Experimental section

Chemistry. Thin-layer chromatography (TLC) was performed on silica gel F254 plates (Merck). All compounds were detected using UV-light, KMnO₄ or ceric sulphate/ammonium ⁵ molybdate spraying reagents. Protected and free amino compounds were developed using ninhydrin. The 1,2,5thiadiazol-3-ol compounds were developed using a solution of FeCl₃ in diluted H₂SO₄. ¹H NMR and ¹³C NMR were recorded on a 300 MHz Varian Gemini spectrometer using

- ¹⁰ CDCl₃ or D₂O as solvent with CDCl₃ (δ 7.25/77.0) or dioxane (δ 3.75/67.2), respectively, as internal standards. Chemical shifts are given in ppm (δ) and coupling constants (*J*) are given in Hertz. Column chromatography (CC) was performed using Merck silica gel 60 (0.045–0.063 mm). All solvents and
- ¹⁵ reagents were obtained from Fluka or Aldrich and used as purchased. Analytical HPLC was performed using a XTerra® MS C18 3.5 μm column (150 x 4.6 mm) with 1 mM AcOH or 0.1 % aqueous TFA (25 °C, 270 nm) as the mobile phase. Preparative HPLC was performed similarly with a XTerra®
- $_{20}$ Prep MS C18 10 μm column (300 x 10 mm). HRMS was performed on a Jeol JMS-HX/HX110A MS instrument at the University of Copenhagen.

cis- & *trans-*2-(2'-Benzyloxyethyl)-1-(2''*-tert*-butoxycar-25 bonylvinyl)-cyclopropane-1*-tert*-butylcarboxylate (10 & 11)

Di-*tert*-butylgluconate (1.43g, 5.93 mmol) was added dropwise to a well-stirred suspension of sodium hydride 60% (589 mg, 14.72 mmol) in dry dimethoxyethane (25 mL) at 25

- $_{30}$ °C under nitrogen atmosphere (the suspension became pink). The cyclic sulfate **9** (1.7g, 6.58 mmol) was added slowly, and the solution was refluxed for 22 h. (be carefull upon addition, the reaction is exothermic in the beginning!).The reaction mixture was cooled to 25° C, and brine (20 mL) was added
- so followed by Et_2O (50 mL). After the two layers were separated, the aqueous solution was extracted with Et_2O (3 x 100 mL). The combined organic layers were dried over Na₂SO₄, and the solvent was removed *in vacou* to give a mixture of **10** and **11** as a yellow oil (cis-trans ratio 1:3 by
- ⁴⁰ NMR and GC-MS). The crude product was first filtrated through a pad of silica using ethyl acetate-petroleum ether 2:8 and then purified by flash chromatography (EtOAc:heptane 95:5) to give **10** and **11**.

45 *cis*-2-(2'-Benzyloxyethyl)-1-(2''*-tert*-butoxycarbonylvinyl)-cyclopropane-1*-tert*-butylcarboxylate (10)

(211 mg, 12%). ¹H NMR δ 1.31 (m, 2H, CH₂), 1.43 (s, 9H, *t*But), 1.47 (s, 9H, tBut), 1.60 (m, 1H, CH), 1.84 (dq, 2H, 50 CH₂, *J*=1.2Hz and 6.5Hz), 3.45 (t, 2H, CH₂, *J*=6.3Hz), 4.48 (d, 2H, OCH₂ *J*=2.4Hz), 5.48 (d, 1H, CH *J*=15.8Hz), 7.29 (m, 5H, Ph), 7.42 (d, 1H, CH, *J*=15.8Hz). ¹³C-NMR δ 23.35, 28.59, 28.68, 28.87, 31.68, 34.65, 69.80, 73.37, 80.59, 82.00, 118.28, 127.92, 127.96, 128.72, 138.67, 148.74, 166.43, 55 169.80.

Trans-2-(2'-Benzyloxyethyl)-1-(2''*-tert*-butoxycarbonyl-vinyl)-cyclopropane-1*-tert*-butylcarboxylate (11)

(587 mg, 35%) ¹H NMR δ 1.03 (dd, 1H, CH₂, *J*=4.6Hz and
⁶⁰ 7.1Hz), 1.25 (dd, 1H, CH₂, *J*=6.8Hz and 14.1Hz), 1.43 (s, 9H, *t*But), 1.47 (s, 9H, *t*But), 1.64 (m, 2H, CH₂), 1.83 ((m, 1H, CH), 3.47 (t, 2H, CH₂, *J*=6.5Hz), 4.49 (s, 2H, CH₂), 5.63 (d, 1H, CH *J*=15.8Hz), 7.24 (d, 1H, CH *J*=15.8Hz), 7.31 (m, 5H, Ph). ¹³C-NMR δ20.62, 28.54, 28.68, 30.53, 31.02, 70.06,
⁶⁵ 73.48, 80.70, 81.68, 123.37, 127.90, 128.73, 138.64, 142.89, 165.88, 171.99.

cis-2-(2'-Benzoyloxy-ethyl)-cyclopropane-1-carboxylic acid -1-*tert*-butylcarboxylate (12)

- Was prepared by the same procedure as above from **10** to give **12** (3.46 g, 55%) yield. ¹H NMR δ 1.44 (s, 9H, *t*But),) 1.83 (td, 1H, *J*=4.2Hz, *J*=9.5Hz) ppm 2.13 (m, 3H, CH₂, CH), 4.39 (m, 2H, CH₂), 7.50 (m, 3H, Ph) 8.05 (dd, 2H, *J*=7.1Hz 75 and 23.0Hz). ¹³C-NMR δ 24.53, 26.63, 28.310, 28.58, 30.96, 34.19, 64.25, 85.42, 128.70, 129.94, 133.39, 166.82, 169.34, 175.29. HRMS: m/z calcd for C₁₄H₁₃NO₆⁺: 278.0785 [M+, *t*Bu]; found: 278.0791.
- 80 *trans*-2-(2'-Benzoyloxy-ethyl)-cyclopropane-1- carboxylic acid- 1-tert-butyl carboxylate (13)

A mixture of carbon tetrachloride (17.5 mL), acetonitrile (17.5 mL) and water (26 mL) was added **11** (3.5g, 8.7 mmol) ⁸⁵ followed by sodiummetaperiodate (7.6g, 35.5 mmol). To this biphasic solution was added ruthenium trichloride monohydrate (77 mg, 0.34 mmol) and the mixture was stirred vigorously for 12 h at room temperature. A second amount of sodiummetaperiodate (3.7 g, 1.7 mmol) was added and the ⁹⁰ mixture was stirred for further 5 h to assure of a complete oxidation of the substrate. (Sometimes the presence of the benzylderivative was observed).

Next 30 ml of CH_2Cl_2 was added, and the phases were separated. The upper aqueous phase was extracted 3 times ⁹⁵ with CH_2Cl_2 . The combined organic extracts were dried (MgS04) and concentrated. The resulting residue was diluted with ether, filtered through a Celite pad, and concentrated. The crude product was purified by flashchromatography (EtOAc:Exane gradient still 60:40) to give compound **13** (1.2

¹⁰⁰ g, 41%) ¹H NMR δ 1.35 (s, 9H, *t*But), 1.51 (dd, 1H, *J*=4.2Hz, *J*=8.2Hz), 1.79 (dd, 1H, *J*=4.1Hz and 9.1Hz) 1.99 (m, 3H, CH₂, CH), 4.24 (m, 2H, CH₂), 7.35 (m, 3H, Ph), 7.84 (d, 1H, *J*=7.2Hz). ¹³C-NMR δ 24.71, 27.92, 28.56, 31.642, 33.75, 64.18, 85.74, 128.75, 129.93, 133.47, 166.74, 172.40, 173.24.
¹⁰⁵ HRMS: m/z calcd for C₁₄H₁₃NO₆⁺: 278.0785 [M+, *-t*Bu]; found: 278.0798.

cis-2-(2'-Benzoyloxy-ethyl)-1-[*N*-(*tert*-butoxycarbonyl)-amino]cyclopropyl-1-*tert*-butylcarboxylate (14)

cis-1-*tert*-Butoxycarbonylamino-2-(2'-hydroxy-ethyl)-⁵⁵ cyclopropyl-1-*tert*-butylcarboxylate (16)

Was prepared from 12 by the same procedure as above to ⁵ give **14** (880 mg 43%) yield. ¹H NMR δ 1.40 (s, 9H, *t*But), 1.42 (s, 9H, *t*But), 1.52 (m, 1H, CH), 1.75 (m, 2H, CH₂) 2.11 (m, 2H, CH₂), 4.43 (m, 2H, OCH₂) ppm 5.11 (bs, 1H, NH) 7.48 (m, 3H, Ph) 8.01 (m, 2H, Ph). ¹³C-NMR 22.59, 22.63, 23.23, 25.40, 25.44, 28.49, 28.82, 32.45, 65.01, 81.70, 128.77, ¹⁰ 129.88, 133.33, 156.60, 165.334, 166.86, 206.85. HRMS: m/z calcd for C₁₈H₂₃NO₆⁺⁺: 349.1520 [M+, -*t*Bu]; found: 349.1536.

trans-2-(2'-Benzoyloxy-ethyl)-1-[*N*-(*tert*-butoxycarbonyl)-15 amino]cyclopropyl-1-*tert*-butylcarboxylate (15)

Compound **13** (1.65 g, 4.94 mmol) was dissolved in THF (18 mL), and cooled to 0° C. Dry Et₃N (1.37 mL, 9.88 mmol) and dry ethylchloroformate (0.94 mL, 9.88 mmol) were added and ²⁰ the suspension stirred for 35 min. Next, an aqueous solution a = 0 + 0 = 14 + 20

- of NaN₃ (0.96 g, 14.82 mmol) in H_2O (3.6 mL) was added via syringe to the reaction flask. The reaction mixture was stirred vigorously for 40 min, after which time the ice bath was removed, and the mixture stirred an additional 10 min. The
- ²⁵ solution was transferred to a separatory funnel with H_2O and EtOAc. The resulting mixture was extracted with EtOAc (3 x 50 mL). The combined organic layers were dried over Na₂SO₄ and concentrated in an oven dry RBF (to an oil of approximately 2 mL). (Caution! Do not concentrate the
- ³⁰ solution to dryness, add toluene and evaporate again to be sure that all the ethyl acetate has been removed.) Toluene (30 mL) was added to the oil via syringe and the solution was heated under reflux at 90° C for 40 min to promote the double Curtius rearrangement (exothermic reaction!). Then *t*-butanol
- ³⁵ (7 mL, excess) added via syringe to the intermediate isocyanate. The reaction solution was then heated under reflux for 15 hours. After 15 hours, the solution was allowed to cool to 50 °C and the solvents were removed on a rotary evaporator. The resulting oil was dried under vacuum to give
- ⁴⁰ a brownish solid that was purified by flash chromatography (EtOAc:Exane gradient still 40:60) afforded **15** (0.830 g, 56%). ¹H NMR δ 1.61 (s, 9H, *t*But), 1.76 (m, 3H, CH₂, CH)
 2.22 (q, 2H, CH₂, *J*=6.5Hz) 4.54 (m, 2H, CH₂), 5.30 (bs, 1H, NH) 7.66 (m, 3H, Ph), ppm 8.21 (m, 2H, *J*=8.4Hz, Ph). ¹³C-
- ⁴⁵ NMR 23.23, 26.95, 28.57, 28.84, 29.84, 32.44, 64.85, 81.93, 128.69, 129.93, 133.26, 156.11, 156.15, 166.91, 170.86. HRMS: m/z calcd for C₁₈H₂₃NO₆⁺: 349.1520 [M+, -*t*Bu]; found: 349.1527.

To a solution of 14 (1g, 2.59 mmol) in dry methanol (23 mL) dry K₂CO₃ (716 mg, 5.18 mmol) was added. The suspension assumes strong yellow colour and was stired at room temperature for 1h. The suspension was diluted with EtOAc (25 mL) and water (7 mL). The two phase was separated and the water phase was extracted with EtOAc (3 x 25mL) and the organic phase dried on Na₂SO₄. The crude was purified by flash chromatography (EtOAc:Exane gradient still 40:60) siving **16** as a colorless oil (550 mg, 71%). ¹H NMR δ 1.28 (m, 2H, CH₂) 1.44 (s, 9H, *t*But), 1.46 (s, 9H, *t*But) 1.72 (m, 3H, CH₂, CH), 3.82 (m, 2H, CH₂) 4.49 (bs, 1H), 5.35 (bs, 1H). ¹³C-NMR 22.59, 25.99, 28.54, 28.84, 31.42, 39.14, 62.65, 80.05, 81.52, 156.79, 172.584. HRMS: m/z calcd for 70 C₁₁H₁₉NO₅⁺⁻: 245.1258 [M+, *-t*Bu]; found: 245.1264.

trans-1*-tert*-Butoxycarbonylamino-2-(2'-hydroxy-ethyl)cyclopropyl-1*-tert*-butylcarboxylate (17)

75 To a solution of 15 (800mg, 1.97mmol) in dry methanol (18 ml) dry K₂CO₃ (546 mg, 3.95mmol) was added. The suspension assumes strong yellow colour and was stirred at room temperature for 1h. The suspension was diluted with EtOAc (20 mL) and water (5 mL). The two phase was ⁸⁰ separated and the water phase was extracted with EtOAc (3 x 20 mL) and the organic phase dried on Na2SO4. The crude was purified by flash chromatography (EtOAc:Exane gradient still 40:60) giving 17 as a white solid (350 mg, 60%). 1 H NMR δ 1.30 (dd, 1H, J=4.6Hz and 9.4Hz), 1.51 (dd, 1H, 85 J=4.7Hz and 8.1Hz), 1.61 (s, 9H, tBut) 1.62 (s, 9H, tBut), 1.85 (m, 2H, CH2), 2.15 (m, 1H, CH) 3.85 (m, 1H, CH₂), 4.81 (bs, 1H,) 5.34 (bs, 1H). ¹³C-NMR 23.22, 28.57, 28.79, 30.60, 32.44, 38.63, 62.14, 80.77, 81.95, 157.44, 170.709. HRMS: m/z calcd for $C_{11}H_{19}NO_5^{+}$: 245.1258 [M+, -*t*Bu]; found: 90 245.1281.

cis-1-[*N*-(*tert*-Butoxycarbonyl)amino]-2-(carboxymethyl)cyclopropane-1-*tert*butylcarboxylate (18)

⁹⁵ The alcohol 16 (0.055 g, 0.182 mmol) was dissolved in 3.5 mL of CCl₄-CH₃CN-H₂O (2:2:3). Sodium periodate (117 mg, 0.549 mmol) was added, followed by RuCl₃·H₂O (1.5 mg). The reaction mixture was stirred for 2.5 h at 25 °C and then extracted with EtOAc (2 x 5 mL). The combined organic layers were passed through a pad of silica gel and purified on flash chromatography (EtOAc:heptane gradient). The clean franction were concentrated to yield 18 (33 mg, 57 % yield) as a yellow oil. ¹H NMR 1.59 (s, 9H, *t*But), 1.61 (s, 9H, *t*But), 1.58-1.25 (overlapping, 2H), 1.81-1.63 (m, 1H), 2.80 (br m,

2H), 5.44 (br s, 1H), 6.67 (br s, 1H). 13 C NMR 23.59, 28.48, 28.76, 30.21, 34.08, 39.15, 80.75, 82.14, 157.10, 157.12, 171.97, 176.91, 176.94. HRMS: m/z calcd for C₁₅H₂₆NO₆⁺⁺: 316.1755 [M⁺, +H⁺]; found 316.1762:

trans-1-[*N*-(*tert*-Butoxycarbonyl)amino]-2-(carboxybutyl)cyclopropane-1-carboxylate (19)

The alcohol **17** (0.055 g, 0.182 mmol) was dissolved in 3.5 mL of CCl₄-CH₃CN-H₂O (2:2:3). Sodium periodate (117 mg, 0.549 mmol) was added, followed by RuCl₃·H₂O (1.5 mg). The reaction mixture was stirred for 2.5 h at 25 °C and then extracted with EtOAc (2 x 5 mL). The combined organic layers were passed through a pad of silica gel and purified on ¹⁵ flash chromatography (EtOAc:Exane gradient still 100:00).

- The clean franction were concentrated to yield **19** (47 mg 82 %) as a white solid. ¹H NMR 1.59 (s, 9H, *t*But), 1.62 (s, 9H, *t*But), 1.51-1.82 (overlapping, 2H, CH₂), 1.86 (m, 1H, CH), 3.00 (ddd, 2H, CH₂, *J*=7.5Hz, 18.2Hz and 27.8Hz), 5.54 (br s,
- 20 1H), 6.44 (br s, 1H). ^{13}C NMR 22.64, 25.84, 28.42, 28.78, 33.53, 39.06, 81.48, 82.91, 157.51, 169.94, 175.04. HRMS: m/z calcd for $C_{15}H_{26}NO_6^{+}$: 316.1755 $[M^+,\ +H^+]$; found 316.1766: .

25 cis-1-Amino-2-carboxymethyl-cyclopropanecarboxylic acid (3)

To a solution of **18** (0.030 g, 0.09 mmol) in CH₂Cl₂ (2 mL) was added TFA (1 mL), and the solution was stirred for 3 h. ³⁰ The solution was evaporated, and the residue was evaporated from 1 M HCl twice to afford **3** as a white solid (9 mg, 65%). ¹H-NMR (D₂O) 1.07 (t, 1H, *J*=7.4Hz, CH₂), 1.59 (dd, 1H, *J*=6.7Hz and 10Hz, CH₂), 1.91 (m, 1H,CH), 2.38 (dd, 1H, *J*=7.8Hz and 17.6Hz, CH₂), 2.52 (dd, 1H, *J*=7.3 Hz, ³⁵ *J*=17.5Hz, CH₂). ¹³C NMR (D₂O) 18.74, 21.56, 32.11, 37.96, 172.54, 175.33. HRMS: m/z calcd for C₆H₁₀NO₄⁺⁺: 160.0604 [M+, +H⁺]; found: 160.0605.

trans-1-Amino-2-carboxymethyl-cyclopropanecarboxylic 40 acid (4)

To a solution of **19** (0.047 g, 0.15mmol) in CH_2Cl_2 (4 mL) was added TFA (2 mL), and the solution was stirred for 3 h. The solution was evaporated, and the residue was evaporated ⁴⁵ from 1 M HCl twice to afford **4** as a white solid (16 mg 75%). ¹H-NMR (D₂O) 1.62 (ddd, 2H, CH₂, *J*=6.9Hz, 11.7Hz,

and 15.3Hz), 1.99 (m, 1H, CH), 2.68 (dd, 1H, J=8.8Hz and 18.1Hz), 2.95 (dd, 1H, J=6.2Hz and 18.1Hz). ¹³C NMR (D₂O) 18.97, 22.66, 31.95, 37.87, 171.42, 176.21. HRMS: m/z calcd ⁵⁰ for C₆H₁₀NO₄⁺: 160.0604 [M+, +H⁺]; found: 160.0610.

ss butoxycarbonyl)amino]cyclopropane-1-tertbutylcarboxylate (20)

Triphenylphosphine (0.113 g, 0.431 mmol, 1.25 equiv) and 1,3-bis(tert-butoxycarbonyl)guanidine (0.123 g, 0.476 mmol,

⁶⁰ 1.38 equiv) were added to a solution of the hydroxyethyl derivative 16 (0.104 g, 0.345 mmol) in THF (5 mL) under N₂. This solution was cooled to 0 °C, diisopropil azodicarboxylate (0.08 mL, 0.431 mmol, 1.25 equiv) was slowly added over 30 min, and the reaction mixture was then stirred for 20 h at 25 °C under N₂. The reaction solution was concentrate and the product isoletad by flash chromatography (EtOAc:Exane gradient still 20:80) giving 20 as a clear oil (25 mg, 16 %). ¹³C NMR 27.86, 27.97, 28.57, 28.87, 30.21, 31.46, 39.18, 44.31, 79.21, 79.95, 81.42, 84.34, 155.24, 156.71, 160.71, 70 163.96, 172.32. HRMS: m/z calcd for C₂₁H₃₉N₄O₆⁺: 443.2864 [M+, -Boc, +H⁺]; found: 443.2896.

trans-2-[[(*tert*-Butoxycarbonyl)guanidinyl]-ethyl]-1-[*N*-(*tert*-butoxycarbonyl)amino]cyclopropane-1-*tert*-75 butylcarboxylate (21)

Triphenylphosphine (0.66 g, 0.251 mmol, 1.25 equiv) and 1,3bis(*tert*-butoxycarbonyl)guanidine (0.72 g, 0.277 mmol, 1.38 equiv) were added to a solution of the hydroxyethyl derivative ⁸⁰ **17** (0.64 g, 0.201 mmol) in THF (3.5 mL) under N₂. This solution was cooled to 0 °C, diisopropil azodicarboxylate (0.05 mL, 0.251 mmol, 1.25 equiv) was slowly added over 30 min, and the reaction mixture was then stirred for 20 h at 25 °C under N₂. The reaction solution was concentrate and the sproduct isoletad by flash chromatography (EtOAc:Exane gradient still 20:80) offering offering **21** as a clear oil (54 mg, 60 %). ¹³C NMR 23.06, 23.21, 27.12, 28.51, 28.60, 28.76, 28.96, 29.83, 32.43, 40.04, 44.91, 79.46, 80.02, 81.30, 84.34. 155.27, 156.46, 161.47, 163.95, 171.39. HRMS: m/z calcd for ⁹⁰ C₂₁H₃₉N₄O₆⁺: 443.2864 [M+, -Boc, +H⁺]; found: 443.2880.

cis-2-Guanidinyl-ethyl-1-*N*-aminocyclopropane-1-carboxylic acid (7)

To a solution of 20 (0.025 g, 0.056 mmol) in CH_2Cl_2 (1 mL) was added TFA (0.5 mL), and the solution was stirred for 3 h.

was added TFA (0.5 mL), and the solution was stirred for 3 h. The solution was evaporated, and the residue was evaporated to afford 7 (9 mg, 85%). ¹H-NMR (D₂O) 1.21 (dd, 1H, ¹⁰⁰ *J*=6.3Hz and 12.6Hz), 1.51 (m, 1H), 1.72 (m, 1H), 1.86 (m, 1H), 2.02 (m, 1H), 3.39 (m, 1H). ¹³C NMR (D₂O) 18.90, 22.98, 26.32, 38.07, 40.52, 156.95, 162.92, 173.08, 173.14. HRMS: m/z calcd for $C_7H_{15}N_4O_2^+$: 186.1190 [M+, +H⁺]; found: 186.1211.

trans-2-guanidinyl-ethyl-1-*N*-aminocyclopropanecarboxy-5 lic acid (8)

To a solution of **21** (0.054 g, 0.122 mmol) in CH₂Cl₂ (2 mL) was added TFA (1 mL), and the solution was stirred for 3 h. The solution was evaporated, and the residue was evaporated to afford **8** (18 mg, 80%). ¹H-NMR (D₂O) 1.70 (m, 5H), 3.28 (m, 5H). ¹³C NMR (D₂O) 18.48, 25.42, 25.54, 37.90, 40.64, 156.87, 162.88, 163.35, 171.29, 171.36. HRMS: m/z calcd for $C_7H_{15}N_4O_2^{+}$: 186.1190 [M+, +H⁺]; found: 186.1180.

15 cis-1-tert-Butoxycarbonylamino-2-(2'-amino-2'-cyanoethyl)-cyclopropyl-1-tert butylcarboxylate (22)

A Dess Martin periodinane (0.387 g, 0.913 mmol) was added to a solution of **16** (0.250 g, 0.830 mmol) in CH_2Cl_2 (12 mL).

- ²⁰ After 1 h a thick white suspension had appeared and saturated NaHCO₃ (2.30 mL), saturated Na₂S₂O₃ (6.9 mL) and Et₂O (9.2 mL) were added. The solution was stirred vigorously until both the layers became clear. The aqueous phase was extracted twice with Et₂O (2 x 15 mL), dried over Na₂SO₄
- ²⁵ and evaporated. The crude product was dissolved in in MeOH (1.29 mL) and added to a solution containing potassium cyanide (0.065 g, 1.00 mmol) and ammonium chloride (0.064 g, 1.2 mmol) in 25% aqueous ammonia (0.97 mL). The resulting solution was stirred overnight. The product was ³⁰ extracted with Et₂O, and the organic phase was washed with
- brine followed by evaporation to efford **22** (0.180 g, 66%). ¹³C-NMR 22.02, 22.32, 23.70, 24.41, 24.42, 34.36, 34.78, 39.22, 39.26, 43.22, 43.54, 66.29, 80.36, 82.01, 122.32, 156.65, 171.79.

cis-1-*tert*-Butoxycarbonylamino-2-(2'-amino-2-carbamoylethyl)-cyclopropyl-1-tert butylcarboxylate (23)

35

The compound **22** (0.140 mg, 0.430 mmol) was dissolved in 40 tetrahydrofuran (THF)/EtOH (1:3, 1.95 mL), and to this solution was slowly added a mixture of 35% hydrogen peroxide (0.17 mL) in 1 M NaOH (5.3 mL) at 0 °C. The mixture was stirred for 2 h and then extracted with Et₂O. The organic phase was washed with brine and evaporated to give 45 **23** as an oil (94 mg, 63%). ¹³C NMR δ 22.63, 24.64, 24.74,

45 **25** as an on (94 mg, 05/6). C NMR 6 22.05, 24.04, 24.74, 28.48, 30.16, 34.22, 34.28, 39.40, 55.12, 80.07, 81.59, 156.95, 172.30, 172.42, 178.39, 178.56. HRMS: m/z calcd for $C_{12}H_{20}N_3O_5^{-1}$: 286.1408 [M⁻, -*t*Bu]; found: 286.1410.

50 cis-1-tert-Butoxycarbonylamino-2-(4'-hydroxy-[1,2,5]thia-

diazol-3'-ylmethyl)-cyclopropyl-1 *tert*-butylcarboxylate (24)

The aminoamide 23 (0.85 g, 0.248 mmol) was solubilized in 55 pyridine (2 mL) and then cooled to 0 °C. *N*-Thionylaniline (0.08 ml, 0.743 mmol) was added. After stirring for 2 h at room temperature the solvent was removed and the residue was taken up with CH_2Cl_2 (5 ml) and treated with of NH_4Cl (3 ml). The separated organic phase was dried over anhydrous

- ⁶⁰ Na₂SO₄ and evaporated off to afford of **24** (15 mg, 16.3%).
 ¹³C NMR 23.02, 23.07, 25.99, 26.02, 26.05, 28.35, 28.52, 28.82, 30.22, 39.41, 39.43, 80.56, 81.90, 151.07, 157.06, 157.09, 157.11, 162.60, 172.12, 172.18.
- HRMS: m/z calcd for $65 C_8H_7N_3O_4S^{-}: 242.0230 [see structure above]; found:$ 242.0229.

cis-1-Amino-2-(4'-hydroxy-[1,2,5]thiadiazol-3'-ylmethyl)-70 cyclopropanecarboxylic acid (5)

To a solution of 24 (0.015 g, 0.04 mmol) in CH₂Cl₂ (1 ml) was added TFA (0.5 ml), and the solution was stirred for 2 h. The solution was evaporated, and the residue was evaporated ⁷⁵ from 1 M HCl twice to afford **5** as a yellow solid (7 mg, 64%). ¹H-NMR (D₂O) 1.36 (m, 1H, CH₂), 1.66 (m, 1H, CH₂), 2.01 (m, 1H, CH), 2.84 (dd, 1H, *J*=8.5Hz and 16.4Hz), 3.05 (m, 1H). ¹³C NMR (D₂O) 17.17, 19.05, 23.51, 26.76, 38.59, 57.76, 149.61, 161.60, 172.99. HRMS: m/z calcd for ⁸⁰ C₇H₁₀N₃O₃S⁺: 216.0437 [M⁺, +H]; found: 216.0437.

tert-Butyl *trans*-(*N*,*N*-bis(*tert*-butoxycarbonyl)amino)-2ethoxycarbonylcyclopropanecarboxylate (26) and *tert*-butyl *cis*-1-(*N*,*N*-bis(*tert*-butoxycarbonyl)amino)-2ethoxycarbonylcyclopropanecarboxylate (27).

A solution of ethyl diazoacetate (4.2 g, 37 mmol) in dry CH₂Cl₂ (16 mL) was added via syringe pump over a period of 24 h to a magnetically stirred solution of *tert*-butyl *N*,*N*-bis(*tert*butoxycarbonyl)-2-aminoacrylate **25** (3.2 g, 9.3 mmol) and ⁹⁰ dirhodium(II)tetraacetate (42 mg, 95 µmol, 1 %) in dry CH₂Cl₂ (26 mL) kept under argon at reflux. The reaction mixture was then evaporated and column chromatography (toluene/EtOAc 9:1) afforded a 2:1 mixture of 26 and **27** (2.9 g, 73 %). The mixture was submitted to gradient column chromatography ⁹⁵ (toluene/EtOAc: 98:2 to 9:1) several times using Biotage Flash40TM giving **26** (1.2 g, 30 %) as an oil. ¹H NMR (CDCl₃) δ 1.28 (3H, t, J=7.1 Hz), 1.46 (9H, s), 1.47 (9H, s), 1.53 (s, 9H), 1.78 (dd, 1H, J= 5.6Hz and 7.8 Hz), 1.99 (dd, 1H, J=5.6 and 9.1 Hz), 2.71 (dd, 1H, J=7.8Hz and 9.0 Hz), 4.02 (2H, m); ¹³C NMR (CDCl₃) δ 168.7, 168.6, 151.5, 151.2, 82.4, 82.3, 82.0, 60.9, 45.2, \leq 31.2, 28.0, 27.8, 27.7, 24.6, 14.0. The further eluting fractions

- s 51.2, 28.0, 27.8, 27.7, 24.0, 14.0. The further entiring fractions yielded **27** (0.6 g, 15 %) as an oil, however still containing ca. 10 % of **26**. ¹H NMR (CDCl₃) δ 1.28 (3H, t, *J*=7.2Hz), 1.40 (1H, dd, *J*=6 and 9.9 Hz), 1.45 (9H, s), 1.54 (18H, s) 2.20 (1H, dd, *J*=6.0 and 8.6 Hz), 2.45 (1H, dd, *J*=8.6Hz and 9.9Hz) 4.2 (2H, q, *J*= 7.1
- ¹⁰ Hz); ¹³C NMR (CDCl₃) δ 167.5, 167.1, 151.4, 82.9, 82.0, 61.1, 44.3, 34.7, 28.0, 27.9, 22.7, 14.3. Compound 26 could be synthesized as a single diastereomer using the following procedure: A solution of ethyl
- dimethylsulfuranylideneacetate1 (0.400 g , 2.7 mmol) in benzene 15 (1 mL) was added to a magnetically stirred solution of tert-butyl N,N-bis(tert-butoxycarbonyl)-2-aminoacrylate2 (25) (3.2 g, 9.3 mmol) in benzene (2 mL). The reaction mixture was refluxed for 2 h then evaporated. Column chromatography (toluene/EtOAc,
- 9:1) afforded 26 (0.270 g, 68 %) as an oil.
- 20

tert-Butyl *trans*-1-(*N*,*N*-bis(*tert*-butoxycarbonyl)amino)-2hydroxymethylcyclopropanecarboxylate (28)

A solution of diisobutylaluminium hydride (1 M in toluene, 6.9 mL, 6.9 mmol) was added dropwise at -40 °C to a solution of **26** (1.30 g, 3.0 mmol) in anhydrous Et_2O (77 mL) under nitrogen. The reaction mixture was stirred for 30 minutes, then quenched with saturated aqueous NH₄Cl (35 mL) and warmed to rt. The aqueous phase was extracted with EtOAc (3 x 100 mL) and the

- ³⁰ combined organic phases dried (Na₂SO₄). Upon evaporation column chromatography (toluene/EtOAc 9:1) gave **28** (0.84 g, 72 %). ¹H NMR (CDCl₃) δ 0.74 (dd, 1H, *J*=5.8 and 8.2 Hz), 1.45 (9H, s), 1.51 (9H, s), 1.55 (9H, s), 1.74 (1H, dd, *J*=5.8Hz and 9.8 Hz), 2.27 (1H, ddt, *J*=3.4, 8.2Hz and 9.8 Hz), 3.22 (1H, dd, *J*= 3.98Hz and 12.4 Hz), 3.88 (1H, dd, *J*= 3.3Hz and 12.4 Hz); ¹³C
- NMR (CDCl₃) δ 169.9, 154.8, 152.5, 83.7, 82.8, 81.5, 61.3, 44.3, 32.8, 28.1, 28.0, 27.9, 20.3.

tert-Butyl *trans*-1-(*N*,*N*-bis(*tert*-butoxycarbonyl)amino)-2-40 formylcyclopropanecarboxylate (29)

Dess Martin periodinane (0.84 g, 2.0 mmol) was added to a solution of **28** (0.70 g, 1.8 mmol) in CH₂Cl₂ (25 mL). After 1 h a thick white suspension had appeared and saturated NaHCO₃ (5 ⁴⁵ mL), saturated Na₂S₂O₃ (15 mL) and Et₂O (20 mL) were added. The solution was stirred vigorously until both the layers became clear. The aqueous phase was extracted twice with Et₂O, dried (Na₂SO₄) and evaporated. Column chromatography (toluene/EtOAc, 95:5) gave **29** (0.60 g, 86 %). ¹H NMR (CDCl₃) ⁵⁰ δ 1.46 (18 H, s), 1.53 (9H, s), 1.82 (1H, dd, *J*= 6.0Hz and 7.6 Hz), 2.12 (1H, dd, *J*=6.0Hz and 9.1 Hz), 2.78 (1H, ddd, J= 5.3, 7.6Hz and 9.1 Hz), 9.13 (1H, d, *J*= 5.3 Hz); ¹³C NMR (CDCl₃) δ

195.7, 168.1, 151.2, 83.6, 83.2, 82.6, 82.4, 46.0, 38.3, 28.0, 27.9,

tert-Butyl (*IRS*, *2RS*)-1-(*N*,*N*-bis(*tert*-butoxycarbonyl)amino)-2-(*SR*-amino(cyano)methyl) cyclopropanecarboxylate (*SR*-30) *trans*-6a and *tert*-butyl (*IRS*,*2RS*)-1-(*N*,*N*-bis(*tert*butoxycarbonyl)amino)-2-(*RS*-

60 amino(cyano)methyl)cyclopropanecarboxylate (RS-30)

A solution of **29** (0.6 g, 1.56 mmol) in MeOH (3 mL) was added to a solution, containing KCN (152 mg, 2.34 mmol) and NH₄Cl (152 mg, 1.56 mmol) in aqueous NH₃ (25 %, 2 mL). The reaction ⁶⁵ mixture was stirred for 48 h. Et₂O was added and the organic phase was washed with brine, dried (Na₂SO₄) and evaporated. Column chromatography (0.5 % MeOH in CH₂Cl₂) yielded *SR*-**30** (0.20 g, 31 %); ¹H NMR (CDCl₃) δ 1.03 (1H, dd, *J*=6.6Hz and 7.9 Hz), 1.44 (9H, s), 1.50 (9H, s), 1.53 (9H, s), 1.86 (1H, dd, 70 *J*=6.5Hz and 9.7 Hz), 2.29 (1H, td, *J*=8.0Hz and 9.7 Hz) 3.53 (1H, d, *J*=8.3 Hz); ¹³C NMR (CDCl₃) δ 168.7, 153.6, 152.2,

- (11, d, J = 0.5 112), T = 1.00, T = 0.00, T =
- ⁷⁵ 1.45 (9H, s), 1.50 (9H, s), 1.56 (9H, s), 1.79 (1H, dd, *J*=6.4Hz and 9.7 Hz), 2.39 (1H, ddd, *J*=6.5Hz, 8.1Hz and 9.7 Hz), 3.71 (1H, d, *J*=6.5 Hz); ¹³C NMR (CDCl₃) δ 169.0, 152.7, 152.1, 120.6, 83.8, 83.0, 82.1, 44.2, 41.6, 32.1, 28.0, 21.0,

The relative stereochemistry is established from the formation of ⁸⁰ **38** in the hydrolysis of **RS-30** to **36**.

tert-Butyl *trans*-1-(*N*,*N*-bis(*tert*-butoxycarbonyl)amino)-2-(amino(carbamoyl)methyl) cyclopropanecarboxylate (30)

85 A solution of 29 (0.300 g, 0.7792 mmol) in MeOH (1.5 mL) was added to a solution, containing KCN (76 mg, 2.34 mmol) and NH₄Cl (76 mg, 1.4 mmol) in aqueous NH₃ (25 %, 1 mL). The reaction mixture was stirred for 48h. The product was extracted with Et2O and the combined organic phases were washed with ⁹⁰ brine, dried (Na₂SO₄) and evaporated to give 0.280 g of a crude diastereomeric mixture (4:5) trans-tert-butyl N,N-bis(tertbutoxycarbonyl)-1-amino-2-(amino(cyano)methyl)cyclopropanecarboxylate 30a. An amount of 220 mg of this mixture was dissolved in THF/EtOH (1:3, 4 mL) and to this solution was 95 slowly added a mixture of aqueous hydrogen peroxide (35 %, 0.13 mL) in 1 M NaOH (3.9 mL) at 0° C. The mixture was stirred for 2 h then extracted with Et₂O. The organic phase was washed with brine and evaporated. Upon column chromatography (CH₂Cl₂/MeOH, 95:5) a 5:2 mixture of the diastereomeres of 31 100 (145 mg, 55% for two steps) was isolated.

tert-Butyl (*1RS*,*2RS*)-1-(*N*,*N*-bis(*tert*-butoxycarbonyl)amino)-2-(*RS*-amino(carbamoyl)methyl) cyclopropanecarboxylate (31)

A mixture of aqueous hydrogen peroxide (35 %, 0.13 mL) in 1 M NaOH (3.9 mL) was slowly added to a solution of **30a** (200 mg, 0.49 mmol) in a mixture of THF/EtOH 1:3 (6 mL) at 0 °C. The

105

27.8, 23.1.

mixture was stirred for 2 h then extracted with Et₂O. The organic phase was washed with brine and evaporated. Column chromatography (5 % MeOH in CH₂Cl₂) gave **31** (140 mg, 67 %). ¹H NMR (CDCl₃) δ 1.41 (1H, dd, *J*=6.3 and 8.0 Hz), 1.45 s (9H, s), 1.51 (9H, s), 1.55 (9H, s), 1.72 (1H, dd, *J*= 6.3Hz and 9.8 Hz), 2.08 (1H, dt, *J*=8.1Hz and 9.4 Hz), 2.93 (1H, d, *J*=9.4 Hz) 5.58 (1H, bs), 7.23 (1H, bs); ¹³C NMR (CDCl₃) δ 176.3, 169.9, 154.1, 152.2, 83.1, 82.7, 81.4, 55.3, 43.9, 34.0, 28.0, 27.9, 21.7.

10 *tert*-Butyl *cis*-1-(*N*,*N*-bis(*tert*-butoxycarbonyl)amino)-2hydroxymethylcyclopropanecarboxylate (32)

A solution of diisobutylaluminium hydride (1 M in toluene, 3.4 mL, 3.4 mmol) was added dropwise at -40 °C to a solution of **27** ¹⁵ (0.50 g, 1.16 mmol) in anhydrous Et₂O (18 mL) under nitrogen.

- The mixture was stirred for 4 h, then quenched with saturated aqueous NH_4Cl (1 mL) and warmed to rt. The aqueous phase was extracted with EtOAc (3 x 20 mL) and the combined organic phases dried (Na_2SO_4). Upon evaporation column
- ²⁰ chromatography (toluene/EtOAc 9:1) gave **32** (0.24 g, 53 %) containing ca. 10 % of **28**. ¹H NMR (CDCl₃) δ 1.35 (1H, dd, J= 5.1 and 9.3 Hz), 1.46 (9H, s), 1.52 (18H, bs), 1.83 (1H, dd, J=5.2, 8.7) 1.90 (1H, dq, J=4.3Hz and 8.9 Hz), 3.78 (1H, dd, J= 8.7Hz and 11.6 Hz), 3.99 (1H, dd, J= 4.2Hz and 11.5 Hz); ¹³C NMR
 ²⁵ (CDCl₃) δ 169.5, 152.9, 151.5, 83.1, 82.6, 81.8, 59.2, 43.2, 35.7,
- 28.1, 28.0, 22.8.

tert-Butyl *cis*-1-(*N*,*N*-bis(*tert*-butoxycarbonyl)amino)-2-30 formylcyclopropanecarboxylate (33)

Dess Martin periodinane (0.37 g, 0.88 mmol) was added to a solution of **32** (0.310 g, 0.80 mmol) in CH_2Cl_2 (12 mL). After 1 h a thick white suspension had appeared and saturated NaHCO₃

- $_{35}$ (1.8 mL), saturated Na_2S_2O_3 (5.4 mL) and Et_2O (7.2 mL) were added. The solution was stirred vigorously until both the layers became clear. The aqueous phase was extracted twice with Et_2O, dried (Na_2SO_4) and evaporated. Column chromatography (toluene/EtOAc, 95:5) gave **33** (0.24 g, 78 %) containing ca. 10
- ⁴⁰ % of **29**. ¹H NMR (CDCl₃) δ 1.46 (9H, s), 1.50 (18H, s), 1.72 (1H, m, *J*= 6.2 and 9.6 Hz), 2.23 (1H, ddd, *J*= 5.7Hz, 8.4Hz and 9.5 Hz), 2.43 (1H, dd, *J*= 6.2Hz and 8.5 Hz) 9.47 (1H, d, *J*=5.6 Hz); ¹³C NMR (CDCl₃) δ 197.3, 168.0, 151.0, 83.2, 82.9, 46.5, 41.8, 28.0, 27.9, 24.1.
- 45

tert-Butyl *cis*-1-(*N*,*N*-bis(*tert*-butoxycarbonyl)amino)-2-(amino(carbamoyl)methyl) cyclopropanecarboxylate (35)

A solution of **33** (0.240 g, 1.56 mmol) in MeOH (2 mL) was ⁵⁰ added to a solution, containing KCN (61 mg, 2.34 mmol) and NH₄Cl (61 mg, 1.56 mmol) in aqueous NH₃ (25 %, 1 mL). The reaction mixture was stirred for 48h. The product was extracted with Et₂O and the combined organic phases were washed with brine, dried (Na₂SO₄) and evaporated to give 0.170 g of crude ⁵⁵ *cis-tert*-butyl N,N-bis(*tert*-butoxycarbonyl)-1-amino-2(amino(cyano)methyl)cyclopropanecarboxylate **34**. ¹H NMR (CDCl₃) δ 1.36 (dd, 1H, *J*=6.2Hz and 9.6Hz) 1.42 (9H, s), 1.48 (9H, s), 1.50 (9H, s), 1.79 (1H, dd, *J*=6.3Hz and 8.4 Hz), 2.01 (1H, dt, *J*=8.5Hz and 9.9 Hz) 4.01 (1H, d, *J*=10.1 Hz).

- ⁶⁰ The mixture was redissolved in THF/EtOH (1:3, 4 mL) and to this solution was slowly added a mixture of aqueous hydrogen peroxide (35 %, 0.13 mL) in 1 M NaOH (3.9 mL) at 0° C. The mixture was stirred for 2 h then extracted with Et₂O. The organic phase was washed with brine and evaporated. Column
- ⁶⁵ chromatography (CH₂Cl₂/MeOH, 95:5) gave **35** (0.120 g, 45 % for two steps) containing a small amount of **31** that coeluted. ¹H NMR (CDCl₃) δ 1.42 (1H, dd, *J*= 6.0Hz and 10.0 Hz), 1.47 (9H, s), 1.50 (9H, s), 1.54 (9H, s), 1.79 (1H, dt, *J*= 8.5Hz and 10.0 Hz), 2.04 (1H, dd, *J*= 6.0Hz and 8.4 Hz), 3.61 (1H, d, *J*= 10.3 ⁷⁰ Hz), 5.55 (1H, bs), 7.56 (1H, bs); ¹³C NMR (CDCl₃) δ 177.0,
- 169.1, 153.2, 151.7, 82.9, 82.5, 81.5, 53.5, 42.6, 37.7, 27.9, 25.1.

tert-Butyl (*1RS,2RS*)-1-(*N,N*-bis(*tert*-butoxycarbonyl)amino)-2-(*SR*-amino(carbamoyl)methyl) cyclopropanecarboxylate

75 (31) and tert-butyl trans-5-amino-2-(N,N-bis(tert-butoxycarbonyl)amino)-5-cyanopent-4-enoate (36)

A mixture of aqueous hydrogen peroxide (35 %, 0.10 mL) in 1 M NaOH (3.9 mL) was slowly added to a solution of **30b** (160 mg, 0.39 mmol) in THF/EtOH (1:3, 4 mL) at 0 °C The mixture was stirred for 2 h then extracted with Et₂O. The organic phase was washed with brine and evaporated. Column chromatography (CH₂Cl₂/MeOH, 95:5) gave compound **36** (60 mg, 38 %). A 1:3 rotameric ratio can be seen in NMR. Chemical shifts reported for

- ⁸⁵ the major rotamer unless stated otherwise. ¹H NMR (CDCl₃) δ 1.47 (9H, s), 1.53 (18H, s), 2.85 (td, 1H, *J*=9.2 Hz and 15.1 Hz), 2.97 (1H, ddd, *J*=5.5Hz, 6.8Hz and 15.1Hz), 3.13 (2H, bs), 4.79 (dd, 1H, *J*=5.5, 9.1Hz), 5.38 (dd, 1H, *J*=6.8Hz and 9.2Hz), ¹³C NMR (CDCl₃) δ 168.5, 152.0, 118.2, 116.8, 115.1, 83.2, 81.7,
- ⁹⁰ 58.4, 30.0, 28.1, 27.97 (minor rotamer: 168.2, 83.4, 82.0, 57.6, 28.02, 27.91) Further elution yielded **31** (35 mg, 21 %); ¹H NMR (CDCl₃) δ 1.31 (1H, dd, *J*= 6.0Hz and 8.3 Hz), 1.44 (9H, s), 1.51 (9H, s), 1.53 (9H, s), 1.70 (1H, dd, *J*= 6.0Hz and 10.1 Hz), 2.35 (ddd, 1H, *J*= 6.0Hz, 8.3Hz and 10.1 Hz), 3.23 (d, 1H, *J*=6.0 Hz),
- ⁹⁵ 5.50 (1H, bs), 7.39 (1H, bs); ¹³C NMR (CDCl₃) δ 176.2, 169.4, 153.8, 152.2, 83.6, 83.0, 81.7, 51.2, 45.3, 45.0, 33.8, 28.0, 27.9, 27.9, 20.9.

Trans-configuration of **36** established from ¹H-NMR chemical shift of the vinylic proton (δ 5.38).³

100

tert-Butyl *trans*-1-(*N*,*N*-bis(*tert*-butoxycarbonyl)amino)-2-(4hydroxy[1,2,5]thiadiazol-3-yl)cyclopropanecarboxylate (37)

Thionylaniline (134 μ L, 164 mg, 1.18 mmol) was added to a ¹⁰⁵ solution of **31** (170 mg, 0.40 mmol) in pyridine (4 mL) cooled at 0 °C. After stirring for 2 h at rt the solvent was evaporated. The residue was dissolved in CH₂Cl₂ (5 mL) and treated with saturated NH₄Cl (3 mL). The organic phase was dried (Na₂SO₄) and evaporated. Gradient column chromatography (10 to 20 % ¹¹⁰ Et₂O in heptane) gave **37** as a solid (140 mg, 74 %); ¹H NMR (CDCl₃) δ 1.25 (9H, s), 1.49 (9H, s), 1.55 (9H, s), 2.10 (1H, dd, *J*=5.6 Hz and 8.1 Hz), 2.19 (1H, dd, *J*= 5.6Hz and 9.4 Hz), 3.42 (1H, dd, *J*= 8.2 and 9.3 Hz); ¹³C NMR (CDCl₃) δ 169.2, 162.7, 151.6, 151.2, 147.3, 82.5, 82.3, 82.0, 46.3, 28.1, 28.0, 27.6, 27.8, 5 25.7.

1-Amino-2-(4-hydroxy[1,2,5]thiadiazol-3-yl)cyclopropanecarboxylic acid *cis*- and *trans*-6

- ¹⁰ To a solution of **37** (86 mg, 0.19 mmol) in CH_2Cl_2 (1.5 mL) was added TFA (1.5 mL), and the solution was stirred for 24 h. The solution was evaporated to give 65 mg of the crude product. First one predominant epimer was observed by ¹H NMR, but upon evaporation an epimeric equilibrium mixture between *cis*- and
- ¹⁵ *trans*-**6** was present. ¹H NMR revealed the presence of *cis* and *trans*-**6** estimated ratio 1:4, which is confirmed by analytical HPLC using either 1 mM AcOH or 0.1 % aqueous TFA as eluent, where *cis*-**6** eluted first and *trans*-**6** eluted second.

cis-6. ¹H NMR (D₂O, dioxane as internal reference) 3.10 (1H, dd, ²⁰ *J*=7.9Hz and 10.0Hz) 2.05. (1H, dd, *J*=6.6Hz and 10.1Hz) 1.88 (1H, dd, *J*=6.6Hz, and 7.9Hz)

- *trans*-6. ¹H NMR (CD₃CN) δ (major isomer) 1.91 (1H, dd, *J*=6.6 Hz and 7.9 Hz), 2.08 (1H, dd, *J*= 6.5Hz and 10.0 Hz), 3.10 (1H, dd, *J*=7.9, 10.0 Hz); (minor isomer), 1.95 (1H, dd, *J*=6.8Hz and
- ²⁵ 10.3 Hz), 2.13 (1H, dd, *J*= 6.9and 8.4 Hz), 2.83 (1H, dd, *J*=8.4 Hz and 10.3 Hz)
 ¹³C NMR (CD₃CN) δ (*cis*-6) 170.8, 163.3, 146.0, 40.5, 23.0, 20.5

(trans-6) 169.6, 162.4, 145.4, 39.0, 24.3, 18.0.

30 Computational Details:

- Homology models of human mGluR2 (Accession number NP_000830.2) and human mGluR3 (Accession numbuer NP_000831.2) were built using Prime 3.0 (Schrodinger 2011) based on the crystal structure of rat mGluR3 in complex with
- ³⁵ DCG-IV (PDB code 2E4V) (Muto 2007) as a template. Docking was attempted on both (R,R)- and (S,S)-trans_1 to each model using Glide XP 5.7 (Schrodinger 2011), following model preparation by the protocol recommended for Glide. Only (S,S)-trans_1 could adopt a glutamate-like binding
- ⁴⁰ mode. The final (S,S)-trans_1--mGluR complexes in Figure X were obtained by minimizing the poses in the binding sites with receptor heavy atoms frozen, using Macromodel 9.9 (Schrodinger 2011). Prime 3.0, Glide 5.7, Macromodel 9.9. Schrodinger Inc, 101 SW Main Street Suite 1300, Portland
- ⁴⁵ OR, USA (2011). Muto, T.; Tsuchiya, D.; Morikawa, K.; Jingami, H. Structures of the extracellular regions of the group II/III metabotropic glutamate receptors. Proc. Natl. Acad. Sci., 104(10) 3759-3764 (2007).

50 Culturing and transfection of tsA201 Cells

- tsA201 cells⁴ were cultured in GlutaMAX-I DMEM medium, supplemented with 10% dialyzed fetal bovine serum and penicillin (100 U/ml)/streptomycin (100 mg/ml) at 37 °C in a humidified atmosphere of 5% ambient CO₂. Cells were
- ⁵⁵ transfected using PolyFect (Qiagen, West Sussex, UK) with mouse GPRC6A plasmid DNA as previously described.^{5,6} To

enable efficient coupling of mGPRC6A and mutant receptors to phospholipase C, the receptors were co-expressed with $G\alpha_{qG66D}$ (1:1 transfection ratio).^{5,7} For the IP turnover assay, transfected cells were split into poly-D-lysine coated 96-well plates the day before assaying and grown to confluence in inositol-free DMEM medium supplemented with antibiotics, serum and 0.15 MBq/ml *myo*-[2-³H]inositol (GE Healthcare, Buckinghamshire, UK).

65 Inositol phosphate (IP) turnover assay

The assay was carried out as previously described.⁵ In brief, the cells were prewashed for 2×2 hours at 37 °C with buffer containing Hanks' Balanced Salt Solution (HBSS) containing 20 mM HEPES, 1 mM CaCl₂, 1 mM MgCl₂ and 1 mg/ml

- ⁷⁰ BSA, pH 7.4). The cells were washed and preincubated with buffer or allosteric modulator in 50 μl assay buffer (HBSS containing 20 mM HEPES, 1 mM CaCl₂, 1 mM MgCl₂ and 20 mM LiCl, pH 7.4) for 30 min at 37 °C. Following this preincubation, the cells were stimulated with 50 μl of agonist
- ⁷⁵ with or without modulator in assay buffer for 30 min at 37 °C. The reactions were stopped by exchanging the buffer with 50 μl 10 mM ice-cold formic acid and incubating the cells at 4 °C for at least 30 min. Yttrium silicate scintillation proximity assay beads (PerkinElmer, Waltham, CA) were used for ⁸⁰ measuring radioactivity from generated [³H]IP, as previously described.^{5,8} Radioactivity was quantified in a Packard TopCount microplate scintillation counter and responses read as counts per minute.

References

85

115

- 1 G. B. Payne, J. Org. Chem., 1967, 32, 3351-3355.A.
- 2 P. M. T. Ferreira, H. L. S. Maia, L. S. Monteiro, *Tetrahedron Lett.* 1998, **39**, 9575-9578.
- 90 3 G. Ksander, G. Bold, R. Lattmann, C. Lehmann, T. Fruh, Y. B. Xiang, K. Inomata, H. P. Buser, J. Schreiber, E. Zass, A. Eschenmoser, *Helv. Chim. Acta* 1987, **70**, 1115-1172.
- 4 M. Chahine, P. B. Bennett, A. L. George, R. Horn, Functional expression and properties of the human skeletal muscle sodium channel. *Pflugers Arch*, 1994, **427**, 136-142.
- 5 B. Christiansen, K. B. Hansen, P. Wellendorph, H. Bräuner-Osborne, Pharmacological characterization of mouse GPRC6A, an L-alphaamino-acid receptor modulated by divalent cations. *Br. J. Pharmacol*, 2007, **150**, 798-807.
- 100 6 P. Wellendorph, K. B. Hansen, A. Balsgaard, J. R. Greenwood, J. Egebjerg, H. Bräuner-Osborne, Deorphanization of GPRC6A: a promiscuous L-alpha-amino acid receptor with preference for basic amino acids. *Mol. Pharmacol.*, 2005, 67, 589-597.
- A. Heydorn, R. J. Ward, R. Jorgensen, M. M. Rosenkilde, T. M.
 Frimurer, G. Milligan, E. Kostenis, Identification of a novel site within G protein alpha subunits important for specificity of receptor-G protein interaction. Mol. Pharmacol., 2004, 66, 250-259.
- P. E. Brandish, L. A. Hill, W. Zheng, E. M. Scolnick, Scintillation proximity assay of inositol phosphates in cell extracts: high-throughput measurement of G-protein-coupled receptor activation. *Anal Biochem*, 2003, **313**, 311-318.