Supplementary materials

1. Chemistry

General procedure for reductive amination.

Phenylbutanals 2 (1 mmol) together with benzylamine or propylamine (1 or 5 mmol) were dissolved in anhydrous methylene chloride (3.5 mL) and sodium triacetoxyborohydride was added (1.4 or 5 mmol). The reaction mixture was stirred at room temperature for 1.5-16 h under nitrogen. Next, a saturated solution of NaHCO₃ was added (2–3 mL) and the reaction mixture was extracted with EtOAc (3×1.5 mL), dried over anhydrous MgSO₄ and filtered. The organic layer was concentrated under reduced pressure. All compounds were purified by silica gel column chromatography (Hexane–EtOAc–Et₃N).

4-(3-Hydroxy-2,4,6-trimethylphenyl)butanal (2a). Colorless oil (80%), $R_{\rm f} = 0.51$ (Hexane–EtOAc, 70 : 30). IR $v_{\rm max}$ / cm⁻¹ (liquid film) 3474, 3007, 2949, 2882, 1716, 1480, 1456, 1410, 1386, 1246, 1212, 1094, 1012, 869, ¹H NMR (CDCl₃, 300 MHz) δ 9.81 (t, 1H, J = 1.0, CHO), 6.80 (s, 1H, Ar-H-5), 4.71 (s, 1H, OH), 2.64 (t, 2H, J = 5.4 Hz, H-4), 2.54 (dt, 2H, J = 4.7, 1.0 Hz, H-2), 2.24 (s, 3H, CH₃-6), 2.23 (s, 3H, CH₃-2), 2.21 (s, 3H, CH₃-4), 1.79 (q, 2H, J = 4.8 Hz, H-3). ¹³C NMR (CDCl₃, 75 MHz) δ 202.4 (CHO), 150.4 (ArC-3), 137.0 (ArC-1), 129.8 (ArC-5), 127.5 (ArC-6), 121.8 (ArC-2), 120.4 (ArC-4), 43.8 (C-2), 29.2 (C-4), 21.9 (C-3), 19.3 (CH₃-6), 15.7 (CH₃-4), 11.8 (CH₃-2). ESI-HRMS Calcd for [M + H]⁺ C₁₃H₁₉O₂ 207.1380; found 207.1377.

3,3'-(4,4'-(Benzylazanediyl)bis(butane-4,1-diyl))bis(2,4,6-trimethylphenol) (**3a).** Pale yellow oil (56%), $R_f = 0.37$ (Hexane–EtOAc, 70 : 30). IR v_{max} / cm⁻¹ (liquid film) 3581, 3441, 2941, 2856, 1581, 1479, 1454, 1377, 1304, 1205, 1121, 1088, 1026, 866, 744, 698, 621. ¹H NMR (CDCl₃, 300 MHz) δ 7.33 (dd, 2H, J = 2.1, 0.6 Hz, ArH-3', ArH-5'), 7.30 (s, 1H, ArH-4'), 7.28 (d, 2H, J = 0.8 Hz, ArH-2', ArH-6'), 6.76 (s, 2H, ArH-5), 3.81 (br s, 2H, OH), 3.56 (s, 2H, NCH₂-Ar), 2.53 (t, 4H, J = 5.4 Hz, H-4), 2.45 (t, 4H, J = 7.3 Hz, H-1), 2.18 (s, 12H, CH₃-2, CH₃-6), 2.15 (s, 6H, CH₃-4), 1.58 (q, 4H, J = 7.3 Hz, H-3), 1.42 (m, 4H, H-2). ¹³C NMR (CDCl₃, 75 MHz) δ 150.2 (C-OH), 140.3 (ArC-1'), 138.3 (ArC-3), 129.6 (ArC-5), 128.8 (ArC-2', ArC-6'), 128.1 (ArC-3', ArC-5'), 127.6 (ArC-4'), 126.7 (ArC-4), 121.5 (ArC-2), 119.8 (ArC-6), 58.7 (N-CH₂-Ar), 53.9 (C-4 butane), 30.1 (C-1 butane), 27.7 (C-3 butane), 27.4 (C-2 butane), 19.3 (CH₃-4), 15.7 (CH₃-6), 11.7 (CH₃-2). ESI-HRMS: calcd for [M + H]⁺ C₃₃H₄₆NO₂ 488.3529; found 488.3516.

3,3'-(4,4'-(Benzylazanediyl)bis(butane-4,1-diyl))bis(4-allyl-2,6-dimethylphenol) (3b). Pale yellow oil (53%), $R_f = 0.43$ (Hexane–EtOAc, 70 : 30). IR v_{max}/cm^{-1} (liquid film) 3562, 3418, 3076, 2926, 2856, 1635, 1580, 1479, 1454, 1377, 1306, 1207, 1121, 1092, 995, 910, 743, 700. ¹H NMR (CDCl₃, 300 MHz) δ 7.30 (dd, 2H, J = 1.6, 0.6 Hz, ArH-3', ArH-5'), 7.24 (s, 1H, ArH-4'), 7.10 (d, 2H, J = 0.6 Hz, ArH-2',ArH-6'), 6.75 (s, 2H, ArH-5), 5.91 (m, 2H, -CH₂CH=CH₂), 4.99 (dd, 2H, J = 10.0, 1.8 Hz, -CH₂CH=CH₂), 4.96 (dd, 2H, J = 16.9, 1.8 Hz, CH₂CH=CH₂), 3.30 (br s, 2H, OH), 3.56 (s, 2H, -NCH₂-Ar), 3.27 (dd, 4H, J = 6.3, 1.4 Hz, -CH₂CH=CH₂), 2.53 (t, 4H, J = 8.2 Hz, H-4), 2.45 (t, 4H, J = 7.0 Hz, H-1), 2.19 (s, 6H, CH₃-6), 2.16 (s, 6H, CH₃-2), 1.57 (t, 4H, J = 8.1 Hz, H-3), 1.43 (m, 4H, J = 3.4 Hz, H-2). ¹³C NMR (CDCl₃, 75 MHz) δ 150.6 (C-OH), 139.9 (ArC-3), 138.3 (CH₂CH=CH₂), 138.2 (ArC-1'), 129.4 (ArC-4), 129.2 (ArC-5), 128.8 (ArC-2'), 128.7 (ArC-6'), 128.1 (ArC-3'), 128.0 (ArC-5'), 126.7 (ArC-4'), 121.7 (ArC-2), 120.2 (ArC-6), 115.2 (-CH₂CH=CH₂), 58.7 (R₂N-CH₂-Ar), 53.8 (C-4 butane), 37.2 (CH₂CH=CH₂), 29.5 (C-1 butane), 28.1 (C-3 butane), 27.6 (C-2 butane), 15.8 (CH₃-6), 11.8 (CH₃-2). ESI-HRMS: calcd for [M + H]⁺ C₃₇H₅₀NO₂ 540.3842; found 540.3863.

2,4,6-Trimethyl-3-(4-propylaminobutyl)-phenol (3c). Pale yellow oil (54%). IR v_{max}/cm^{-1} (liquid film) 3560, 3415, 3074, 2926, 2853, 1637, 1580, 1477, 1450, 1375, 1300, 1205, 1120, 1090, 995, 908, 740, 698. ¹H NMR (CDCl₃, 300 MHz) δ 6.77 (s, 2H, ArH-5), 3.31 (br s, 2H, OH), 2.65 (t, 4H, *J* = 7.4 Hz, H-4), 2.59 (t, 2H, *J* = 7.5 Hz, NCH₂-CH₂-CH₃), 2.46 (t, 4H, *J* = 7.1 Hz, H-1), 2.21 (s, 6H, CH₃-6), 2.20 (s, 6H, CH₃-2), 2.19 (s, 6H, CH₃-4), 1.61 (t, 4H, *J* = 7.6 Hz, H-3), 1.50 (m, 2H, *J* = 7.4 Hz, NCH₂-CH₂-CH₃), 1.44 (m, 4H, H-2), 0.92 (t, 3H, *J* = 7.4 Hz, NCH₂-CH₂-CH₃). ¹³C NMR (CDCl₃, 75 MHz) δ 150.3 (ArOH), 137.9 (ArC-3), 129.8 (ArC-5), 128.9 (ArC-4), 128.2 (ArC-2), 124.8 (ArC-6), 57.7 (NCH₂-CH₂-CH₃), 53.9 (C-4 butane), 29.3 (C-1 butane), 27.9 (C-3 butane), 27.3 (C-2 butane), 23.3 (NCH₂-CH₂-CH₃), 18.9 (CH₃-4), 15.5 (CH₃-6), 11.8 (NCH₂-CH₂-CH₃), 11.3 (CH₃-2). ESI-HRMS: calcd for [M + H]⁺C₂₉H₄₆NO₂ 440.3450; found 440.3452.

3-Phenylpropanal (4).²⁷ Obtained from primary alcohol by oxidation procedure: Pyridinium chlorochromate, CH₂Cl₂, room temperature, 2 h. Pale yellow oil (85%). $R_f = 0.67$ (Hexane–EtOAc, 80 : 20). ¹H NMR (CDCl₃, 300 MHz) δ 9.83 (td, 1H, J = 0.6 Hz, CHO), 7.31 (tt, 2H, J = 7.1, 0.6 Hz, ArH-2, ArH-6), 7.22 (td, 3H, J = 6.5, 1.3 Hz, ArH-3, ArH-4, ArH-5), 2.97 (t, 2H, J = 7.4 Hz, H-3), 2.79 (tq, 2H, J = 7.1, 0.6 Hz, H-2).

2,4,6-Trimethyl-3-(4-propylaminobutyl)-phenol (5a). Pale yellow oil (36%). $R_{\rm f} = 0.37$ (Hexane–EtOAc, 70:30). IR $v_{\rm max}/{\rm cm}^{-1}$ (liquid film) 3285, 2933, 2874, 2732, 1676, 1578, 1477, 1379, 1222, 1092, 1026, 1013, 917, 865, 752. ¹H NMR (CDCl₃, 300 MHz) δ 6.77 (s, 1H, ArH-5), 4.60 (br s, 1H, NH), 3.31 (s, 1H, OH), 2.65 (t, 2H, J = 7.4 Hz, H-4), 2.59 (t, 2H, J = 7.5 Hz, NCH₂-CH₂-CH₃), 2.42 (t, 2H, J = 7.5 Hz, H-1), 2.21 (s, 3H, CH₃-6), 2.20 (s, 3H, CH₃-2), 2.19 (s, 3H, CH₃-4), 1.61 (q, 2H, J = 7.6 Hz, H-3), 1.50 (m, 2H, J = 7.4 Hz, NCH₂-CH₂-CH₃), 1.44 (m, 2H, H-2), 0.92 (t, 3H, J = 7.4 Hz, NCH₂-CH₂-CH₃). ¹³C NMR (CDCl₃, 75 MHz) δ 150.6 (C-OH), 138.0 (ArC-3), 129.6 (ArC-5), 127.4 (ArC-6), 122.1 (ArC-4), 120.5 (ArC-2), 51.9 (NCH₂-CH₂-CH₃), 49.8 (C-4 butane), 30.4 (C-3 butane), 29.9 (C-1 butane), 27.4 (C-2 butane), 23.1 (NCH₂-CH₂-CH₃), 15.9 (CH₃-4), 20.0 (CH₃-6), 11.9 (CH₃-2), 11.8 (NCH₂-CH₂-CH₃). ESI-HRMS: calcd for [M + H]⁺ C₁₆H₂₈NO 250.2171; found 250.2160.

3-(4-Benzylaminobutyl)-2,4,6-trimethylphenol (5b). Colourless oil (63%), $R_{\rm f} = 0.43$ (Hexane–EtOAc, 70 : 30). IR $v_{\rm max}/{\rm cm}^{-1}$ (liquid film) 3276, 2930, 2872, 2728, 1670, 1573, 1470, 1370, 1202, 1091, 1026, 920, 867, 750. ¹H NMR (CDCl₃, 300 MHz) δ 7.30 (m, 2H, ArH-3, ArH-5'), 7.24 (s, 1H, ArH-4'), 7.01 (m, 2H, ArH-2', ArH-6'), 6.75 (s, 1H, ArH-5), 4.87(m, 3H, NH, CH₂-Ar), 3.78 (br s, 1H, OH), 2.86 (t, 2H, J = 7.4 Hz, H-4), 2.55 (t, 2H, J = 7.5 Hz, H-1), 2.22 (s, 3H, CH₃-6), 2.20 (s, 3H, CH₃-2), 2.18 (s, 3H, CH₃-4), 1.62 (q, 2H, J = 7.6 Hz, H-3). 1.44 (m, 2H, H-2). ¹³C NMR (CDCl₃, 75 MHz) δ 150.4 (C-OH), 139.1 (ArC-1'), 137.8 (ArC-3), 129.6 (ArC-5), 128.8 (ArC-2', ArC-6'), 128.3 (ArC-3', ArC-5'), 128.1 (ArC-4'), 127.9 (ArC-6), 121.7 (ArC-4), 120.1 (C-2), 52.4 (NCH₂Ar), 49.6 (C-4 butane), 30.1 (C-3 butane), 29.3 (C-1 butane), 27.0 (C-2 butane), 19.0 (CH₃-6), 15.6 (CH₃-4), 11.8 (CH₃-2). ESI-HRMS: calcd for [M + H]⁺ C₂₀H₂₈NO 298.2093; found 298.2096.

4-Allyl-3-(4-benzylaminobutyl)-2,6-dimethylphenol (5c). Pale yellow oil (76%), $R_f = 0.45$ (Hexane–EtOAc, 70 : 30). IR v_{max}/cm^{-1} (liquid film) 3265, 3060, 2930, 2870, 1676, 1575, 1479, 1452, 1370, 1300, 1212, 1092, 915, 740, 698. ¹H NMR(CDCl₃, 300 MHz) δ 7.31 (s, 2H, ArH-2′, ArH-6′), 7.27 (m, 2H, ArH-3′, ArH-5′), 6.99 (m, 1H, ArH-4′), 6.75 (s, 1H, ArH-5), 5.92 (m, 1H, CH₂CH=CH₂), 4.98 (dd, 1H, J = 10.1, 1.8 Hz, CH₂CH=CH₂), 4.93 (dd, 2H, J = 16.9, 1.8 Hz, CH₂CH=CH₂), 3.56 (s, 2H, NCH₂Ar), 3.27 (dd, 2H, J = 6.3, 1.4 Hz, CH₂CH=CH₂), 2.52 (t, 2H, J = 7.5 Hz, H-4), 2.43 (t, 2H, J = 7.5 Hz, H-1), 2.20 (s, 3H, CH₃-6), 2.16 (s, 3H, CH₃-2), 1.67 (q, 2H, J = 7.6 Hz, H-3), 1.57 (m, 2H, J = 7.4 Hz, H-2). ¹³C NMR (CDCl₃, 75 MHz) δ 150.5 (ArOH), 138.2 (ArC-3'), 138.4 (C-1), 129.5 (ArC-4'), 128.2 (ArC-5), 121.8 (ArC-2), 120.2 (ArC-6), 129.3 (ArC-3′, ArC-5′), 128.8 (ArC-2′, ArC-6′), 128.2 (ArC-4′), 115.2 (CH₂CH=CH₂), 53.8 (NCH₂Ar), 53.6 (C-4 butane), 37.4 (CH₂CH=CH₂), 29.7 (CH₂CH=CH₂), 29.6 (C-1 butane), 28.5 (C-3 butane), 27.6 (C-2 butane), 15.8 (CH₃-6), 11.8 (CH₃-2). ESI-HRMS: calcd for [M + H]⁺ C₂₂H₃₀NO 324.2249; found 324.2246.

(3-Phenylpropyl)propylamine (6). Oil (81%), $R_{\rm f} = 0.94$ (Hexane–EtOAc–NH₃, 15 : 85 : 5). IR v_{max}/cm⁻¹ (liquid film) 3306, 3062, 3026, 2956, 2931, 2873, 2810, 1943, 1870, 1802, 1674, 1603, 1496, 1454, 1378, 1271, 1128, 1079, 1031, 908, 803, 746, 699. ¹H NMR(CDCl₃, 300 MHz) δ 7.28 (td, 4H, J = 7.5, 1.4 Hz, ArH-2, ArH-6), 7.19 (d, 6H, J = 7.2 Hz, ArH-3, ArH-4, ArH-5), 5.29 (s, 1H, NH), 2.66 (t, 2H, J = 7.2 Hz, NCH₂CH₂CH₃), 2.64 (t, 2H, J = 7.3 Hz, H-1), 2.56 (t, 2H, J = 7.4 Hz, H-3), 1.83 (q, 2H, J = 7.7 Hz, H-2), 1.49 (sextet, 2H, J = 7.4 Hz, NCH₂CH₂CH₃), 0.91 (t, 3H, J = 7.3 Hz, NCH₂CH₂CH₃). ¹³C NMR (CDCl₃, 75 MHz) δ 142.2 (ArC-1), 128.4 (ArC-3, ArC-5), 128.3 (ArC-2, ArC-6), 125.7 (ArC-4), 51.9 (NCH₂CH₂CH₃), 49.6 (C-1), 33.7 (C-3), 31.8 (C-2), 23.3 (NCH₂CH₂CH₃), 11.8 (C-3 NCH₂CH₂CH₃). ESI-HRMS: calcd for [M + H]⁺ C₁₂H₂₀N 178.1596; found 178.1603.

Bis-(3-phenylpropyl)propylamine (7). Yellow oil (60%), $R_f = 0.84$ (Hexane–EtOAc–NH₃, 15 : 85 : 5). IR v_{max}/cm^{-1} (liquid film) 3085, 3062, 3026, 2954, 2863, 2800, 2740, 1942, 1870, 1802, 1737, 1603, 1496, 1454, 1378, 1298, 1272, 1158, 1078, 1030, 907, 746, 698. ¹H NMR(CDCl₃, 300 MHz) δ 7.27 (td, 4H, J = 7.5, 1.4 Hz, ArH-2, ArH-6), 7.18 (d, 6H, J = 7.2 Hz, ArH-3, ArH-4, ArH-5), 2.62 (t, 4H, J = 7.7 Hz, H-1), 2.46 (t, 4H, J = 7.7 Hz, H-3), 2.37 (t, 2H, J = 7.4 Hz, H-1, NCH₂CH₂CH₃), 1.75 (qt, 4H, J = 7.7, 1.6 Hz, H-2), 1.43 (sext, 2H, J = 7.3 Hz, H-2, NCH₂CH₂CH₃), 0.88 (t, 3H, J = 7.3 Hz, H-3, NCH₂CH₂CH₃). ¹³C NMR (CDCl₃, 75 MHz) δ 142.6 (ArC-1), 128.4 (ArC-3, ArC-5), 128.3 (ArC-2, ArC-6), 125.7 (ArC-4), 56.2 (C-1, NCH₂CH₂CH₃), 53.7 (C-1), 33.7 (C-3), 28.9 (C-2), 20.3 (C-2, NCH₂CH₂CH₃), 12.0 (C-3, NCH₂CH₂CH₃). ESI-HRMS: calcd for [M + H]⁺ C₂₁H₃₀N 296.2378; found 296.2380.

Benzyl (3-phenylpropyl)amine (8). Oil (60%), $R_f = 0.48$ (Hexane–EtOAc–NH₃, 15 : 85 : 5). IR v_{max}/cm^{-1} (liquid film) 3059, 3026, 2938, 2854, 2795, 2330, 1940, 1944, 1870, 1730, 1603, 1495, 1456, 1368, 1076, 1020, 744, 690. ¹H NMR(CDCl₃, 300 MHz) δ 7.28 (td, 2H, J = 7.4, 1.5 Hz, ArH-2, ArH-6), 7.27 (m, 5H, ArH'), 7.18 (d, 3H, J = 7.1 Hz, ArH-3, ArH-4, ArH-5), 4.90 (s, 1H, NH), 2.68 (t, 2H, J = 7.2 Hz, H-1), 2.63 (t, 2H, J = 7.3 Hz, H-3), 3.79 (NCH₂Ar). ¹³C NMR (CDCl₃, 75 MHz) δ 142.2 (ArC-1), 140.5 (ArC-1'), 128.4 (ArC-3, ArC-5), 128.3 (ArC-2', ArC-6'), 128.1 (ArC-2, ArC-6), 126.9 (ArC-4'), 125.8 (ArC-4), 54.1 (NCH₂Ar), 49.0 (C-1), 33.7 (C-3), 31.8 (C-2). ESI-HRMS: calcd for [M + H]⁺ C₁₆H₂₀N 226.1596; found 226.1595.

Benzyl-bis-(3-phenylpropyl)amine (9). Pale yellow oil (20%), $R_f = 0.60$ (Hexane–EtOAc, 80 : 20). IR v_{max}/cm^{-1} (liquid film) 3084, 3061, 3026, 2941, 2797, 1944, 1872, 1805, 1732, 1603, 1495, 1454, 1367, 1258, 1122, 1078, 1028, 908, 800, 744, 698. ¹H NMR (CDCl₃, 300 MHz) δ 7.28 (m, 4H, ArH-2, ArH-6), 7.24 (m, 2H, ArH-2', ArH-6'), 7.16 (m, 6H, ArH-3, ArH-4, ArH-5), 7.13 (m, 3H, ArH-3', ArH-4', Ar-5'), 3.59 (s, 2H, NCH₂Ar), 2.61 (t, 4H, *J* = 5.0 Hz, H-1), 2.50 (t, 4H, *J* = 4.9 Hz, H-3), 1.80 (q, 4H, *J* = 5.0 Hz, H-2). ¹³C NMR (CDCl₃, 75 MHz) δ 142.6 (ArC-1), 140.1 (ArC-1'), 128.9 (ArC-3), 128.4 (ArC-2), 128.3 (ArC-3'), 128.2 (ArC-2'), 126.7 (ArC-4'), 125.6 (ArC-4), 58.7 (ArCH₂-N), 53.4 (C-1 propane), 33.7 (C-3 propane), 29.0 (C-2 propane). ESI-HRMS: calcd for [M + H]⁺ C₂₅H₃₀N 344.2301; found 344.2300.

2. Biological studies

Inhibition assays

Parasite growht inhibition assay.

Trypanosmoma cruzi epimastigotes from the CL–Brener strain were cultured in BHT medium at 28°C. Trypanocidal activity of test compounds was measured as previously described.²⁴ Brieflly, cultures $(3-4 \times 10^6 \text{ parasites/mL})$ were incubated with increasing amounts of each compound dissolved in DMSO (1% final concentration). Concentrations assayed ranged between 5 and 100µg/mL with benznidazole used as positive control. Parasite growth was monitored by cell counting in a Neubauer chamber. Growth inhibition percentages were calculated as the ratio between parasite growth in the presence or absence of each compound after 72 hours of culture. Percentages of parasite growth inhibition for each concentration were plotted to determine the 50% inhibitory concentration (IC₅₀). Each experiment was conducted in triplicate and reported results correspond to the average of three independent experiments.

Cytotoxicity assay.

Compound cytotoxicity on HeLa cells was measured by the MTT cell proliferation assay. HeLa cells were seeded into 96-well microtiter plates at a concentration of 4×10^3 cells/well in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 5% fetal bovine serum. After 24 hours, test compounds were added (5 and 10μ g/mL) and incubated at 37°C in a 5% CO₂ atmosphere. 48 hours after, MTT (3-(4,5-dimethyltiazol-2-yl)-2,5-diphenyl tetrasodium bromide) was added and incubated for 1 hour. Next, the culture medium was eliminated and the insoluble reduced product (Formazan salt) was dissolved in DMSO and quantified spectrophotometrically at 540 nm. Each experiment was conducted in triplicate and reported results correspond to the average of three independent experiments.

Evaluation of the impact of 3a on Trypanosoma cruzi oxidative state.

To evaluate the impact of **3a** on the redox state of the parasites, compound toxicity at concentrations around its IC_{50} was determined in the presence or absence of H_2O_2 . Parasite growth inhibition was evaluated using **3a** (4 and 6 μ g/mL), H_2O_2 (5 μ M, 10 μ M and 20 μ M) or a combination of both, as previously described.

Trypanothione reductase inhibition assays.

Inhibition assays of Trypanothione reductase activity were measured by monitoring DTNB reduction at 405 nm (ε_{TNB} = 13.6 mM⁻¹·cm⁻¹) and 30°C, in a final volume of 250 µL, using a Multiskan Ascent one-channel vertical light path filter photometer (Thermo Electron Co.). The reaction mixture contained 100 mM TRIS-HCl pH 7.5, 2 mM EDTA, 200 µM NADPH, 5 µM TS₂, 4 nM *Tc*TR, 500 µM DTNB and different concentrations of **3a** (3 to 200 µM). Time-dependent kinetic constants were determined using the equation described by Fairlamb *et al.*²⁶ Inhibitor stock solutions were prepared using DMSO. DMSO final concentration in the reaction mixture did not exceed 1% (v/v). Kinetic constants are the mean of at least three independent data sets, and they are reproducible within ±10%.