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Table S1. Overview of statistical methods used in 2D-QSAR

Method

Description

Stepwise selection

Replacement method

Genetic algorithm (GA)

Multiple linear regression
(MLR)

Principal component
regression (PCR)

Partial least square regression
(PLR)

Linear discriminant analysis
(LDA)

Support vector machine
(SVM)

Decision tree (DC)

Descriptors are added one by one (forward selection) or deleted (backward selection) to
find significant descriptors yielding the best statistics.

Initially, a subset of descriptors are selected randomly and iteratively one of them is
replaced with one from the other set. Heuristics avoiding full searching increases
efficiency but there is possibility of being trapped in local minima.

In GA a model is represented as a chromosome and descriptors are genes on the
chromosome. During reproduction, chromosomes undergo mutations and recombination
generating diverse descendant chromosomes. Descriptors in high scoring chromosomes
or frequently appearing descriptors in the entire population are deemed important.

Coefficients (a,) are determined in the equation, “Activity =
a;Descriptor;+a,Descriptor,+...+a,” by least square fitting often using the Levenberg-
Marquardt algorithm'.

Eigenvectors of the covariance matrix of descriptors are used as independent variables in
the regression. These orthogonal vectors (principal components) describe the direction
of maximum variance in descriptor space, resulting in grouping a large number of
descriptors in the final models.

A process to reduce the number of variables by finding principal components (or latent
variable) as in PCR, PLS includes correlation with dependent variables. Therefore, the
maximum variances reflect both descriptor space and activity space.

LDA performs linear transformation of descriptors to better discriminate the categorical
data by minimizing within-class variance and maximizing between-class variance.
Solution is found based on Bayes theorem.

SVM trains a model to find a hyperplane of descriptors by separating data into subsets
with maximum margins. Vectors on the margins are called support vectors and they are
components of a kernel function, which is used in mapping data into a new dimension. It
was expanded for non-linear classification and regression by mapping input vectors into
higher dimensions.

Training set data are recursively partitioned and pruned based on the best splitting
descriptors from the top node to the end nodes in the binary tree.
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As an ensemble of DC, each tree votes for the activities. Individual trees are grown by

Random forest (RF) using a randomly selected subset of full descriptor set.

Data is divided into training and test set. Each molecule in the test set is classified

K-nearest neighbor” . . . - .
£ according to the majority among k-nearest neighbors and decision surface is learned.

Artificial neural network (feed | Descriptors in the input nodes are connected with nodes in hidden layers and weights on
forward network) *>* the nodes are trained to produce activity in an output node.

In contrast to a feed forward network, a self-organizing map is subjected to unsupervised
Self organizing map (SOM, learning and input nodes are projected to nodes in a rectangular forms (feature map)
Kohonen map) with weights. Training is done by minimizing distances between nodes and the result of
training is clusters or organized patterns in the feature map.

It aims to find the best descriptors by splitting data sets by fuzzy rules. Fuzzy logic is

Adaptive fuzzy partition originated from human reasoning making a correct judgment based on uncertain
algorithm information. Models are trained by a set of adaptive IF-THEN rules and fuzzy scoring
function.

While being similar to GA, uniqueness of GEP is using expression of chromosome and
Gene expression programming | fitness function to evaluate the phenotype. From a chromosome, different genes

(GEP) (descriptors) may be expressed according to reading frames resulting diversification of
child chromosomes.

While other nonlinear regressions have fixed function and varying parameters (weights)
Gaussian processes (GP) during model development, GP uses varying Gaussian functional forms that are trained
by Bayesian inference.

To reduce the problem of increasing volume of higher dimensional space, without
introducing higher dimensions, PPR projects input data into 1D space as SOM does. A
series of transformations are trained to explain activities.

Project pursuit regression
(PPR)

Local QSARs are generated in clusters of molecules and prediction of test compounds is

Local lazy regression done by searching nearest neighbors.

Computational Methods

MD simulations (Figure 1) were performed using the program CHARMM™ ¢, with the CHARMM22/CMAP force
field®” and the TIP3P water model®. Two MD simulations were done in the gas phase and in explicit solvent to
observe the influence of the surrounding media on conformational sampling. For the gas phase simulation, Langevin
dynamics’ were used with a friction coefficient of 5 ps”' in the absence of water. Simulations were performed at
300K with the equations of motion integrated using the Leap-Frog integrator'’ every 1fs for a total of 10ns with
coordinates saved every 0.5ps for analysis. Covalent bonds involving hydrogen atoms were constrained to their
equilibrium bond length by the SHAKE algorithm''. In the explicit solvent MD simulation, Leu-Enkephalin was
immersed in a 32 A cubic water box and waters with the oxygen within 2.8 A of the Leu-Enkephalin deleted
resulting in 976 water molecules. Periodic boundary conditions’ were used in the solvent simulations and the
nonbond interactions were truncated at 12 A with smoothing of the Lennard-Jones interactions from 10 A by a
switching function'? and the nonbond pair list was generated out to 16 A. A long-range correction'” was used to
account for LJ interactions beyond the cutoff distance while long-range electrostatic interactions were calculated
using the particle mesh Ewald method'®. The system was simulated in the NPT ensemble (300K, latm) using the
Hoover thermostat and Langevin piston'>"® to control the pressure with a mass of 400 amu and collision frequency
of 20 ps™'. The Hamiltonian replica exchange (HREMD)'”*” simulation was performed using the REPDSTR module
in CHARMM which enables replicas to read in different FF parameters. Perturbation of the Hamiltonian was
performed using CMAP utility’ by modifying the (¢,y) potential energy surface. The default CHARMM22/CMAP
was considered as the A=0 state (CMAP;~¢) and as the fully perturbed state (CMAP;-) a “flat” (¢,y) energy surface
was used (ie. the change in energy as a function of ¢,y was zero). Perturbations of A=0.14, 0.19, 0.27, 0.37, 0.52,
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0.72 were used between CMAP; -, and CMAP;_; and exchanges were attempted every 0.5ps between adjacent
replicas. HREMD simulations were carried out on the same solvated Leu-Enkephalin used for the standard MD
simulation and the same dynamics settings were used. Conformations from the A=0 state replica alone were
subjected to analysis.

For the conformational analysis of Leu-Enkephalin, the distance was measured between the aromatic ring in Tyr
(pharmacophoric point A) and that in Phe (pharmacophoric point B). Angle ABN, where pharmacophoric point N is
N terminal nitrogen, was calculated and it was combined with distance AB to produce the 2-D probability
distribution. The distances and angles were obtained from all 20,000 conformations and the bin sizes for calculation
of the probability densities were 0.1 A and 1°.
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