Supporting Information

An Amino-Benzosuberene Analogue That Inhibits Tubulin Assembly and

Demonstrates Remarkable Cytotoxicity

Rajendra P. Tanpure, ^{*a*,‡} Clinton S. George, ^{*a*,‡} Madhavi Sriram, ^{*a*,‡} Tracy E. Strecker, ^{*a*}

Justin K. Tidmore, ^a Ernest Hamel, ^b Amanda K. Charlton-Sevcik, ^a David J. Chaplin, ^c

Mary Lynn Trawick, ^a and Kevin G. Pinney*^a

^aDepartment of Chemistry and Biochemistry, Baylor University, One Bear Place #97348,

Waco, Texas 76798-7348, United States

^bScreening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland 21702, United States

^cOXiGENE Inc., 701 Gateway Blvd., Suite 210, South San Francisco, California 94080,

United States

[‡] Authors with equal contribution.

^{*}Corresponding author. Tel.: +1 254 710 4117; fax: +1 254 710 4272.

E-mail address: Kevin_Pinney@baylor.edu.

Table of Contents:

General Experimental	S4
Compound 8	S4-5
Compound 9	S6
Compound 10 (Scheme 2, Route 1)	S6-7
Compound 11 (Continued from Scheme 2, Route 1)	S7-8
Compound 4 (Continued from Scheme 2, Route 1)	S8-9
Compound 3 (Continued from Scheme 2, Route 1)	S9-10
Compound 13	S10-11
Compound 14	S11-12
Compound 15	S12-13
Compounds 10, 12 (Scheme 2, Route 2)	S13-14
Compound 11 (Continued from Scheme 2, Route 2)	S14-15
Compound 4 (Continued from Scheme 2, Route 2)	S15-16
Compound 3 (Continued from Scheme 2, Route 2)	S16-17

Electronic Supplementary Material (ESI) for Medicinal Chemistry Communications This journal is The Royal Society of Chemistry 2012

Compound 16	S17-18
Inhibition of Tubulin Polymerization	S18
Colchicine Binding Assay	S19
Sulforhodamine B (SRB) Assay	S19
Endothelial Tube Disruption Assay	S19-21
References	S21-23

General Experimental Procedures. Anhydrous methanol (MeOH) was obtained from commercial sources, and tetrahydrofuran (THF) was dried using a solvent purification system. Thin-layer chromatography (TLC) plates (pre-coated glass plates with silica gel $60 \text{ F}_{254}, 0.25 \text{ mm}$ thickness) were used to monitor reactions. Purification of intermediates and products was carried out with a flash purification system using silica gel (200-400 mesh, 60 Å) prepacked columns. Intermediates and products synthesized were characterized on the basis of their ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) spectroscopic data. TMS was used as an internal standard for spectra recorded in CDCl₃. All of the chemical shifts are expressed in ppm (δ), coupling constants (J) are presented in Hz, and peak patterns are reported as broad (br), singlet (s), doublet (d), triplet (t), quartet (q), septet (sept), and multiplet (m). HRMS were obtained using (+ve or -ve) electrospray ionization (ESI) techniques. Purity of the final compounds was further analyzed at 25 °C using a Agilent 1200 HPLC system with a diode-array detector ($\lambda =$ 190-400 nm), a Zorbax XDB-C18 HPLC column (4.6 mm \times 150 mm, 5 μ m), and a Zorbax reliance cartridge guard-column; eluents, solvent A, water, solvent B, acetonitrile; gradient, 90% A/10% B \rightarrow 0% A/100% B over 0 to 20 min; 0% A/100% B over 20 to 22 min; 0% A/100% B \rightarrow 90% A/10% B over 22 to 26 min; stop time 30 min; post-time 5 min; flow rate 1.5 mL/min; injection volume 20 μ L; monitored at wavelengths (λ 254, 264, 280 and 300 nm).

[Scheme 2, Route 1]

5-(3'-Methoxy-2'-nitrophenyl)pent-4-enoic acid (8): To a solution of anhydrous THF (60 mL) under N_2 was added 3-(carboxypropyl)triphenylphosphonium bromide (2.66 g,

6.21 mmol) and potassium *tert*-butoxide (1.68 g, 14.9 mmol). The solution was allowed to stir for 1 h at ambient temperature. 3-Methoxy-2-nitrobenzaldehyde (1.07 g, 5.91 mmol) was added dropwise to the reaction mixture in anhydrous THF (5 mL), which was allowed to stir for 12 h at ambient temperature. The solution was quenched with 2 M HCl (20 mL), and the organic solvent was evaporated under reduced pressure. The aqueous phase was extracted with EtOAc (4 x 30 mL), washed with brine, dried over Na₂SO₄, filtered, evaporated under reduced pressure, and purified by flash chromatography with a prepacked 100 g silica gel column [eluents; solvent A, EtOAc, solvent B, hexanes; gradient, 10% A/90% B \rightarrow 12% A/88% B (1 CV), 12% A/88% B \rightarrow 100% A/0% B (13 CV), 100% A/0% B (1.5 CV); flow rate, 40 mL/min; monitored at λ 's 254 and 280 nm]. Pentenoic acid analogue **8** (0.879 g, 3.46 mmol, 58% yield) was obtained as a mixture of *E* and *Z* isomers that was a red solid, R_f = 0.16 (50:50 hexanes:EtOAc).

¹H NMR (CDCl₃, 500 MHz) Reported as *E* & *Z* mixture: δ 7.38 (1H, t, *J* = 8.1 Hz), 7.34 (1H, t, *J* = 8.2 Hz), 7.12 (1H, dd, *J* = 8.0 Hz, 0.8 Hz), 6.96 (1H, *J* = 8.4 Hz), 6.89 (2H, d, *J* = 8.4 Hz), 6.37 (1H, d, *J* = 11.4 Hz), 6.31 (2H, m), 5.84 (1H, dt, *J* = 11.4 Hz, 7.3 Hz), 3.90 (3H, s), 3.88 (3H, s), 2.54 (4H, m), 2.45 (4H, m).

¹³C NMR (CDCl₃, 125 MHz) Reported as *E* & *Z* mixture: δ 178.1, 178.0, 150.76, 150.74, 134.8, 134.3, 130.62, 130.60, 123.6, 123.5, 121.6, 118.0, 111.2, 110.9, 56.41, 56.39, 33.4, 33.1, 28.0, 23.8.

HRMS, m/z: observed 252.0868 [M + H]⁺, (calcd for C₁₂H₁₄NO₅⁺, 252.0866).

5-(3'-Methoxy-2'-nitrophenyl)pentanoic acid (**9**): Pentenoic acid analogue **8** (2.06 g, 8.21 mmol) under N₂ was added to anhydrous MeOH (100 mL) under N₂. To this solution was added 10% Pd/C (2.00 g) and stirred for 10 min at ambient temperature. 1,4-Cyclohexadiene (16.4 g, 205 mmol) was added to the mixture, which was stirred for 4 h. The reaction mixture was filtered through celite, washed with EtOAc (4 x 25 mL), evaporated under reduced pressure, and purified by flash chromatography using 20% EtOAc/80% hexanes as eluent. Pentanoic acid analogue **9** was obtained as a tan solid (1.54 g, 6.10 mmol, 74% yield), $R_f = 0.22$ (50:50, hexanes:EtOAc)

¹**H NMR** (CDCl₃, 500 MHz): δ 7.33 (1H, t, *J* = 8.1 Hz), 6.87 (2H, dd, *J* = 8.1 Hz, 3.7 Hz), 3.87 (3H, s), 2.58 (2H, m), 2.36 (2H, m), 1.67 (4H, m).

¹³C NMR (CDCl₃, 125 MHz): δ 179.4, 150.7, 141.8, 134.7, 130.7, 121.6, 110.1, 56.3, 33.6, 30.6, 29.7, 24.2.

HRMS, m/z: observed 276.0845 [M + Na]⁺, (calcd for C₁₂H₁₄NNaO₅⁺, 276.0842).

2-Methoxy-1-nitro-6,7,8,9-tetrahydro-5*H***-benzo[7]annulen-5-one (10):^{S2A} To a flask containing pentanoic acid analogue 9** (0.281 g, 1.11 mmol) was added 5.5 mL of Eaton's reagent (7.7% P_2O_5 in CH₃SO₃H). The solid slowly dissolved with vigorous stirring and was allowed to stir for 12 h at ambient temperature. The solution was poured over ice, which was allowed to melt, then slowly neutralized with NaHCO₃ (aq.). The aqueous phase was extracted with EtOAc (4 x 25 mL). The combined organic extracts were washed with brine, dried over Na₂SO₄, filtered, evaporated under reduced pressure, and purified using flash chromatography with a prepacked 25 g silica column [eluents;

solvent A, EtOAc, solvent B, hexanes; gradient, 5% A/95% B \rightarrow 7% A/93% B (1 CV), 7% A/93% B \rightarrow 60% A/40% B (13 CV), 60% A/40% B (1 CV); flow rate, 25 mL/min; monitored at λ 's 254 and 280 nm]. Ketone **10** (0.222 g, 0.945 mmol, 85% yield) was obtained as a white solid, $R_f = 0.34$ (70:30 hexanes:EtOAc).

¹**H NMR** (CDCl₃, 500 MHz): δ 7.84 (1H, d, *J* = 8.8 Hz), 6.97 (1H, d, *J* = 8.8 Hz), 3.94 (3H, s), 2.79 (2H, m), 2.71 (2H, m), 1.90 (2H, m), 1.81 (2H, m).

¹³**C NMR** (CDCl₃, 125 MHz): δ 203.1, 153.3, 141.4, 134.0, 132.2, 131.9, 110.3, 56.6, 40.3, 26.2, 24.4, 20.2.

HRMS, m/z: observed 236.0917 [M + H]⁺, (calcd for C₁₂H₁₄NO₄⁺, 236.0917).

[Scheme 2, continued from Route 1]

2-Methoxy-1-nitro-5-(3',4',5'-trimethoxyphenyl)-6,7,8,9-tetrahydro-5H-

benzo[7]**annulen-5-ol** (**11**): A solution of 3,4,5-trimethoxyphenylbromide (0.389 g, 1.57 mmol) in anhydrous THF (15 mL) under N₂ was cooled to —78 °C, then *n*-BuLi (0.57 mL, 2.5 M in hexanes) was added and stirred for 1 h. Ketone **10** (0.222 g, 0.945 mmol) was slowly added to the reaction mixture in anhydrous THF (3 mL) and allowed to warm to ambient temperature overnight with continuous stirring. On completion, the reaction mixture was quenched with H₂O (5 mL), and the solvent was evaporated under reduced pressure. The aqueous phase was extracted using EtOAc (4 x 15 mL). The combined organic extracts were washed with brine, dried over Na₂SO₄, filtered, evaporated under reduced pressure, and purified by flash chromatography using a prepacked 25 g silica column [eluents; solvent A, EtOAc, solvent B, hexanes; gradient, 5% A/95% B (1 CV),

5% A/95% B \rightarrow 12% A/88% B (1 CV), 12% A/88% B \rightarrow 100% A/0% B (13 CV), 100% A/0% B (2 CV); flow rate, 40 mL/min; monitored at λ 's 254 and 280 nm]. Tertiary alcohol **11** (0.320 g, 0.794 mmol, 84% yield) was obtained as a white solid, R_f 0.20 (50:50, hexanes:EtOAc).

¹**H NMR** (CDCl₃, 500 MHz): δ 7.68 (1H, d, *J* = 8.8 Hz), 6.88 (1H, d, *J* = 8.9 Hz), 6.46 (2H, s), 3.90 (3H, s), 3.85 (3H, s), 3.77 (6H, s), 3.10 (2H, m), 2.40 (1H, m), 2.19 (1H, s), 2.12 (1H, m), 1.94 (1H, m), 1.79 (2H, m), 1.54 (1H, m).

¹³C NMR (CDCl₃, 125 MHz): δ 153.3, 149.4, 142.4, 140.4, 138.5, 137.7, 133.5, 129.3, 109.2, 104.0, 79.7, 60.9, 56.2, 56.2, 40.9, 28.6, 26.3, 25.9.

HRMS, m/z: observed 426.1525 [M + Na]⁺, (calcd for C₂₁H₂₅NNaO₇⁺, 246.1523).

3-Methoxy-4-nitro-9-(3',4',5'-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulene

(4): Tertiary alcohol **11** (0.266 g, 0.660 mmol) was dissolved in AcOH (10 mL) and refluxed at 140 °C for 3 h. The reaction was then cooled to ambient temperature and slowly neutralized with NaHCO₃ (aq.). The aqueous phase was then extracted with EtOAc (4 x 50 mL). The combined organic extracts were washed with brine, dried over Na₂SO₄, filtered, evaporated under reduced pressure, and purified by flash chromatography using a prepacked 25 g silica gel column [eluent; solvent A, EtOAc, solvent B, hexanes; gradient 5% A/95% B \rightarrow 7% A/93% B (1 CV), 7% A/93% B \rightarrow 60% A/40% B (10 CV), 60% A/40% B (2 CV); flow rate, 40 mL/min; monitored at λ 's 254 and 280 nm]. Nitro analogue **4** (0.189 g, 0.491 mmol, 74% yield) was obtained as a white solid, R_f = 0.29 (70:30, hexanes:EtOAc).

¹**H NMR** (CDCl₃, 500 MHz): δ 7.12 (1H, d, *J* = 8.7 Hz), 6.87 (1H, d, *J* = 8.5 Hz), 6.45 (2H, s), 6.43 (1H, t, *J* = 7.4 Hz), 3.91 (3H, s), 3.87 (3H, s), 3.82 (6H, s), 2.56 (2H, t, *J* = 6.9 Hz), 2.22 (2H, p, *J* = 7.0 Hz), 2.00 (2H, q, *J* = 7.3 Hz).

¹³**C NMR** (CDCl₃, 125 MHz): *δ* 153.1, 149.3, 141.5, 141.5, 137.7, 137.3, 134.9, 133.7, 131.8, 128.6, 109.7, 105.1, 60.9, 56.3, 56.2, 34.7, 27.3, 25.2.

HRMS, m/z: observed 386.1599 [M + H]⁺, (calcd for C₂₁H₂₄O₆⁺, 386.1598).

3-Methoxy-9-(3',4',5'-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-amine

(3): Nitro analogue 4 (0.139 g, 0.361 mmol) was dissolved in AcOH (8 mL). Zinc dust (0.550 g, 8.42 mmol) was added to the solution, and the reaction mixture was stirred for 7 h at ambient temperature. The reaction was quenched with NaHCO₃ (aq.) and monitored by pH paper until a neutral pH was reached. The aqueous reaction mixture was extracted with EtOAc (4 x 25 mL), and the combined organic extracts were washed with brine, dried over sodium sulfate, and filtered. The solvent was evaporated under reduced pressure, and the crude product was purified by flash chromatography using a prepacked 25 g silica gel column [eluent; solvent A, EtOAc, solvent B, hexanes; gradient 5% A/95% B \rightarrow 7% A/93% B (1 CV), 7% A/93% B \rightarrow 60% A/40% B (10 CV), 60% A/40% B (2 CV); flow rate, 40 mL/min; monitored at λ 's 254 and 280 nm]. The amino analogue **3** (0.103 g, 0.290 mmol, 80% yield) was obtained as a yellow solid, R_f = 0.47 (70:30, hexanes:EtOAc).

¹**H NMR** (CDCl₃, 500 MHz): δ 6.67 (1H, d, *J* = 8.4 Hz), 6.52 (2H, s), 6.49 (1H, d, *J* = 8.4 Hz), 6.30 (1H, t, *J* = 7.4 Hz), 3.88 (3H, s), 3.86 (3H, s), 3.80 (6H, s), 2.59 (2H, t, *J* = 6.9 Hz), 2.12 (2H, p, *J* = 7.0 Hz), 1.95 (2H, q, *J* = 7.2 Hz).

¹³C NMR (CDCl₃, 125 MHz): δ 152.8, 146.3, 143.5, 138.6, 137.2, 133.6, 132.4, 126.8, 126.3, 119.8, 107.6, 105.3, 60.9, 56.1, 55.6, 33.2, 25.6, 25.3.

HRMS, m/z: observed 356.1857 [M + H]⁺, (calcd for C₂₁H₂₆O₄⁺, 356.1856).

[Scheme 2, Route 2]

(Z)/(E)- 5-(3'-Methoxyphenyl)pent-4-enoic acid (13): K-OtBu (25.5 g, 227 mmol) was added to a well-stirred solution of 3-(carboxypropyl)triphenylphosphonium bromide (46.7 g, 109 mmol) in THF (500 mL, anhyd) at rt. The reaction mixture was then stirred for 15 mins. A solution of 3-methoxyaldehyde (14.2 g, 104 mmol) in THF (50 mL, anhyd) was added dropwise to the reaction mixture, which was stirred at rt for 8h. The reaction was quenched by careful addition of H₂O (100 mL) and extracted with Et₂O (2 \times 500 mL). The aqueous phase was acidified with 2M HCl until the product precipitated making the solution cloudy, which then eventually turned clear again. This acidified aqueous phase was extracted with EtOAc (3×200 mL). The combined organic phases were washed with brine, dried over Na₂SO₄, filtered and evaporated under reduced pressure. Flash chromatography of the crude using a prepacked 160 g silica column, Eluents; solvent A, EtOAc, solvent B, hexanes; gradient, 30% A/70% B over 4.0 min (1 CV), 30% A/70% B →70% A/30% B over 40.0 min (10 CV), 70% A/30% B over 8.0 min (2 CV); flow rate 50.0 mL/min; monitored at λ 's 254 and 280 nm afforded the mixture of *E*/*Z*-isomers **13** (16.9 g, 82.2 mmol, 79 % yield), as a pale yellow liquid.

¹H NMR (**mixture of** *E*/*Z***-isomers**) (500 MHz, CDCl₃) δ 7.21 (1H, t, *J* = 7.9 Hz), 6.94 (1H, dt, *J* = 7.6 Hz), 6.88 (1H, dd, *J* = 2.3, 1.7 Hz), 6.77 (1H, ddd, *J* = 8.25, 2.6, 0.8 Hz), 6.42 (1H, d, *J* = 15.8 Hz), 6.21 (1H, d, *J* = 15.8 Hz), 3.80 (3H, s, OCH₃), 2.55 (2H, m), 2.54 (2H, m). ¹H NMR (500 MHz, CDCl₃) δ 7.69 (1H, dt, *J* = 7.7, 1.1 Hz), 7.60 (1H, dd, *J* = 2.6, 1.5 Hz), 7.25 (1H, t, *J* = 7.8 Hz), 6.46 (1H, dt, *J* = 11.6 Hz), 5.63 (1H, dt, *J* = 11.6 Hz), 3.85 (3H, s, OCH₃), 2.67 (2H, m), 2.49 (2H, m); ¹³C NMR (**mixture of** *E*/*Z***-isomers**) (126 MHz, CDCl₃) δ 179.38, 179.35, 172.01, 159.74, 159.56, 159.42, 138.72, 138.46, 131.07, 130.53, 130.31, 130.16, 129.51, 129.48, 129.23, 128.35, 122.64, 121.20, 120.48, 118.76, 114.30, 114.23, 112.84, 112.38, 111.44, 77.29, 77.03, 76.78, 55.44, 55.19, 34.13, 33.75, 27.86, 23.80.

HRMS, m/z: observed 205.0868 [M-1]⁻, (calcd for C₁₂H₁₃O₃⁻, 205.0870).

5-(3'-Methoxyphenyl)pentanoic acid (14): A suspension of 10% Pd/C (0.154 g) and 13 (1.50 g, 7.27 mmol) in MeOH (20 mL) was stirred under H₂ gas for 24 h. The reaction was checked for completion by filtering a little amount of the reaction mixture through celite and evaporating the solvent to record NMR data. On completion the reaction mixture was filtered through celite and the solvent was evaporated under reduced pressure to obtain a pale yellow liquid. Flash chromatography of the crude mixture using a prepacked 25 g silica column, Eluents; solvent A, EtOAc, solvent B, hexanes; gradient, 30% A/70% B over 1.19 min (1 CV), 30% A/70% B \rightarrow 80% A/20% B over 13.12 min (10 CV), 80% A/20% B over 2.38 min (2 CV); flow rate 25.0 mL/min; monitored at λ 's 254 and 280 nm afforded **14** (1.38 g, 6.63 mmol, 91 % yield), as a pale yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.19 (1H, t, *J* = 7.5 Hz), 6.76 (1H, d, *J* = 7.5 Hz), 6.73 (1H, d, *J* = 7.5 Hz), 6.72 (1H, s), 3.79 (3H, s, OCH₃), 2.61 (2H, m), 2.38 (2H, m), 1.68 (2H, m); ¹³C NMR (126 MHz, CDCl₃) δ 179.89, 159.60, 143.65, 129.29, 120.82, 114.16, 111.06, 77.28, 77.03, 76.77, 55.14, 35.56, 30.64, 24.28.

2-Methoxy-6,7,8,9-tetrahydro-5*H*-benzo[7]annulen-5-one (15)^{S1}: Eaton's reagent (60.0 g) was added to compound 14 (3.01 g, 14.5 mmol) and the solution was stirred for 12 h under N₂. The reaction mixture was poured over ice and the ice was allowed to melt. The aqueous phase was extracted with CH₂Cl₂ (2 × 100 mL) and the combined organic phase was washed with NaHCO₃ (Satd. soln.) (2 × 100 mL). The organic phase was dried over Na₂SO₄ and the solvent was evaporated under reduced pressure to obtain a pale yellow liquid. Flash chromatography of the crude using a prepacked 25 g silica column, Eluents; solvent A, EtOAc, solvent B, hexanes; gradient, 10% A/90% B over 1.19 min (1 CV), 10% A/90% B \rightarrow 50% A/50% B over 13.12 min (10 CV), 50% A/50% B over 2.38 min (2 CV); flow rate 25.0 mL/min; monitored at λ 's 254 and 280 nm afforded benzosuberone 15 (2.10 g, 11.0 mmol, 76 % yield), as a white solid.

¹H NMR (500 MHz, CDCl₃) δ 7.78 (1H, d, *J* = 8.7 Hz, H-4), 6.81 (1H, dd, *J* = 8.7, 2.5 Hz, H-3), 6.70 (1H, d, *J* = 2.5 Hz, H-1), 3.85 (3H, s, OCH₃-2), 2.91 (2H, dd, *J* = 6.5, 6.2 Hz, CH₂-9), 2.71 (2H, dd, *J* = 6.0 Hz, CH₂-6), 1.88 (2H, m, *J* = 6.5 Hz, CH₂-8), 1.80 (2H, dd, *J* = 6.2 Hz, CH₂-7); ¹³C NMR (126 MHz, CDCl₃) δ 204.3 (C, C-5), 162.7 (C, C-2), 144.2 (C, C-1a), 131.6 (C, C-4a), 131.3 (C, C-4), 114.9 (C, C-1), 111.7 (C, C-3), 55.4 (CH₃, OCH₃-2), 40.7 (C, C-6), 32.8 (C, C-9), 25.1 (C, C-8), 20.7 (C, C-7).

HRMS, m/z: observed 191.1071 [M+1]⁺, (calcd for C₁₂H₁₅O₂⁺, 190.1067).

2-Methoxy-1-nitro-6,7,8,9-tetrahydro-5*H***- benzo[7]annulen-5-one (10) ^{S2B}: To a solution of benzosuberone 15** (7.0 g, 36.8 mmol) in acetic anhydride (75 mL) cooled to - 10 °C, a solution (1:1) of HNO₃ and acetic acid (16 mL) was added dropwise with stirring. After stirring for 3h, ice cold water was added to quench the reaction. The mixture was stirred vigorously for 2 min and the organic layer was separated. The aqueous layer was extracted with EtOAc (2 x 100 mL). The combined organic phase was washed with brine, dried over MgSO₄, filtered, and the solvents evaporated under reduced pressure. Flash chromatography of the crude mixture using a prepacked 50 g silica column, Eluents; solvent A, EtOAc, solvent B, hexanes; gradient, 20% A/80% B over 4.57 min (1 CV), 20% A/80% B \rightarrow 80% A/20% B over 16.30 min (10 CV), 80% A/20% B over 3.18 min (2 CV); flow rate 40.0 mL/min; monitored at λ 's 254 and 280 nm; afforded 1-nitrobenzosuberone **10** (3.24 g, 13.8 mmol, 37%) and 3-nitrobenzosuberone **12** (3.54 g, 15.1 mmol, 41 %).

¹H NMR (**10**) (500 MHz, CDCl₃) δ 7.84 (1H, d, *J* = 8.8 Hz, H-4), 6.97 (1H, d, *J* = 8.8 Hz, H-3), 3.94 (3H, s, OCH₃-2), 2.79 (2H, dd, *J* = 6.5 Hz, H-9), 2.72 (2H, dd, *J* = 6.0 Hz, H-6), 1.92 (2H, m, *J* = 6.5 Hz, H-8), 1.82 (2H, m, *J* = 6.0 Hz, H-7); ¹³C NMR (**10**) (126 MHz, CDCl₃) δ 203.1 (C, C-5), 153.3 (C, C-2), 141.4 (C, C-1), 134.0 (C, C-1a), 132.2 (C, C-4a), 131.9 (C, C-4), 110.3 (C, C-3), 56.6 (CH₃, OCH₃-2), 40.3 (C, C-6), 26.2 (C, C-9), 24.4 (C, C-8), 20.2 (C, C-7);

Anal., Calcd for C₁₂H₁₃NO₄: C, 61.27; H, 5.57; N, 5.82. Found: C, 61.17; H, 5.55; N, 5.82.

HRMS, m/z: observed 236.0919 [M+1]⁺, (calcd for C₁₂H₁₄NO₄⁺, 236.0917).

¹H NMR (**12**) (500 MHz, CDCl₃) δ 8.32 (1H, s, H-4), 6.88 (1H, s, H-1), 4.01 (3H, s, OCH₃-2), 2.99 (2H, dd, J = 6.6, 6.3 Hz, H-9), 2.76 (2H, dd, J = 6.1, 4.1 Hz, H-6), 1.94 (2H, m, J = 6.6, 6.3 Hz, H-8), 1.84 (2H, m, J = 6.1, 4.1 Hz, H-7); ¹³C NMR (**12**) (126 MHz, CDCl₃) δ 202.0 (C, C-5), 155.1 (C, C-2), 148.8 (C, C-1a), 138.2 (C, C-3), 131.0 (C, C-4a), 127.3 (C, C-4), 114.1 (C, C-1), 56.7 (CH₃, OCH₃-2), 40.4 (C, C-6), 33.1 (C, C-9), 24.7 (C, C-8), 20.3 (C, C-7);

HRMS, m/z: observed 236.0921 [M+1]⁺, (calcd for C₁₂H₁₄NO₄⁺, 236.0917).

[Scheme 2, continued from Route 2]

2-Methoxy-1-nitro-5-(3',4',5'-trimethoxyphenyl)-6,7,8,9-tetrahydro-5H-

benzo[7]annulen-5-ol: (11): To a solution of 3,4,5-trimethoxyphenylbromide (5.01 g, 20.3 mmol) in anhydrous THF (200 mL) at -78 °C, *n*-BuLi (8 mL, 2.5 M) was added and the reaction stirred for 30 min. Benzosuberone 10 (2.35 g, 10 mmol) in THF (25 mL) was added using a dropping funnel over a period of 15 min. The reaction mixture was stirred overnight and allowed to warm to ambient temperature. The reaction mixture was quenched with H₂O (100 mL), and extracted with EtOAc (2 × 100 mL). The combined organic phase was washed with brine, dried over MgSO₄, filtered, and evaporated under reduced pressure. Flash chromatography of the crude product using a prepacked 50 g

silica column [eluents; solvent A, EtOAc, solvent B, hexanes; gradient, 20% A/80% B over 1.39 min (1 CV), 20% A/80% B \rightarrow 80% A/20% B over 16.3 min (10 CV), 80% A/20% B over 3.18 min (2 CV); flow rate 25.0 mL/min; monitored at λ 254 and 280 nm] afforded alcohol **11** (3.57 g, 8.8 mmol, 88% yield) as a white solid:

¹H NMR (500 MHz, CDCl₃) δ 7.68 (1H, d, *J* = 8.9 Hz, H-4), 6.88 (1H, d, *J* = 8.9 Hz, H-3), 6.46 (2H, S, H-2', -6'), 3.89 (3H, s, OCH₃-2), 3.84 (3H, s, OCH₃-4'), 3.76 (3H, s, OCH₃-3', -5'), 2.62-2.58 (1H, m, H-9), 2.61-2.56 (1H, m, H-6), 2.42-2.36 (1H, m, H-9), 2.15-2.09 (1H, m, H-6), 1.96-1.93 (1H, m, H-8), 1.85-1.80 (1H, m, H-8), 1.80-1.72 (1H, m, H-7), 1.55-1.48 (1H, m, H-7); ¹³C NMR (126 MHz, CDCl₃) δ 153.3 (C, C-3', -5'), 149.3 (C, C-2), 142.4 (C, C-1), 140.4 (C, C-1'), 138.5 (C, C-4a), 137.6(C, C-4'), 133.5 (C, C-1a), 129.3 (CH, C-4), 109.2 (CH, C-3), 104.0 (CH, C-2', -6'), 79.7 (C, C-5), 60.9 (CH₃, OCH₃-4'), 56.23 (CH₃, OCH₃-2), 56.18 (CH₃, OCH₃-3', -5'), 40.8 (CH₂, CH₂-6), 28.6 (CH₂, CH₂-9), 26.3 (CH₂, CH₂-7), 25.9 (CH₂, CH₂-8).

HRMS, m/z: observed 426.1523 [M+Na]⁺, (calcd for C₂₁H₂₅NO₇Na⁺, 426.1523).

3-Methoxy-4-nitro-9-(3',4',5'-trimethoxyphenyl)-6,7-dihydro-5*H*-benzo[7]annulene

(4): A solution of **11** (3.5 g, 8.7 mmol) in AcOH (50 mL) and H₂O (50 mL) was heated to reflux at 160 °C for 12 h. The reaction mixture was cooled and the aqueous solvents evaporated under reduced pressure to obtain a crude product. Flash chromatography of the crude product using a prepacked 25 g silica column [eluents; solvent A, EtOAc, solvent B, hexanes; gradient, 20% A/80% B over 1.19 min (1 CV), 20% A/80% B \rightarrow 80% A/20% B over 13.12 min (10 CV), 80% A/20% B over 2.38 min (2 CV); flow rate 25.0

mL/min; monitored at λ 254 and 280 nm] afforded benzosuberene **4** (2.96 g, 7.68 mmol, 88% yield) as a white solid:

¹H NMR (500 MHz, CDCl₃) δ 7.12 (1H, d, *J* = 9.0 Hz, H-4), 6.87 (1H, d, *J* = 9.0 Hz, H-3), 6.45 (2H, S, H-2', -6'), 6.43 (2H, t, *J* = 7.5 Hz, H-6), 3.91 (3H, s, OCH₃-3), 3.87 (3H, s, OCH₃-4'), 3.82 (3H, s, OCH₃-3', -5'), 2.56 (2H, t, *J* = 7.0 Hz, H-9), 2.22 (2H, p, *J* = 7.0 Hz, H-8), 2.00 (2H, dt, *J* = 7.0, 7.5 Hz, H-7); ¹³C NMR (126 MHz, CDCl₃) δ 153.1 (C, C-3', -5'), 149.3 (C, C-3), 141.5 (C, C-4), 141.5 (C, C-5), 137.7 (C, C-4'), 137.3 (C, C-1'), 134.9 (C, C-4a), 133.7 (C, C-1a), 131.8 (CH, C-1), 128.6 (CH, C-8), 109.6 (CH, C-2), 105.1 (CH, C-2', -6'), 60.9 (CH₃, OCH₃-4'), 56.3 (CH₃, OCH₃-3', -5'), 56.2 (CH₃, OCH₃-3), 34.7 (CH₂, CH₂-6), 27.3 (CH₂, CH₂-5), 25.2 (CH₂, CH₂-7).

Anal., Calcd for C₂₁H₂₃NO₆: C, 65.44; H, 6.02; N, 3.63. Found: C, 65.41; H, 6.19; N, 3.58.

HRMS, m/z: observed 386.1600 [M+1]⁺, (calcd for C₂₁H₂₄NO₆⁺, 386.1598).

3-Methoxy-9-(3',4',5'-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-amine (**3**): A suspension of **4** (0.049 g, 0.127 mmol) and zinc (0.43 g) in AcOH (10 mL) was stirred for 2h. The reaction mixture was filtered and the aqueous solvents evaporated under reduced pressure to obtain a crude product. Flash chromatography of the crude product using a prepacked 10 g silica column [eluents; solvent A, EtOAc, solvent B, hexanes; gradient, 30% A/70% B over 1.15 min (1 CV), 30% A/70% B \rightarrow 30% A/70% B over 13.07 min (10.5 CV), 80% A/20% B over 2.3 min (2 CV); flow rate 12.0 mL/min; monitored at λ 254 and 280 nm] afforded benzosuberene **3** (0.040 g, 0.113 mmol, 88% yield) as a white solid:

¹H NMR (500 MHz, CDCl₃) δ 6.67 (1H, d, J = 8.4 Hz, H-3), 6.52 (2H, S, H-2', -6'), 6.49 (1H, d, J = 8.4 Hz, H-4), 6.30 (2H, t, J = 7.3 Hz, H-6), 3.88 (3H, s, OCH₃-2), 3.86 (3H, s, OCH₃-4'), 3.80 (3H, s, OCH₃-3', -5'), 2.59 (2H, t, J = 7.0 Hz, H-9), 2.12 (2H, p, J = 7.0 Hz, H-8), 1.95 (2H, dt, J = 7.0, 7.3 Hz, H-7); ¹³C NMR (126 MHz, CDCl₃) δ 152.8 (C, C-3', -5'), 146.3 (C, C-2), 143.5 (C, C-5), 138.5 (C, C-1'), 137.2 (C, C-4'), 133.5 (C, C-4a), 132.4 (C, C-1), 126.8 (C, C-1a), 126.3 (CH, C-6), 119.8 (CH, C-4), 107.5 (CH, C-3), 105.2 (CH, C-2', -6'), 60.9 (CH₃, OCH₃-4'), 56.1 (CH₃, OCH₃-3', -5'), 55.5 (CH₃, OCH₃-2), 33.2 (CH₂, CH₂-8), 25.6 (CH₂, CH₂-7), 25.3 (CH₂, CH₂-9).

HRMS, m/z: observed 356.1862 [M+1]⁺, (calcd for C₂₁H₂₆NO₄⁺, 356.1856).

Purity by HPLC: $R_f = 10.65 \text{ min}, 95\%$ at 254, and 280 nM.

[Scheme 3]

3-Methoxy-9-(3',4',5'-trimethoxyphenyl)-6,7-dihydro-5*H***-benzo[7]annulen-4-amine hydrochloride** (16): Amine analogue **3** (0.049 g, 0.137 mmol) was dissolved in Et₂O (4 mL). To this solution was added 1M HCl in Et₂O (4 mL) and the solution was stirred for 2 h at room temperature. The reaction mixture was then filtered through a nylon membrane and washed with Et₂O (3 x 3 mL). The amine salt **16** (0.028 g, 0.072 mmol, 52% yield) was obtained as a white solid.

¹**H NMR** (D₂O, 500 MHz): δ 6.97 (1H, d, *J* = 8.6 Hz), 6.95 (1H, d, *J* = 8.6 Hz), 6.54 (2H, s), 6.45 (1H, t, *J* = 7.3 Hz), 3.84 (3H, s), 3.682 (6H, s), 3.676 (3H, s), 2.57 (2H, t, *J* = 7.0 Hz), 2.09 (2H, p, *J* = 7.1 Hz), 1.82 (2H, q, *J* = 7.1).

¹H NMR (CD₃OD, 500 MHz): δ 7.10 (1 H, d, J = 8.8 Hz), 7.08 (1 H, d, J = 8.8 Hz),
6.494 (2 H, s), 6.491 (1 H, t, J = 7.4 Hz), 4.00 (3 H, s), 3.77 (3 H, s), 3.75 (6 H, s), 2.74
(2 H, t, J = 7.0 Hz), 2.25 (2 H, p, J = 7.2 Hz), 1.95 (2 H, q, J = 7.3 Hz).

¹³C NMR (CD₃OD, 125 MHz): δ 154.4, 152.9, 143.4, 139.2, 138.9, 137.8, 135.8, 132.0, 129.0, 118.1, 110.7, 106.6, 61.2, 57.0, 56.6, 34.9, 26.8, 26.1.

HRMS, m/z: observed 356.1865 [M+1]⁺, (calcd for C₂₁H₂₆NO₄⁺, 356.1856). [Note:

Calculated based on protonated free amine].

Purity by HPLC: $R_f = 8.12 \text{ min}$, 98% at 254, and 280 nM.

Biology:

Effects on Tubulin Polymerization. Bovine brain tubulin was purified using methods previously described.^{S3} The effect of compounds on tubulin assembly in vitro was determined by using a series of concentrations that were preincubated with 10 μ M tubulin (1.0 mg/mL) in glutamate buffer at 30 °C, followed by cooling to 0 °C. After GTP was added, the samples were mixed and transferred to cuvettes at 0 °C in a recording spectrophotometer and warmed to 30 °C to initiate polymerization. Tubulin assembly was observed turbidimetrically at 350 nm.^{S4} Tubulin disassembly was confirmed by cooling to 0 °C. The calculated compound concentration that inhibited tubulin assembly by 50% after a 20 min incubation was defined as the IC₅₀ value.

Colchicine Binding Assay. Colchicine binding was measured as previously described.^{S4,S5} Solutions containing 1 μ M tubulin, 5.0 μ M [³H]colchicine, and inhibitor at either 5 μ M or 1 μ M (as specified) was used for all assay conditions. The values presented herein were attained from greater than 3 independent determinations.

Cell lines, and Sulforhodamine B (SRB) assay. Cancer cell lines were obtained from ATCC (DU-145 (prostate), SK-OV-3 (ovarian), and NCI-H460 (lung)) and maintained according to recommended conditions. Media was enriched with the recommended concentration of fetal bovine serum, as well as gentamicin and amphotericin B. The National Cancer Institute's standard SRB assay assessed cancer cell line growth inhibition, as previously described as the GI_{50} or the drug concentrations calculated to cause a 50% reduction in net protein increase relative to untreated cells.^{S6-S8} Results reported are averages of at least three separate experiments, each of which was carried out in triplicate.

Endothelial Tube Disruption Assay Experimental

MatrigelTM basement membrane matrix (BD Biosciences Inc., Bedford, MA) was thawed on ice at 4 °C and then swirled to homogeneity prior to use. To a pre-cooled tissue culture treated 24-well culture plate (Corning Inc., Corning, NY), 300 μ L of MatrigelTM (9.5 mg/mL) was dispensed into each well. The plates were then incubated at 37 °C for 1 hour prior to seeding with HUVEC cells. HUVEC cells, cultured in a 75 cm² tissue culture treated cell culture flask (Corning Inc., Corning, NY), were allowed to grow to 90% confluency in Medium 200 (Gibco®, Grand Island, NY) supplemented with Gentamycin Sulfate (100 µg/mL, Teknova Inc., Hollister, CA), Amphotericin B (0.25 μ g/mL, Mediatech Inc., Manassas, VA) and a low serum growth supplement (50x, 10 mL, Gibco[®], Grand Island, NY) containing fetal bovine serum (2%), hydrocortisone (1 μ g/ml), human epidermal growth factor (10 ng/ml), basic fibroblast growth factor (3 ng/ml), and heparin (10 μ g/ml). Cells were removed from the culture flask by treatment with a trypsin/ EDTA solution (1x, 3 mL, Gibco[®], Grand Island, NY) followed by incubation in a 37 °C incubator for 4 minutes. The trypsin was then neutralized by treatment with a trypsin neutralizer solution (1x, 4 mL, Gibco[®], Grand Island, NY). Cells were counted on a Beckman Z1 Coulter Particle Counter (Beckman CoulterTM, USA) and the cells were then centrifuged at 650 rpm for 6 minutes using an Eppendorf 5810 R centrifuge with a swing-bucket A-4-81 rotor (Eppendorf Inc., Hamburg, Germany). Cells were then resuspended in Medium 200 (Gibco®, Grand Island, NY) growth media containing gentamycin sulfate (100 µg/mL, Teknova Inc., Hollister, CA), Amphotericin B (0.25 μ g/mL, Mediatech Inc., Manassas, VA), and an endothelial cell growth kit (ATCC Primary Cell Solutions[™], Manassas, VA) containing rh VEGF (5 ng/mL), rh EGF (5 ng/mL), Rh FGF basic (5 ng/mL), Rh IGF-1 (15 ng/mL), L-glutamine (10 mM), heparin sulfate (0.75 units/mL), hydrocortisone hemisuccinate (1 µg/mL), fetal bovine serum (2%), and ascorbic acid (50 μ g/mL). HUVEC cells (300 μ L - 413333 cells/mL) were added to each well of the 24-well culture plate and the plate was allowed to incubate for 16 hours at 37 °C in a NAPCO Series 8000 WJ CO₂ incubator (Thermo Electron Corporation, USA) containing a 5% CO₂ atmosphere to allow the HUVEC cells to grow tube-like structures. After the 16 hour incubation period, the cells were treated with varying concentrations of compounds dissolved in Medium 200 growth media and

S20

1% DMSO and then the cells were allowed to further incubate at 37 °C for 2 hours in the incubator containing a 5% CO₂ atmosphere. After the incubation period, the media was removed from the cells followed by 2 washes using 400 µL of the Medium 200 growth media. The effect of the compounds on the disruption of endothelial tubes was evaluated by light microscopy. Photos were taken (9-fields/well) on a Zeiss Axiovert 40 CFL confocal microscope (Carl Zeiss Inc., Thornwood, NY) with a x40 objective lens. Three independent experiments were conducted for each tested compound. This procedure was modified from the BD BioCoat[™] Angiogenesis System-Endothelial Cell Tube Formation's Guidelines for Use (Catalog No. 354149, 354150) which can be found at the following web address:

http://www4.bdj.co.jp/external_files/dl/doc/manuals/live/web_enabled/354149_354150_ pug.pdf

References

(S1) Miller, R. B.; Gutierrez, C. G. J. Org. Chem. 1978, 43, 1569.

(S2) (A) For synthesis of compound 10 by a separate route, see: Carpenter, P. D.;
Peesapati, V.; Proctor, G. R. Synthesis of structural analogues of 6,7,8,9-tetrahydro-3-hydroxy-2-methoxybenzocyclohepten-5-one. *J. Chem. Soc., Perkin Trans. 1*, 1979, 1, 103-107; (B) Same method as Carpenter and co-workers.

- (S3) Hamel, E. Evaluation of antimitotic agents by quantitative comparisons of their effects on the polymerization of purified tubulin. *Cell Biochem. Biophys.* 2003, *38*, 1-21.
- (S4) Verdier-Pinard, P.; Lai, J. Y.; Yoo, H. D.; Yu, J.; Marquez, B.; Nagle, D. G.; Nambu, M.; White, J. D.; Falck, J. R.; Gerwick, W. H.; Day, B. W.; Hamel, E. Structure-activity analysis of the interaction of curacin A, the potent colchicine site antimitotic agent, with tubulin and effects of analogs on the growth of MCF-7 breast cancer cells. *Mol. Pharmacol.* **1998**, *53*, 62-76.
- (S5) Pettit G. R.; Minardi, M. D.; Rosenberg, H. J.; Hamel, E.; Bibby, M. C.; Martin, S. W.; Jung, M. K.; Pettit, R. K.; Cuthbertson, T. J.; Chapuis, J. C. Antineoplastic agents. 509. Synthesis of fluorocombretastatin phosphate and related 3-halostilbenes. *J. Nat. Prod.* 2005, 68, 1450-1458.
- (S6) Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. *Nat. Protocols* **2006**, *1*, 1112-1116.
- (S7) Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; Gray-Goodrich, M.; Campbell, H.; Mayo, J.; Boyd, M. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. *J. Natl. Cancer Inst.* **1991**, *83*, 757-766.
- (S8) Siles, R.; Ackley, J. F.; Hadimani, M. B.; Hall, J. J.; Mugabe, B. E.;Guddneppanavar, R.; Monk, K. A.; Chapuis, J.; Pettit, G. R.; Chaplin, D. J.;Edvardsen, K.; Trawick, M. L.; Garner, C. M.; Pinney, K. G. Combretastatin

dinitrogen-substituted stilbene analogues as tubulin-binding and vascular-disrupting

agents. J. Nat. Prod. 2008, 71, 313-320.