Supplementary Information

Binding region and interaction properties of sulfoquinovosylacylglycerol (SQAG) with human vascular endothelial growth factor 165 revealed by biosensor based assays

Yoichi Takakusagi^{*a,b,c,#*}, Kaori Takakusagi^{*a,b,c*}, Noriko Ida^{*c*}, Mihoko Takami^{*c*}, Yuki Matsumoto^{*c*}, Tomoe Kusayanagi^{*c*}, Tadashi Nakabayashi^{*c*}, Satoko Aoki^{*c*}, Hiroshi Murata^{*c*}, Keisuke Ohta^{*c*}, Fumio Sugawara^{*a,b,c*}*, Kengo Sakaguchi^{*a,b,c*}*

^{*a*} Division of Social Collaboration, Research Institute for Science and Technology (RIST)

^b Division of Chemical Biology, Research Institute for Science and Technology (RIST)

^c Department of Applied Biological Science, Faculty of Science and Technology

Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

[#] Current affiliation: National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda,

MD, USA

*E-mail: sugawara@rs.noda.tus.ac.jp kengo@rs.noda.tus.ac.jp

Experimental procedures	S3-S8
Growth factors and receptors used in this study (Table S1)	S9
Specific primers for construction of T7 phage and recombinant	
hVEGF ₁₆₅ segment (Table S2)	S10
Raw DNA sequence data of del 1-4 phage (Table S3)	S11
Raw DNA sequence data of del 1-4 protein (Table S4)	S12

References	S18
receptors (Figure S1)	S15-17
SPR sensorgram between β SQDG and growth factors and cognate	
phage-displayed HBD (Table S6)	S14
Phage titer data from the binding assay between NRP1 and T7	
segment of hVEGF ₁₆₅ (Table S5)	S13
QCM based affinity selection of the T7 phage-displayed defined	

Experimental Procedures

Preparation of SQAG

 β SQDG (1) and six different analogues 2-7 (Fig. 1) were synthesized as previously described¹ and subjected to structure-binding analysis. All the compounds were >95% pure as judged by analytical HPLC and ¹H NMR analyses. ¹

Proteins and reagents

Growth factors and receptors, which are shown in **Table S1**, were commercially obtained. T7select[®] system and expression vector were purchased from Novagen (Madison, HI).

Instruments

A 27-MHz QCM device, AffinixQ and ceramic sensor chip were purchased from Initium Inc. (Tokyo, Japan). PCR was performed using a PTC-200 (Peltier Thermal Cycler) (Bio-Rad, Hercules, CA). Sequencing analysis was carried out using an ABI PRISM 3100 Genetic Analyzer (Applied Biosystems, Foster City, CA). Centrifugation was performed using a MX-201 centrifuge (TOMY Industry, Tokyo, Japan). SPR analysis was carried out using Biacore[®] 3000 with a sensor chip CM5 (GE Healthcare, Piscataway, NJ).

Construction of T7 phage library displaying a fragment of hVEGF₁₆₅

The hVEGF₁₆₅-coding gene was partitioned into each domain, as shown in **Fig. 3**, and amplified by the polymerase chain reaction (PCR) using the primers shown in **Table S2**. The primers included recognition sites for *Eco*RI and *Hind*III to help facilitate the subsequent cloning steps. Each PCR product was subcloned into TA vector (Promega, Madison, WI) and the sequences were then

determined to ensure no mistakes had been introduced during amplification. The insert was double-digested with *Eco*RI and *Hind*III, and then inserted into the T7Select10-3b vector (Novagen), followed by *in vitro* packaging. The T7 phage (del 1-4) was amplified by host *E. coli* (BLT5615) to 1.0×10^9 pfu ml⁻¹, respectively. These solutions were mixed together in a 1:1 ratio and used as a T7 phage library.

Procedure for the T7 phage display selection using a cuvette type QCM device

A 15 µl aliquot of β SQDG (1) (1 mM in DMSO) was dropped onto the gold electrode of the ceramic sensor chip that was immersed into bulk water and left for 5 min at room temperature (mean of immobilization amount: 1800 Hz (61.8 *p*mol). The sensor chip was setup for the QCM device with the cuvette containing 8 ml of buffer (10 mM Tris–HCl, pH 8.0, 200 mM NaCl), which was constantly stirred at 1000 rpm. The QCM sensor was then allowed to fully stabilize. An aliquot of 8 µl of the T7 phage library (1.0×10^9 pfu ml⁻¹) was then injected into the cuvette (final 1.0×10^6 pfu ml⁻¹). Frequency changes, caused by binding to the β SQDG immobilized on the gold electrode surface were then monitored for 10 min. For the recovery of bound phages, 20 µl of host *E. coli* culture was dropped onto the gold electrode and then incubated at 37 °C for 30 min. To the resulting solution was then added another 200 µl of LB medium. An aliquot of phage was then extracted from this solution and subjected to PCR analysis followed by DNA sequencing.

DNA sequencing

DNA sequencing was performed as described previously.²

Construction of bacterial expression plasmids and expression of recombinant proteins

As described above, the hVEGF₁₆₅ coding gene was partitioned into four fragments (del 1-4 Fig. 2).

Each fragment was amplified by PCR using the primers shown in **Table S2**. The primers contained *NdeI* and *XhoI* reognition sites that were used in further cloning experiments. PCR products were double-digested with *NdeI* and *XhoI* and then inserted into the expression vector pET28a(+) (Novagen). For the expression of protein, *Escherichia coli* BL21 (DE3) (Novagen) was used.

Single colonies were incubated in 100 ml LB medium containing 1% glucose and 50 μ g ml⁻¹ of kanamycin, and cultured overnight at 37 °C. The cells were further cultured in 1000 ml of LB medium containing 1% glucose and 50 μ g ml⁻¹ of kanamycin for 3 h at 30 °C. After adding isopropyl- β -D-thiogalactoside (IPTG) at a final concentration of 1 mM, the cells were incubated for 3 h at 30 °C to induce heterologous gene expression. The cultured cells were harvested by centrifugation at 5000 g for 15 min at 4 °C.

Procedure of recombinant hVEGF₁₆₅ polypeptide

Cultured cells expressing each fragment were resuspended in binding buffer (20 mM phosphate buffer, pH 7.4 containing 500 mM NaCl, 10 mM imidazole, 5 mM 2-mercaptoethanol, 0.1 mM leupeptin, 0.1 mM pepstatin and 1 mM PMSF). Following sonication and centrifugation, the supernatant was purified by Ni²⁺ chelation affinity chromatography. The recombinant protein obtained from this procedure was used in the kinetic analysis involving a surface plasmon resonance (SPR) biosensor.

SDS-PAGE, tricine-SDS-PAGE and Western blot analysis

The SDS-PAGE or tricine-SDS-PAGE (for recombinant del 4 polypeptide) analyses were performed using 10% or 15% SDS polyacrylamide gels with CBB staining. For Western blot analysis, purified proteins were first separated on each polyacrylamide gel and then transferred to PVDF membranes. The membranes were incubated with a polyhistidine (His×6) mouse monoclonal

antibody (SIGMA-ALDRICH). Anti-mouse IgG conjugated with alkaline phosphatase (AP) (SIGMA-ALDRICH) was used as the secondary antibody. Antigen and antibody binding was detected using BCIP/NBT solution.

SPR analysis

An analysis of binding between SQAGs and protein was performed using an SPR biosensor (Biacore-3000, GE healthcare). Protein was diluted 1:9 with 10 mM sodium acetate buffer at pH 4 or 5 and immobilized by an amine coupling reaction on a sensor chip CM5 (Biacore AB). The chip surface was activated by injecting a solution containing 200 mM *N*-ethyl-*N*-dimethylaminopropyl carbodiimide (EDC) and 50 mM *N*-hydroxysuccinimide (NHS) at a flow rate of 10 μ l min⁻¹ for 14 min. Protein was then injected and the coupling to the sensor surface was monitored. The surface was then blocked by injecting 1 M ethanolamine at pH 8.5 for 14 min. The amount of immobilized protein is given in **Table S1**. Various concentrations of analyte (**1**, **2**, **6**, **7**: 0, 0.125, 0.25, 0.5, 1 and 2 μ M, **3-5**: 0, 1.25, 2.5, 5, 10 and 20 μ M) in HBS-EP (10 mM HEPES, pH 7.4, 150 mM NaCl, 3 mM EDTA, 0.005% Surfactant P20)–8% DMSO were perfused at a flow rate of 20 μ l min⁻¹ at 25 °C. At least two replicate experiments were performed for each protein. Kinetic parameters were obtained by global fitting of the sensorgrams to a 1:1 drifted baseline model using BIAevaluation 3.2 software (Biacore AB).

Binding assay between T7 phage-displayed HBD and NRP1 using a cuvette type QCM device

A 15 μ l aliquot of NRP1 (100 μ g ml⁻¹) was dropped onto the gold electrode of the ceramic sensor chip that was immersed into bulk water and left for 30 min at room temperature (mean of immobilization amount: 600 Hz (200 *p*mol). The sensor chip was setup for the QCM device with the cuvette containing 8 ml of buffer (10 mM Tris–HCl, pH 8.0, 200 mM NaCl), which was constantly stirred at 1000 rpm. The QCM sensor was then allowed to fully stabilize. An aliquot of 8 μ l of the T7 phage that displays HBD (1.0×10⁹ pfu ml⁻¹) was then injected into the cuvette (final 1.0×10⁶ pfu ml⁻¹). Frequency changes, caused by binding to the NRP1 immobilized on the gold electrode surface were then monitored for 10 min. The following process was carried out according to the procedure for the T7 phage display selection as described above.

Description of the kinetics

Saturation binding kinetics between SQAG and protein immobilized on a sensor chip CM5 can be described as i) Scatchard-plot or ii) Hill-plot represented by following equations:

- i) $R_{eq} \cdot [SQAG]^{-1} = R_{max} \cdot K_D R_{eq} \cdot (K_D)^{-1}$
- ii) $\log [R_{eq} \cdot (R_{max} R_{eq})^{-1}] = n \log [SQAG] + \log (K_D)^{-1}$

where [SQAG] is the concentration of SQAG; R_{eq} is the response (RU) on equilibrium between SQAG and immobilized VEGF on a sensor chip CM5, which was obtained from curve fitting; R_{max} is the maximum response (RU); K_D is the dissociation constant between SQAG and immobilized protein; *n* is the Hill coefficient.³

Binding kinetic parameters can be written as the time-dependence of the response increase. The binding between SQAG and VEGF is as follows:

iii)
$$[SQAG] + [VEGF] \rightleftharpoons [SQAG \cdot VEGF]$$

 $k_a = [SQAG \cdot VEGF] \cdot \{[SQAG] \cdot [VEGF]\}^{-1}, \quad k_d = \{[SQAG] \cdot [VEGF]\} \cdot [SQAG \cdot VEGF]^{-1},$
 $K_D = k_d \cdot (k_a)^{-1}$

iv)
$$[SQAG \cdot VEGF]_t = [SQAG \cdot VEGF]_{\infty} \cdot \{1 - exp(-t \cdot \tau^{-1})\}$$

v)
$$\tau^{-1} = k_a \cdot [SQAG] + k_d$$

where [VEGF] is the concentration of VEGF; [SQAG \cdot VEGF] is the concentration of complex of SQAG and VEGF; k_a is association rate constant between SQAG and VEGF; k_d is dissociation rate constant; τ is relaxation time, which can be obtained from non-linear curve fitting.³

Table S1	Growth factors and receptors used in this study.									
Protein		MW (kDa)	Amino acid	Immobilized	R _{max}					
(human)				amount (RU)	$(\mathbf{RU})^{a}$					
VEGF ₁₆₅	R&D Systems	19.1	A1-R165	9916	453					
VEGF ₁₂₁	R&D Systems	14	A1-R121	3836	239					
del 1		12.7	A1-R110	4847	333					
del 2		6.5	A111-R165	2844	382					
del 3		3.7	A111-T142	860	203					
del 4		2.8	C137-R165	2219	692					
VEGFR1	R&D Systems	60.7	S27-I328	7000	101					
VEGFR2	Acris antibodies	116	A20-E764	13600	102					
NRP1	R&D Systems	90	M1-K644	9680	94					
TGFβ2	Peprotech	25	A1-S112	4251	148					
TGFβ RII	R&D Systems	18	M1-D159	10359	503					
IGF-I	Peprotech	7.6	G49-A118	656	75					
IGF-I R	R&D Systems	102.9	E31-N932	4724	40					
FGF1	Peprotech	15.8	M1-D141	3040	168					
FGF2	Peprotech	17.2	A1-S154	4116	209					
FGF R2a	R&D Systems	66	R22-E378	6373	84					
Ang-1	Acris antibodies	66	N21-F496	2942	39					
Tie-2	R&D Systems	100	A23-K745	11267	98					
$EphB2^{b}$	R&D Systems	85.3	V27-K548	7474	77					
EphB4	R&D Systems	57.9	L16-A539	2615	39					
EGF	Peprotech	6.2	N1-R53	596	84					
EGFR	R&D Systems	68.6	L25-S645	14622	186					
PDGF-BB	Peprotech	12	S1-T110	3857	281					
PDGFRB	Abnova Corp.	36.7 ^c	L33-E133	5017	119					
BMP-2	Peprotech	26	M1-R115	4084	137					
BMP RII	R&D Systems	41.5	A26-I151	7245	152					
sDLL-4	Peprotech	54	S1-P498	3781	61					
Jagged-1	R&D Systems	180	S32-S1046	3187	15					
Notch-1	R&D Systems	80.1	A19-Q526	3885	42					
DNA polyn	herase λ (Cont.)	14.3	M1-R95	1614	100					

Table S1Growth factors and receptors used in this study.

^{*a*}Calculated maximum response when 100% bound by β SQDG with 1:1 stoichiometry. R_{max} = (Immobilized amount of protein (RU)) / (MW of protein) × (MW of β SQDG). ^{*b*}The mouse PDGFRB was used. ^{*c*}This MW includes fusion GST tag. RU: resonance unit. 1RU = 1 pg mm⁻².

	Name		Nt	Sequence
Phage	del 1	up	28	GAATTCTGCACCCATGGCAGAAGGAGGA
	del 1	down	29	AAGCTTTCATCTATCTTTCTTTGGTCTGC
	del 2, 3	up	27	GAATTCTGCAAGACAAGAAAATCCCTG
	del 2, 4	down	25	AAGCTTTCACCGCCTCGGCTTGTCA
	del 3	down	29	AAGCTTTCATGTGTTTTTGCAGGAACATT
	del 4	up	27	GAATTCTTCCTGCAAAAACACAGACTC
Protein	del 1	up	29	G <u>GAATTCCATATG</u> GCACCCATGGCAGAAG
	del 1	down	32	GGC <u>CTCGAG</u> TCATCTATCCTTCTTTGGTCTGC
	del 2, 3	up	33	G <u>GAATTCCATATG</u> GCAAGACAAGAAAATCCCTG
	del 2, 4	down	26	CCG <u>CTCGAG</u> TCACCGCCTCGGCTTGT
	del 3	down	29	CCG <u>CTCGAG</u> TCATGTGTTTTTGCAGGAAC
	del 4	up	29	CC <u>CATATG</u> TCCTGCAAAAACACAGACTCG

Table S2Specific primers for construction of T7 phage and recombinant hVEGF165 segment.

* Underlined nucleotide sequences represent the following recognition sites of restriction enzyme; GAATTC: *Eco*RI, AAGCTT : *Hind*III, CATATG : *Nde*I, CTCGAG : *Xho*I.

	Itu		i seque	nee uu		тттр	iuge.					
del		Sequence										
1	ATG	CTC	GGG	GAT	CC <u>G</u>	AAT	TCT	GCA	CCC	ATG	GCA	GAA
	GGA	GGA	GGG	CAG	AAT	CAT	CAC	GAA	GTG	GTG	AAG	TTC
	ATG	GAT	GTC	TAT	CAG	CGC	AGC	TAC	TGC	CAT	CCA	ATC
	GAG	ACC	CTG	GTG	GAC	ATC	TTC	CAG	GAG	TAC	CCT	GAT
	GAG	ATC	GAG	TAC	ATC	TTC	AAG	CCA	TCC	TGT	GTG	CCC
	CTG	ATG	CGA	TGC	GGG	GGC	TGC	TGC	AAT	GAC	GAG	GGC
	CTG	GAG	TGT	GTG	ccc	ACT	GAG	GAG	TCC	AAC	ATC	ACC
	ATG	CAG	ATT	ATG	CGG	ATC	AAA	ССТ	CAC	CAA	GGC	CAG
	CAC	ATA	GGA	GAG	ATG	AGC	TTC	СТА	CAG	CAC	AAC	AAA
	TGT	GAA	TGC	AGA	CCA	AAG	AAA	GAT	AGA	TGA	AAG	CTT
	GCG	GCC	GCA	CTC	GAG	TAA						
2	ATG	СТС	GGG	GAT	CCG	AAT	TCT	GCA	AGA	CAA	GAA	AAT
	ccc	TGT	GGG	ССТ	TGC	TCA	GAG	CGG	AGA	AAG	CAT	TTG
	TTT	GTA	CAA	GAT	CCG	CAG	ACG	TGT	AAA	TGT	TCC	TGC
	AAA	AAC	ACA	GAC	TCG	CGT	TGC	AAG	GCG	AGG	CAG	CTT
	GAG	TTA	AAC	GAA	CGT	ACT	TGC	AGA	TGT	GAC	AAG	CCG
	AGG	CGG	TGA	AAG	CTT	GCG	GCC	GCA	СТС	GAG	TAA	
3	ATG	CTC	GGG	GAT	CCG	AAT	TCT	GCA	AGA	CAA	GAA	AAT
	CCC	TGT	GGG	CCT	TGC	TCA	GAG	CGG	AGA	AAG	CAT	TTG
	TTT	GTA	CAA	GAT	CCG	CAG	ACG	TGT	AAA	TGT	TCC	TGC
	AAA	AAC	ACA	TGA	AAG	CTT	GCG	GCC	GCA	CTC	GAG	TAA
4	ATG	CTC	GGG	GAT	CCG	AAT	тст	TCC	TGC	AAA	AAC	ACA
•	GAC	TCG	CGT	TGC			AGG		CTT		TTA	AAC
	GAA	CGT	ACT	TGC			GAC					
	AAG	CTT					GAG					

Table S3Raw DNA sequence data of del 1-4 phage.

* Underlined nucleotide sequences represent the following recognition sites of restriction enzyme; GAATTC: *Eco*RI, AAGCTT : *Hind*III. TGA: stop codon.

del	14	Sequence										
1	ATG	GGC	AGC	AGC	CAT	CAT	CAT	CAT	CAT	CAC	AGC	AGC
	GGC	CTG	GTG	CCG	CGC	GGC	AGC	CAT	ATG	GCA	ccc	ATG
	GCA	GAA	GGA	GGA	GGG	CAG	AAT	CAT	CAC	GAA	GTG	GTG
	AAG	TTC	ATG	GAT	GTC	TAT	CAG	CGC	AGC	TAC	TGC	CAT
	CCA	ATC	GAG	ACC	CTG	GTG	GAC	ATC	TTC	CAG	GAG	TAC
	ССТ	GAT	GAG	ATC	GAG	TAC	ATC	TTC	AAG	CCA	TCC	TGT
	GTG	ccc	CTG	ATG	CGA	TGC	GGG	GGC	TGC	TGC	AAT	GAC
	GAG	GGC	CTG	GAG	TGT	GTG	CCC	ACT	GAG	GAG	TCC	AAC
	ATC	ACC	ATG	CAG	ATT	ATG	CGG	ATC	AAA	ССТ	CAC	CAA
	GGC	CAG	CAC	ATA	GGA	GAG	ATG	AGC	TTC	СТА	CAG	CAC
	AAC	AAA	TGT	GAA	TGC	AGA	CCA	AAG	AAA	GAT	AGA	TGA
	CTC	GAG	CAC	CAC	CAC	CAC	CAC	CAC	TGA	GAT	CCG	GCT
	GCT	AA										
2	ATG	GGC	AGC	AGC	CAT	CAT	CAT	CAT	CAT	CAC	AGC	AGC
	GGC	CTG	GTG	CCG	CGC	GGC	AGC	CAT	ATG	GCA	AGA	CAA
	GAA	AAT	CCC	TGT	GGG	ССТ	TGC	TCA	GAG	CGG	AGA	AAG
	CAT	TTG	TTT	GTA	CAA	GAT	CCG	CAG	ACG	TGT	AAA	TGT
	TCC	TGC	AAA	AAC	ACA	GAC	TCG	CGT	TGC	AAG	GCG	AGG
	CAG	CTT	GAG	TTA	AAC	GAA	CGT	ACT	TGC	AGA	TGT	GAC
	AAG	CCG	AGG	CGG	TGA	CTC	GAG	CAC	CAC	CAC	CAC	CAC
	CAC	TGA	GAT	CCG	GCT	GCT	AA					
3	ATG	GGC	AGC	AGC	CAT	CAT	CAT	CAT	CAT	CAC	AGC	AGC
	GGC	CTG	GTG	CCG	CGC	GGC	AGC	CAT	ATG	GCA	AGA	CAA
	GAA	AAT	CCC	TGT	GGG	ССТ	TGC	TCA	GAG	CGG	AGA	AAG
	CAT	TTG	TTT	GTA	CAA	GAT	CCG	CAG	ACG	TGT	AAA	TGT
	TCC	TGC	AAA	AAC	ACA	TGA	CTC		CAC	CAC	CAC	CAC
	CAC	CAC	TGA	GAT	CCG	GCT	GCT				3.00	2.00
4	ATG	GGC	AGC	AGC	CAT	CAT	CAT	CAT	CAT	CAC	AGC	AGC
	GGC	CTG	GTG	CCG	CGC	GGC	AGC	CAT	ATG	TCC	TGC	AAA
	AAC	ACA	GAC	TCG	CGT	TGC	AAG	GCG	AGG	CAG	CTT	GAG
	TTA	AAC	GAA	CGT	ACT	TGC	AGA	TGT	GAC	AAG	CCG	AGG
	CGG	TGA	CTC	GAG	CAC	CAC	CAC	CAC	CAC	CAC	TGA	GAT
	CCG	GCT	GCT	AA								

Table S4Raw DNA sequence data of del 1-4 protein.

* **CATATG** : *Nde*I, **CTCGAG** : *Xho*I. **TGA**: stop codon.

Electronic Supplementary Material (ESI) for Medicinal Chemistry Communications This journal is C The Royal Society of Chemistry 2011

Table S5	QCM-based	affinity	selection	of	the	T7	phage-displayed	defined	segment	of
$hVEGF_{165}$.										

		Selection		
Clone	Parent library	1	2	3
1	del 1	del 2	del 4	del 4
2	del 4	del 4	del 3	del 4
3	del 3	del 3	del 4	del 4
4	del 3	del 1	del 3	del 4
5	del 3	del 4	del 4	del 4
6	del 4	del 4	del 4	del 4
7	del 4	del 3	del 4	del 4
8	del 3	del 1	del 3	del 4
9	del 2	del 2	del 2	del 4
10	del 3	del 3	del 2	del 4
11	del 1	del 4	del 2	del 4
12	del 1	del 3	del 2	del 4
13	del 2	del 3	del 2	del 4
14	del 4	del 4	del 4	del 4
15	del 3	del 3	del 3	del 4
16	del 4	del 2	del 2	del 4
17	del 4	del 4	del 1	del 4
18	del 4	del 2	del 1	del 4
19	del 3	del 4	del 4	del 4
20	del 3	del 4	del 2	del 4
21	del 1	del 4	del 3	del 4
22	del 3	del 2	del 4	del 4
23	del 4	del 4	del 3	del 4
24	del 4	del 3	del 2	del 2
del 1 (<i>n</i>)	4	2	2	0
del 1 (%)	16.7	8.3	8.3	0
(vs. parent library)	(1)	(0.5)	(0.5)	(0)
del 2 (<i>n</i>)	2	5	8	1
del 2 (%)	8.3	20.8	33.3	4.2
(vs. parent library)	(1)	(2.5)	(4.0)	(0.5)
del 3 (<i>n</i>)	9	7	6	0
del 3 (%)	37.5	29.2	25.0	0
(vs. parent library)	(1)	(0.78)	(0.67)	(0)
del 4 (<i>n</i>)	9	10	8	23
del 4 (%)	37.5	41.7	33.3	95.8
(vs. parent library)	(1)	(1.11)	(0.89)	(2.56)

S13

_	Rescued del 2 phage titer (pfu ml⁻¹)					
	Vehicle	1	4			
	(DMSO)	(1 μM βSQDG)	(10 µM aSQMG)			
-	42500	9300	270			
	76000	21900	3420			
	49500	10000	2765			
Means	56000	13733	2152			
% (vehicle vs. compound)	100	24.5	3.8			
S.D.	18.2	7.3	1.7			

Table S6	Phage titer data from	the binding assay between N	RP1 and T7 phage-displayed HBD.
----------	-----------------------	-----------------------------	---------------------------------

Figure S1 SPR sensorgram between β SQDG (1) and human growth factors and cognate receptors. Each protein was immobilized on sensor chip CM5 by an amine coupling reaction and various concentrations of 1 (0.125-2 µM) were injected. Association: 120 sec, dissociation: 120 sec. Response curves were generated by subtraction of the background signals generated simultaneously on the control flow cell (protein non-immobilized cell), the injection of vehicle, and bulk response by DMSO. (A) VEGFR1. (B) VEGFR2. (C) NRP1. (D) TGF β 2. (E) TGF β RII. (F) IGF-1. (G) IGF-1 R. (H) FGF1. (I) FGF2. (J) FGF R2 α . (K) Ang-1. (L) Tie-2. (M) EphB2. (N) EphB4. (O) EGF. (P) EGFR. (Q) PDGF-BB. (R) Mouse PDGFRB. (S) BMP-2. (T) BMP RII. (U) sDLL-4. (V) Jagged-1. (W) Notch-1. (X) DNA polymerase λ fragment as a control. RU: resonance unit. 1 RU = 1pg mm⁻².

References

- 1. S. Hanashima, Y. Mizushina, T. Yamazaki, K. Ohta, S. Takahashi, H. Sahara, K. Sakaguchi and F. Sugawara, *Bioorg. Med. Chem.*, 2001, **9**, 367-376.
- Y. Takakusagi, K. Takakusagi, K. Kuramochi, S. Kobayashi, F. Sugawara and K. Sakaguchi, Bioorg. Med. Chem., 2007, 15, 7590-7598.
- 3. K. Takakusagi, Y. Takakusagi, K. Ohta, S. Aoki, F. Sugawara and K. Sakaguchi, *Protein Eng. Des. Sel.*, 2010, **23**, 51-60.