of descriptors are used as independent variables in 
the regression. These orthogonal vectors (principal components) describe the direction 
of maximum variance in descriptor space, resulting in grouping a large number of 
descriptors in the final models.  

Partial least square regression 
(PLR) 

A process to reduce the number of variables by finding principal components (or latent 
variable) as in PCR, PLS includes correlation with dependent variables. Therefore, the 
maximum variances reflect both descriptor space and activity space. 

Linear discriminant analysis 
(LDA) 

LDA performs linear transformation of descriptors to better discriminate the categorical 
data by minimizing within-class variance and maximizing between-class variance. 
Solution is found based on Bayes theorem. 

Support vector machine 
(SVM) 

SVM trains a model to find a hyperplane of descriptors by separating data into subsets 
with maximum margins. Vectors on the margins are called support vectors and they are 
components of a kernel function, which is used in mapping data into a new dimension. It 
was expanded for non-linear classification and regression by mapping input vectors into 
higher dimensions. 

Decision tree (DC)  Training set data are recursively partitioned and pruned based on the best splitting 
descriptors from the top node to the end nodes in the binary tree.  
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Random forest (RF) As an ensemble of DC, each tree votes for the activities. Individual trees are grown by 
using a randomly selected subset of full descriptor set.  

K-nearest neighbor2 Data is divided into training and test set. Each molecule in the test set is classified 
according to the majority among k-nearest neighbors and decision surface is learned. 

Artificial neural network (feed 
forward network) 3, 4 

Descriptors in the input nodes are connected with nodes in hidden layers and weights on 
the nodes are trained to produce activity in an output node. 

Self organizing map (SOM, 
Kohonen map)  

In contrast to a feed forward network, a self-organizing map is subjected to unsupervised 
learning and input nodes are projected to nodes in a rectangular forms (feature map) 
with weights. Training is done by minimizing distances between nodes and the result of 
training is clusters or organized patterns in the feature map. 

Adaptive fuzzy partition 
algorithm 

It aims to find the best descriptors by splitting data sets by fuzzy rules. Fuzzy logic is 
originated from human reasoning making a correct judgment based on uncertain 
information. Models are trained by a set of adaptive IF-THEN rules and fuzzy scoring 
function. 

Gene expression programming 
(GEP)  

While being similar to GA, uniqueness of GEP is using expression of chromosome and 
fitness function to evaluate the phenotype. From a chromosome, different genes 
(descriptors) may be expressed according to reading frames resulting diversification of 
child chromosomes. 

Gaussian processes (GP) 
While other nonlinear regressions have fixed function and varying parameters (weights) 
during model development, GP uses varying Gaussian functional forms that are trained 
by Bayesian inference. 

Project pursuit regression 
(PPR) 

To reduce the problem of increasing volume of higher dimensional space, without 
introducing higher dimensions, PPR projects input data into 1D space as SOM does. A 
series of transformations are trained to explain activities. 

Local lazy regression Local QSARs are generated in clusters of molecules and prediction of test compounds is 
done by searching nearest neighbors. 

 

Computational Methods 

MD simulations (Figure 1) were performed using the program CHARMM5, 6, with the CHARMM22/CMAP force 
field6, 7 and the TIP3P water model8.  Two MD simulations were done in the gas phase and in explicit solvent to 
observe the influence of the surrounding media on conformational sampling. For the gas phase simulation, Langevin 
dynamics9 were used with a friction coefficient of 5 ps-1 in the absence of water. Simulations were performed at 
300K with the equations of motion integrated using the Leap-Frog integrator10 every 1fs for a total of 10ns with 
coordinates saved every 0.5ps for analysis. Covalent bonds involving hydrogen atoms were constrained to their 
equilibrium bond length by the SHAKE algorithm11. In the explicit solvent MD simulation, Leu-Enkephalin was 
immersed in a 32 Å cubic water box and waters with the oxygen within 2.8 Å of the Leu-Enkephalin deleted 
resulting in 976 water molecules. Periodic boundary conditions9 were used in the solvent simulations and the 
nonbond interactions were truncated at 12 Å with smoothing of the Lennard-Jones interactions from 10 Å by a 
switching function12 and the nonbond pair list was generated out to 16 Å. A long-range correction13 was used to 
account for LJ interactions beyond the cutoff distance while long-range electrostatic interactions were calculated 
using the particle mesh Ewald method14.  The system was simulated in the NPT ensemble (300K, 1atm) using the 
Hoover thermostat and Langevin piston15-18 to control the pressure with a mass of 400 amu and collision frequency 
of 20 ps-1. The Hamiltonian replica exchange (HREMD)19, 20 simulation was performed using the REPDSTR module 
in CHARMM which enables replicas to read in different FF parameters. Perturbation of  the Hamiltonian was 
performed using  CMAP utility7 by modifying the (φ,ψ) potential energy surface. The default CHARMM22/CMAP 
was considered as the λ=0 state (CMAPλ=0) and as the fully perturbed state (CMAP λ=1) a “flat” (φ,ψ) energy surface 
was used (ie. the change in energy as a function of φ,ψ was zero). Perturbations of λ=0.14, 0.19, 0.27, 0.37, 0.52, 
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0.72 were used between CMAPλ=0 and CMAPλ=1 and exchanges were attempted every 0.5ps between adjacent 
replicas. HREMD simulations were carried out on the same solvated Leu-Enkephalin used for the standard MD 
simulation and the same dynamics settings were used. Conformations from the λ=0 state replica alone were 
subjected to analysis. 

For the conformational analysis of Leu-Enkephalin, the distance was measured between the aromatic ring in Tyr 
(pharmacophoric point A) and that in Phe (pharmacophoric point B). Angle ABN, where pharmacophoric point N is 
N terminal nitrogen, was calculated and it was combined with distance AB to produce the 2-D probability 
distribution. The distances and angles were obtained from all 20,000 conformations and the bin sizes for calculation 
of the probability densities were 0.1 Å and 1°. 
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