Synthesis of new *N*-substituted aminoquercitols from naturally

available (+)-*proto*-quercitol and their α -glucosidase

inhibitory activity

Wisuttaya Worawalai, Sumrit Wacharasindhu and Preecha Phuwapraisirisan*

Natural Products Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

General

All moisture-sensitive reactions were carried out under a nitrogen atmosphere. All solvents were distilled prior to use. Mass spectra were measured by ESI-MS and High Resolution (HR)-ESI-MS were obtained from a micrOTOF Bruker mass spectrometer. ¹H and ¹³C NMR spectra were recorded (CDCl₃, D₂O, and CD₃OD as solvent) at 400 and 100 MHz, respectively, on a Varian Mercury⁺ 400 NMR and a Bruker (Avance) 400 NMR spectrometer using tetramethylsilane (TMS) as an internal standard. Chemical shifts are reported in ppm downfield from TMS. Optical rotations were measured on a Perkin-Elmer 341 polarimeter using a cell with 2 mL capacity and a 10 cm path length. Analytical thin layer chromatography (TLC) was performed on pre-coated Merck silica gel 60 F₂₅₄ plates (0.25 mm thick layer) and visualized by potassium permanganate as the detecting agent. Column chromatography were performed using Merck silica gel 60 (70-230 mesh), Sephadex LH-20, and Dowex 50W-X8 (H⁺). Sucrose, maltose, baker's yeast α-glucosidase, rat intestinal acetone powder, and *p*-nitrophenyl-α-D-glucopyranoside were purchased from Sigma-Aldrich (St. Louis, MO, USA). Glucose assay kit was purchased from Human Gesellschaft für Biochemica und Diagnostica mbH (Germany). Acarbose was obtained from Bayer (Germany).

General procedure for synthesis of N-acyl-aminoquercitols 4-7

To a stirred solution of aminocyclitol **2** or **3** (0.14 mmol) in CH_2Cl_2 (1.4 mL) was added DMAP (trace amount) and TEA (1.09 mmol). After the clear solution obtained, anhydride compounds (0.41 mmol) were added slowly, and the mixture was stirred at room temperature for 3 h. The reaction mixture was extracted with CH_2Cl_2 (3×10 mL), washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was treated with trifluoroacetic acid (0.74 mmol) in THF (2 mL) and stirred at room temperature for 4 h. The reaction mixture was evaporated to dryness, redissolved in EtOAc, and extracted with H₂O (3 × 10 mL). The combined aqueous layers were loaded onto Diaion HP-20 column and washed with H₂O followed by MeOH. Fractions eluted with H₂O were lyophilized to afford *N*-acyl aminoquercitols.

N-((1*S*,2*S*,3*S*,4*S*,5*R*)-2,3,4,5-tetrahydroxycyclohexyl)acetamide (4). White solid (74%). ¹H NMR (D₂O, 400 MHz) δ 3.91 (br s, 1H, H-2), 3.80 (br d, *J* = 12.0 Hz, 1H, H-1), 3.42-3.50 (m, 3H, H-3,4,5), 1.93 (s, 3H, -CH₃), 1.82 (m, 1H, H-6), 1.66 (q, *J* = 12.0 Hz, 1H, H-6); ¹³C NMR (D₂O + one drop acetone-*d*₆, 100 MHz) δ 173.3, 74.2, 72.2, 70.8, 69.9, 47.0, 31.4, 21.8; HRMS *m*/z 228.0841 [M+Na]⁺ (calcd for C₈H₁₅NO₅Na, 228.0848).

N-((1*S*,2*S*,3*S*,4*S*,5*R*)-2,3,4,5-tetrahydroxycyclohexyl)butyramide (5). White solid (63%). ¹H NMR (D₂O, 400 MHz) δ 3.89 (m, 1H, H-2), 3.77 (m, 1H, H-1), 3.41-3.45 (m, 3H, H-3,4,5), 2.13 (t, *J* = 7.2 Hz, 2H, -OC<u>CH₂-</u>), 1.79 (m, 1H, H-6), 1.63 (q, *J* = 12.0 Hz, 1H, H-6), 1.48 (m, 2H, -CH₂-), 0.78 (t, *J* = 7.2 Hz, 3H, -CH₃); ¹³C NMR (D₂O, 100 MHz) δ 176.4, 74.2, 72.4, 71.0, 70.0, 46.9, 37.6, 31.6, 19.0, 12.8; HRMS *m*/*z* 256.1159 [M+Na]⁺ (calcd for C₁₀H₁₉NO₅Na, 256.1161).

N-((1*S*,2*S*,3*S*,4*S*,5*R*)-2,3,4,5-tetrahydroxycyclohexyl)hexanamide (6). White solid (52%). ¹H NMR (D₂O, 400 MHz) δ 3.77 (br s, 1H, H-2), 3.68 (br d, *J* = 12.4 Hz, 1H, H-1), 3.29-3.34 (m, 3H, H-3,4,5), 2.05 (t, *J* = 7.2 Hz, 2H, -OC<u>CH₂</u>-), 1.68 (m, 1H, H-6), 1.53 (q, *J* = 12.0 Hz, 1H, H-6), 1.38 (m, 2H, -CH₂-), 1.08 (br s, 4H, -(CH₂)₂-), 0.66 (t, *J* = 6.0 Hz, 3H, -CH₃); ¹³C NMR (CD₃OD, 100 MHz) δ 174.2, 74.6, 73.1, 71.2, 70.3, 46.9, 35.5, 32.1, 31.0, 25.2, 22.0, 12.8; HRMS *m*/z 262.1652 [M+H]⁺ (calcd for C₁₂H₂₄NO₅, 262.1654).

N-((1*S*,2*S*,3*S*,4*S*,5*R*)-2,3,4,5-tetrahydroxycyclohexyl)decanamide (7). White solid (58%). $[\alpha]_D^{20} = -20.8$ (*c* 0.23, CH₃OH); ¹H NMR (CD₃OD, 400 MHz) δ 3.77 (br s, 1H, H-2), 3.73 (m, 1H, H-1), 3.41 (dd, *J* = 9.6, 9.2 Hz, 1H, H-4), 3.31 (m, 1H, H-5), 3.23 (m, 1H, H-3), 2.10 (t, *J* = 7.6 Hz, 2H, -OC<u>H₂-</u>), 1.66-1.73 (m, 2H, H-6), 1.48-1.52 (m, 2H, -CH₂-), 1.20 (br s, 12H, -(CH₂)₆-), 0.80 (t, *J* = 6.4 Hz, 3H, -CH₃); ¹³C NMR (CD₃OD, 100 MHz) δ 175.7, 76.1, 74.6, 72.6, 71.8, 48.4, 37.0, 33.6, 33.1, 30.6, 30.5, 30.4, 30.3, 27.0, 23.7, 14.4; HRMS *m*/*z* 318.2286 [M+H]⁺ (calcd for C₁₆H₃₂NO₅, 318.2280).

General procedure for synthesis of *N*-acyl-aminoquercitols 8-13

To a stirred solution of aminocyclitol **2** or **3** (0.14 mmol) in CH_2Cl_2 (1.4 mL) was added DMAP (trace amount) and TEA (1.09 mmol). After the clear solution obtained, anhydride compounds (0.41 mmol) were added slowly, and the mixture was stirred at room temperature for 3 h. The reaction mixture was extracted with CH_2Cl_2 (3×10 mL), washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was treated with 1.25 M methanolic HCl (0.7 mL) and stirred at room temperature for 4 h. The reaction mixture was evaporated under reduced pressure to give *N*-acyl aminoquercitols.

N-((1*S*,2*S*,3*S*,4*S*,5*R*)-2,3,4,5-tetrahydroxycyclohexyl)dodecanamide (8). White solid (45%). ¹H NMR (CD₃OD, 400 MHz) δ 3.77 (br s, 1H, H-2), 3.74 (m, 1H, H-1), 3.41 (dd, *J* = 9.2, 9.2 Hz, 1H, H-4), 3.32 (m, 1H, H-5), 3.24 (m, 1H, H-3), 2.11 (t, *J* = 7.6 Hz, 2H, -OC<u>CH₂-</u>), 1.67-1.74 (m, 2H, H-6), 1.49-1.52 (m, 2H, -CH₂-), 1.20 (br s, 16H, -(CH₂)₈-), 0.81 (t, *J* = 6.0 Hz, 3H, -CH₃); ¹³C NMR (CD₃OD, 100 MHz) δ 175.7, 76.1, 74.6, 72.6, 71.8, 48.4, 37.0, 33.6, 33.1, 30.7, 30.6, 30.5, 30.4, 30.3, 27.0, 23.7, 14.4; HRMS *m*/*z* 368.2408 [M+Na]⁺ (calcd for C₁₈H₃₅NO₅Na, 368.2413).

N-((1*R*,2*S*,3*S*,4*S*,5*R*)-2,3,4,5-tetrahydroxycyclohexyl)acetamide (9). Pale yellow oil (quantitative yield). ¹H NMR (D₂O, 400 MHz) δ 3.82 (br s, 1H, H-1), 3.67 (br s, 1H, H-2), 3.48 (br s, 1H, H-5), 3.38 (br s, 2H, H-3,4), 1.74 (s, 3H, -CH₃), 1.64 (m, 2H, H-6); ¹³C NMR (D₂O, 100 MHz) δ 174.0, 73.8, 71.3, 70.7, 69.2, 48.5, 30.9, 22.0; HRMS *m*/*z* 206.1024 [M+H]⁺ (calcd for C₈H₁₆NO₅, 206.1028).

N-((*1R*,2*S*,3*S*,4*S*,5*R*)-2,3,4,5-tetrahydroxycyclohexyl)butyramide (10). Yellow solid (52%). ¹H NMR (D₂O, 400 MHz) δ 3.89 (m, 1H, H-1), 3.72 (br s, 1H, H-1), 3.52 (m, 1H, H-5), 3.43 (m, 2H, H-3,4), 2.02 (t, J = 7.2 Hz, 2H, -OC<u>CH₂</u>-), 1.70 (m, 2H, H-6), 1.34-1.43 (m, 2H, -CH₂-), 0.68 (t, J = 7.6 Hz, 3H, -CH₃); ¹³C NMR ((D₂O, 100 MHz) δ 177.0, 73.7, 71.3, 70.6, 69.2, 48.4, 37.4, 30.8, 19.2, 12.6; HRMS *m*/*z* 234.1333 [M+H]⁺ (calcd for C₁₀H₂₀NO₅, 234.1341).

N-((1*R*,2*S*,3*S*,4*S*,5*R*)-2,3,4,5-tetrahydroxycyclohexyl)hexanamide (11). Yellow oil (quantitative yield). ¹H NMR (D₂O, 400 MHz) δ 3.87 (br d, J = 3.6 Hz, 1H, H-1), 3.71 (br s, 1H, H-2), 3.51 (m, 1H, H-5), 3.41 (br d, J = 5.2 Hz, 2H, H-3,4), 2.03 (t, J = 7.2 Hz, 2H, -OC<u>CH₂-</u>), 1.68-1.71 (m, 2H, H-6), 1.33-1.40 (m, 2H, -CH₂-), 1.02-1.12 (m, 4H, -(CH₂)₂-), 0.64 (t, J = 6.8 Hz, 3H, -CH₃); ¹³C NMR (D₂O + one drop of acetone- d_6 , 100 MHz) δ 177.0, 73.6, 71.1, 70.5, 69.0, 48.2, 35.3, 30.7, 30.3, 25.0, 21.5, 13.1; HRMS m/z 262.1650 [M+H]⁺ (calcd for C₁₂H₂₄NO₅, 262.1654).

N-((*1R*,2*S*,3*S*,4*S*,5*R*)-2,3,4,5-tetrahydroxycyclohexyl)decanamide (12). White solid (83%). ¹H NMR (CD₃OD, 400 MHz) δ 4.04 (m, 1H, H-1), 3.71 (m, 1H, H-2), 3.55-3.61 (m, 2H, H-4,5), 3.49 (m, 1H, H-3), 2.11 (t, *J* = 7.2 Hz, 2H, -OC<u>CH₂</u>-), 1.85 (m, 1H, H-6), 1.68 (m, 1H, H-6), 1.50 (br s, 2H, -CH₂-), 1.20 (br s, 12H, -(CH₂)₆-), 0.80 (t, *J* = 6.8 Hz, 3H, -CH₃); ¹³C NMR (CD₃OD, 100 MHz) δ 174.9, 73.5, 72.4, 71.0, 69.6, 47.6, 36.5, 31.7, 31.6, 29.2, 29.1, 29.0, 28.9, 25.7, 22.3, 13.0; HRMS *m*/z 318.2271 [M+H]⁺ (calcd for C₁₆H₃₂NO₅, 318.2280).

N-((1*R*,2*S*,3*S*,4*S*,5*R*)-2,3,4,5-tetrahydroxycyclohexyl)dodecanamide (13). White solid(quantitative yield). ¹H NMR (CD₃OD, 400 MHz) δ 4.03 (m, 1H, H-1), 3.71 (m, 1H, H-2), 3.55-3.61 (m, 2H, H-4,5), 3.49 (m, 1H, H-3), 2.11 (t, *J* = 6.8 Hz, 2H, -OC<u>CH₂-</u>), 1.83 (m, 1H, H-6), 1.69 (m, 1H, H-6), 1.50 (br s, 2H, -CH₂-), 1.19 (br s, 16H, -(CH₂)₈-), 0.80 (t, *J* = 6.4 Hz, 3H, -CH₃); ¹³C NMR (CD₃OD, 100 MHz) δ 176.4, 74.9, 73.9, 72.5, 71.2, 48.4, 37.0, 33.2, 33.1, 30.7, 30.7, 30.6, 30.5, 30.4, 30.3, 27.1, 23.7, 14.4; HRMS *m*/*z* 368.2403 [M+Na]⁺ (calcd for C₁₈H₃₅NNaO₅, 368.2413).

General procedure for reductive amination of aminocyclitols 2-3

Using AcOH

To a solution of aminocyclitols **2** or **3** (0.12 mmol) in methanol (1.1 mL) under an atmosphere of N_2 were treated with sodium cyanoborohydride (0.22 mmol), acetic acid (8 µL) and corresponding aldehyde (0.11 mmol). After stirring at room temperature for 2 days, the reaction mixture was evaporated to dryness, quenched with water and extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to afford crude product, which was purified by flash chromatography or sephadex LH-20 column chromatography.

Using Ti(OⁱPr)₄

To a solution of aminocyclitols **2** or **3** (0.16 mmol) in methanol (1.6 mL) under an atmosphere of N_2 were treated with corresponding aldehyde (0.19 mmol), titanium isopropoxide (0.20 mmol) and sodium cyanoborohydride (0.40 mmol). After stirring at 0 °C for 1 day, the reaction mixture was evaporated to dryness, quenched with water and extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure to afford crude product, which was purified by flash chromatography or sephadex LH-20 column chromatography.

(15,25,35,45,5R)-(2,3:4,5-di-O-isopropylidene)-*N*-ethylcyclohexylamine (14). White solid (29%), (5% MeOH-EtOAc for flash column). ¹H NMR (CDCl₃, 400 MHz) δ 4.37 (dd, J = 6.0, 4.4 Hz, 1H), 4.08 (dd, J = 8.8, 4.8 Hz, 1H), 3.47 (dd, J = 10.4, 8.8 Hz, 1H), 3.22 (m, 1H), 3.04 (m, 1H), 2.72 (q, J = 7.2 Hz, 2H), 2.33 (m, 1H), 1.50 (m, 1H), 1.47 (s, 3H), 1.36 (s, 3H), 1.34 (s, 3H), 1.30 (s, 3H), 1.10 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 111.0, 109.4, 82.4, 76.6, 75.1, 74.4, 54.7, 41.0, 30.5, 28.6, 26.9, 26.9, 26.2, 14.8.

(15,25,35,45,5R)-(2,3:4,5-di-O-isopropylidene)-*N*-butylcyclohexylamine (15). White solid (34%), (100% EtOAc for flash column). ¹H NMR (CDCl₃, 400 MHz) δ 4.36 (dd, J = 5.2, 4.4 Hz, 1H), 4.07 (dd, J = 8.4, 4.8 Hz, 1H), 3.49 (dd, J = 10.4, 8.8 Hz, 1H), 3.23 (m, 1H), 2.97 (m, 1H), 2.62-2.66 (m, 2H), 2.30 (m, 1H), 1.50 (m, 1H), 1.47 (s, 3H), 1.41-1.45 (m, 4H), 1.36 (s, 3H), 1.34 (s, 3H), 1.31 (s, 3H), 0.86 (t, J = 7.6 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 109.9, 108.4, 81.4, 75.6, 74.3, 73.4, 54.2, 45.8, 31.1, 29.8, 27.6, 25.9, 25.9, 25.2, 19.4, 12.9.

(1*S*,2*S*,3*S*,4*S*,5*R*)-(2,3:4,5-di-*O*-isopropylidene)-*N*-hexylcyclohexylamine (16). Colorless oil (51%), (100% EtOAc for flash column). ¹H NMR (CDCl₃, 400 MHz) δ 4.38 (dd, J = 5.6, 4.4 Hz, 1H), 4.08 (dd, J = 8.4, 4.8 Hz, 1H), 3.47 (dd, J = 10.0, 8.4 Hz, 1H), 3.22 (m, 1H), 3.08 (m, 1H), 2.67 (t, J = 7.2 Hz, 2H), 2.33 (m, 1H), 1.54 (m, 1H), 1.46-1.51 (m, 2H), 1.46 (s, 3H), 1.36 (s, 3H), 1.34 (s, 3H), 1.30 (s, 3H), 1.23 (br s, 6H), 0.82 (t, J = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 111.0, 109.5, 82.3, 76.5, 74.7, 74.2, 54.5, 46.5, 31.5, 30.1, 29.1, 28.5, 26.9, 26.9, 26.8, 26.2, 22.5, 14.0.

(15,25,35,45,5*R*)-(2,3:4,5-di-*O*-isopropylidene)-*N*-decylcyclohexylamine (17). Pale yellow oil (60%), (80% EtOAchexane for flash column). ¹H NMR (CDCl₃, 400 MHz) δ 4.34 (dd, *J* = 4.4, 4.4 Hz, 1H), 4.06 (dd, *J* = 8.4, 4.4 Hz, 1H), 3.49 (dd, *J* = 8.4, 8.4 Hz, 1H), 3.23 (m, 1H), 2.93 (m, 1H), 2.58-2.61 (m, 2H), 2.28 (m, 1H), 1.46 (s, 3H), 1.42-1.45 (m, 3H), 1.36 (s, 3H), 1.34 (s, 3H), 1.30 (s, 3H), 1.19 (br s, 14H), 0.81 (t, *J* = 6.4 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 110.8, 109.2, 82.4, 75.6, 75.5, 74.5, 55.2, 47.2, 31.9, 31.0, 30.2, 29.6, 29.5, 29.3, 28.6, 27.3, 26.9, 26.9, 22.7, 14.1.

(15,25,35,45,5R)-(2,3:4,5-di-O-isopropylidene)-*N*-dodecylcyclohexylamine (18). Pale yellow oil (50%), (80% EtOAc-hexane for flash column). ¹H NMR (CDCl₃, 400 MHz) δ 4.36 (br s, 1H), 4.07 (m, 1H), 3.48 (dd, J = 8.8, 8.8 Hz, 1H), 3.23 (m, 1H), 2.98 (m, 1H), 2.63 (t, J = 7.6 Hz, 2H), 2.31 (m, 1H), 1.52-1.55 (m, 3H), 1.47 (s, 3H), 1.36 (s, 3H), 1.34 (s, 3H), 1.31 (s, 3H), 1.19 (br s, 18H), 0.81 (t, J = 6.4 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 109.0, 108.4, 81.4, 75.6, 74.3, 73.4, 54.1, 46.1, 30.9, 29.7, 28.9, 28.6, 28.6, 28.6, 28.5, 28.4, 28.3, 27.6, 26.3, 25.9, 25.2, 21.7, 13.1.

(1R,2S,3S,4S,5R)-(2,3:4,5-di-O-isopropylidene)-*N*-butylcyclohexylamine (19). Pale yellow oil (14%), (100% EtOAc for flash column). ¹H NMR (CDCl₃, 400 MHz) δ 4.24 (dd, J = 7.6, 6.8 Hz, 1H), 4.07 (dd, J = 8.0, 7.2 Hz, 1H), 3.65-3.68 (m, 2H), 3.02 (dt, J = 8.0, 7.6 Hz, 1H), 2.59 (m, 1H), 2.47 (m, 1H), 1.93 (m, 1H), 1.84 (m, 1H), 1.43 (s, 3H), 1.38-1.40 (m, 2H), 1.36 (s, 3H), 1.35 (s, 3H), 1.26-1.32 (m, 2H), 1.28 (s, 3H), 0.85 (t, J = 7.6 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 111.6, 109.9, 80.5, 78.8, 76.2, 72.6, 55.9, 47.3, 32.1, 30.2, 27.8, 27.1, 27.0, 25.2, 20.4, 13.9.

(1R,2S,3S,4S,5R)-(2,3:4,5-di-O-isopropylidene)-*N*-hexylcyclohexylamine (20). Colorless oil (54%), (80% EtOAchexane for flash column). ¹H NMR (CDCl₃, 400 MHz) δ 4.24 (dd, J = 6.8, 6.8 Hz, 1H), 4.07 (dd, J = 7.2, 7.2 Hz, 1H), 3.65-3.70 (m, 2H), 3.02 (q, J = 7.2 Hz, 1H), 2.59 (m, 1H), 2.46 (m, 1H), 1.81-1.97 (m, 4H), 1.43 (s, 3H), 1.36 (s, 3H), 1.35 (s, 3H), 1.28 (s, 3H), 1.18-1.22 (m, 6H), 0.82 (t, J = 6.4 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 111.6, 109.9, 80.5, 78.7, 76.2, 72.6, 55.8, 47.6, 31.7, 30.2, 29.9, 27.8, 27.2, 27.0, 26.9, 25.2, 22.6, 14.0.

(1*R*,2*S*,3*S*,4*S*,5*R*)-(2,3:4,5-di-*O*-isopropylidene)-*N*-decylcyclohexylamine (21). Colorless oil (67%), (80% EtOAchexane for flash column). ¹H NMR (CDCl₃, 400 MHz) δ 4.24 (dd, *J* = 8.0, 6.8 Hz, 1H), 4.07 (dd, *J* = 8.0, 6.8 Hz, 1H), 3.66-3.67 (m, 2H), 3.02 (ddd, *J* = 8.0, 7.6, 6.8 Hz, 1H), 2.58 (m, 1H), 2.47 (m, 1H), 1.94 (br s, 1H), 1.85 (m, 1H), 1.43 (s, 3H), 1.35 (s, 3H), 1.28 (s, 3H), 1.19 (br s, 16H), 0.81 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 111.6, 109.9, 80.4, 78.7, 76.2, 72.6, 55.8, 47.6, 31.9, 30.2, 29.9, 29.6, 29.5, 29.4, 29.3, 27.8, 27.2, 27.1, 27.0, 25.2, 22.7, 14.1.

(1*R*,2*S*,3*S*,4*S*,5*R*)-(2,3:4,5-di-*O*-isopropylidene)-*N*-dodecylcyclohexylamine (22). Colorless oil (32%), (80% EtOAchexane for flash column). ¹H NMR (CDCl₃, 400 MHz) δ 4.24 (dd, *J* = 8.0, 5.6 Hz, 1H), 4.08 (dd, *J* = 8.0, 7.2 Hz, 1H), 3.67 (br d, *J* = 4.8 Hz, 2H), 3.01 (ddd, *J* = 8.0, 8.0, 7.2 Hz, 1H), 2.60 (m, 1H), 2.47 (m, 1H), 1.93 (m, 1H), 1.86 (m, 1H), 1.42 (s, 3H), 1.36 (s, 3H), 1.35 (s, 3H), 1.28 (s, 3H), 1.19 (br s, 20H), 0.81 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 111.6, 109.9, 80.5, 78.7, 76.2, 72.6, 55.8, 47.6, 31.9, 30.2, 29.9, 29.6, 29.6, 29.6, 29.6, 29.5, 29.3, 27.8, 27.2, 27.1, 27.0, 25.2, 22.7, 14.1.

(15,25,35,45,5*R*)-(2,3:4,5-di-*O*-isopropylidene)-*N*,*N*-diethylcyclohexylamine (23). Colorless oil (48%), (100% EtOAc for flash column). ¹H NMR (CDCl₃, 400 MHz) δ 4.30 (dd, *J* = 4.4, 4.4 Hz, 1H), 4.03 (dd, *J* = 8.8, 4.4 Hz, 1H), 3.47 (dd, *J* = 9.6, 8.8 Hz, 1H), 3.24 (ddd, *J* = 11.6, 9.6, 3.2 Hz, 1H), 2.92 (dt, *J* = 12.0, 4.0 Hz, 1H), 2.69-2.77 (m, 2H), 2.52-2.60 (m, 2H), 2.11 (ddd, *J* = 11.6, 4.0, 4.0 Hz, 1H), 1.74 (m, 1H), 1.47 (s, 3H), 1.37 (s, 3H), 1.35 (s, 3H), 1.29 (s, 3H), 0.98 (t, *J* = 6.8 Hz, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ 110.8, 109.7, 82.5, 77.3, 76.7, 75.3, 57.4, 45.1, 28.9, 27.0, 26.9, 26.4, 26.3, 13.5.

(1*S*,2*S*,3*S*,4*S*,5*R*)-(2,3:4,5-di-*O*-isopropylidene)-*N*,*N*-dibutylcyclohexylamine (24). Yellow oil (51%), (1:4:5 MeOH-CH₂Cl₂-hexane for sephadex LH-20 column). ¹H NMR (CDCl₃, 400 MHz) δ 4.27 (br s, 1H), 3.99 (dd, *J* = 8.8, 4.8 Hz, 1H), 3.46 (dd, *J* = 10.0, 8.8 Hz, 1H), 3.22 (m, 1H), 2.89 (br d, *J* = 10.8 Hz, 1H), 2.59-2.66 (m, 2H), 2.41-2.44 (m, 2H), 2.07 (br d, *J* = 10.8 Hz, 1H), 1.74 (ddd, *J* = 12.4, 12.4, 11.6 Hz, 1H), 1.45 (s, 3H), 1.36 (s, 3H), 1.34 (s, 3H), 1.28 (s, 3H), 1.19-1.26 (m, 8H), 0.84 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ 109.8, 108.6, 81.6, 76.6, 75.6, 74.3, 56.7, 50.7, 29.9, 27.9, 25.9, 25.9, 25.1, 24.7, 19.4, 13.1.

(15,25,35,45,5R)-(2,3:4,5-di-O-isopropylidene)-*N,N-dihexylcyclohexylamine* (25). Pale yellow oil (38%), (0.5:2.5:7 MeOH-CH₂Cl₂-hexane for sephadex LH-20 column). ¹H NMR (CDCl₃, 400 MHz) δ 4.27 (br s, 1H), 4.00 (dd, *J* = 8.0, 4.8 Hz, 1H), 3.46 (dd, *J* = 9.2, 9.2 Hz, 1H), 3.23 (m, 1H), 2.88 (br d, *J* = 11.2 Hz, 1H), 2.57-2.64 (m, 2H), 2.36-2.44 (m, 2H), 2.08 (br d, *J* = 11.6 Hz, 1H), 1.73 (m, 1H), 1.46 (s, 3H), 1.36 (s, 3H), 1.34 (s, 3H), 1.28 (s, 3H), 1.20 (br s, 16H), 0.82 (t, *J* = 6.8 Hz, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ 110.8, 109.6, 82.6, 77.6, 76.6, 75.4, 57.8, 52.1, 31.8, 28.9, 28.7, 27.0, 26.9, 26.9, 26.1, 25.8, 22.7, 14.1.

(1R,2S,3S,4S,5R)-(2,3:4,5-di-O-isopropylidene)-*N*,*N*-diethylcyclohexylamine (26). Colorless oil (45%), (1:7:2 MeOH-CH₂Cl₂-hexane for sephadex LH-20 column). ¹H NMR (CDCl₃, 400 MHz) δ 4.29 (dd, *J* = 10.0, 7.2 Hz, 1H), 4.18 (dd, *J* = 8.4, 7.2 Hz, 1H), 3.63 (dd, *J* = 10.4, 8.4 Hz, 1H), 3.54 (dt, *J* = 10.4, 7.2 Hz, 1H), 3.25 (ddd, *J* = 10.0, 8.8, 7.2 Hz, 1H), 2.45-2.60 (m, 4H), 1.99 (m, 1H), 1.75 (m, 1H), 1.44 (s, 3H), 1.37 (s, 3H), 1.35 (s, 3H), 1.26 (s, 3H), 1.02 (t, *J* = 5.6 Hz, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ 112.1, 109.5, 80.4, 76.5, 76.1, 73.5, 57.7, 44.5, 27.4, 27.2, 27.1, 26.2, 24.5, 14.0.

(1R,2S,3S,4S,5R)-(2,3:4,5-di-O-isopropylidene)-*N*,*N*-dibutylcyclohexylamine (27). White solid (57%), (80% EtOAc-hexane for flash column). ¹H NMR (CDCl₃, 400 MHz) δ 4.27 (dd, *J* = 9.6, 8.4 Hz, 1H), 4.17 (dd, *J* = 8.4, 7.2 Hz, 1H), 3.63 (dd, *J* = 10.8, 7.2 Hz, 1H), 3.54 (dd, *J* = 10.8, 8.0 Hz, 1H), 3.19 (ddd, *J* = 9.6, 9.2, 8.4 Hz, 1H), 2.44-2.51 (m, 2H), 2.33-2.40 (m, 2H), 1.94 (m, 1H), 1.74 (m, 1H), 1.43 (s, 3H), 1.36 (s, 3H), 1.35 (s, 3H), 1.26 (s, 3H), 1.18-1.24 (m, 8H), 0.84 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ 111.0, 108.4, 79.4, 75.4, 75.1, 72.5, 56.8, 49.9, 30.1, 26.4, 26.2, 26.1, 25.4, 23.7, 19.5, 13.1.

(1R,2S,3S,4S,5R)-(2,3:4,5-di-O-isopropylidene)-*N*,*N*-dihexylcyclohexylamine (28). Pale yellow oil (91%), (1:4:5 MeOH-CH₂Cl₂-hexane for sephadex LH-20 column). ¹H NMR (CDCl₃, 400 MHz) δ 4.26 (dd, *J* = 10.0, 8.4 Hz, 1H), 4.16 (dd, *J* = 8.4, 7.6 Hz, 1H), 3.63 (dd, *J* = 10.0, 7.6 Hz, 1H), 3.54 (dd, *J* = 10.8, 7.6 Hz, 1H), 3.19 (dd, *J* = 16.0, 10.0 Hz, 1H), 2.42-2.49 (m, 2H), 2.32-2.39 (m, 2H), 1.93 (m, 1H), 1.73 (m, 1H), 1.43 (s, 3H), 1.37 (s, 3H), 1.35 (s, 3H), 1.26 (s, 3H), 1.21-1.24 (br s, 16H), 0.81 (t, *J* = 7.6 Hz, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ 112.0, 109.4, 80.4, 76.5, 76.2, 73.5, 57.9, 56.3, 31.8, 28.9, 27.4, 27.2, 27.1, 27.1, 26.4, 24.6, 22.7, 14.1.

General procedure for deprotection of compounds 14-28

For the synthesis of N-alkyl-aminocyclitols 29-31, 34-35, and 38-43

To a solution of the protected *N*-alkyl aminoquercitols (0.05 mmol) in 1.25 M methanolic HCl (1 mL) were stirred at room temperature for 4 h. The reaction mixture was evaporated to dryness, redissolved in H_2O , loaded onto Dowex 50W-X8 (H^+) column and eluted with H_2O followed by 50% NH₃-H₂O. Fractions eluted with 50% NH₃-H₂O were evaporated to give the *N*-alkyl aminoquercitols.

For the synthesis of N-alkyl-aminocyclitols 32-33 and 36-37

To a solution of the protected *N*-alkyl aminoquercitols (0.08 mmol) in 1.25 M methanolic HCl (1 mL) were stirred at room temperature for 4 h. The reaction mixture was evaporated to dryness, redissolved in H_2O and extracted with EtOAc (3×10 mL). The combined aqueous layers were neutralized with 1 M NaHCO₃ and further extracted with EtOAc. The combined organic layers were evaporated under reduced pressure to afford the *N*-alkyl aminoquercitols.

(1S,2S,3S,4S,5R)-1-ethylamino-cyclohexane-2,3,4,5-tetraol (29). Yellow oil (80%). ¹H NMR (D₂O, 400 MHz) δ 3.96 (br s, 1H, H-2), 3.33-3.35 (m, 2H, H-4,5), 3.25 (m, 1H, H-3), 2.90 (br d, J = 12.4 Hz, 1H, H-1), 2.68-2.75 (m, 2H, -HN<u>CH₂</u>-), 1.88 (m, 1H, H-6), 1.48 (m, 1H, H-6), 0.99 (t, J = 7.2 Hz, 3H, -CH₃); ¹³C NMR (D₂O, 100 MHz) δ 74.1, 72.3, 69.6, 68.5, 53.4, 40.1, 30.5, 11.9; HRMS m/z 192.1239 [M+H]⁺ (calcd for C₈H₁₈NO₄, 192.1236).

(15,25,35,45,5*R*)-1-butylamino-cyclohexane-2,3,4,5-tetraol (30). Pale yellow oil (quantitative yield). ¹H NMR (D₂O, 400 MHz) δ 4.04 (br s, 1H, H-2), 3.44-3.46 (m, 2H, H-4,5), 3.36 (m, 1H, H-3), 2.49-2.68 (m, 3H, H-1, -HN<u>CH₂-</u>), 1.92 (br d, *J* = 12.4 Hz, 1H, H-6), 1.35-1.45 (m, 3H, H-6, -CH₂-), 1.21-1.28 (m, 2H, -<u>CH₂</u>CH₃), 0.83 (t, *J* = 7.6 Hz, 3H, -CH₃); ¹³C NMR (D₂O, 100 MHz) δ 74.5, 72.9, 70.2, 69.6, 53.1, 45.1, 32.1, 30.7, 19.8, 13.2; HRMS *m*/*z* 220.1548 [M+H]⁺ (calcd for C₁₀H₂₂NO₄, 220.1549).

(1S,2S,3S,4S,5R)-1-hexylamino-cyclohexane-2,3,4,5-tetraol (31). Pale yellow solid (59%). ¹H NMR (D₂O, 400 MHz) δ 3.94 (br s, 1H, H-2), 3.32-3.34 (m, 2H, H-4,5), 3.24 (m, 1H, H-3), 2.73 (d, J = 11.6 Hz, 1H, H-1), 2.50-2.59 (m, 2H, -HN<u>CH₂</u>-), 1.85 (m, 1H, H-6), 1.34-1.41 (m, 3H, H-6, -CH₂-), 1.10 (br s, 6H, -(CH₂)₃-), 0.67 (br s, 3H, -CH₃); ¹³C NMR (D₂O, 100 MHz) δ 74.3, 72.6, 69.9, 69.0, 53.5, 45.4, 31.2, 30.8, 27.5, 26.0, 21.9, 13.3; HRMS *m*/z 248.1854 [M+H]⁺ (calcd for C₁₂H₂₆NO₄, 248.1862).

(1*S*,2*S*,3*S*,4*S*,5*R*)-1-decylamino-cyclohexane-2,3,4,5-tetraol (32). White solid (quantitative yield). ¹H NMR (CD₃OD, 400 MHz) δ 3.91 (br s, 1H, H-2), 3.41 (dd, *J* = 9.2, 9.2 Hz, 1H, H-4), 3.27 (m, 1H, H-5), 3.16 (m, 1H, H-3), 2.44-2.57 (m, 3H, H-1, -HN<u>CH₂-</u>), 1.81 (m, 1H, H-6), 1.40-1.52 (m, 3H, H-6, -CH₂-), 1.20 (br s, 14H, -(CH₂)₇-), 0.80 (t, *J* = 6.4 Hz, 3H, -CH₃); ¹³C NMR (CD₃OD, 100 MHz) δ 76.4, 75.1, 72.1, 70.9, 55.6, 47.4, 34.3, 33.1, 30.8, 30.7, 30.7, 30.6, 30.4, 28.5, 23.7, 14.4; HRMS *m*/z 304.2489 [M+H]⁺ (calcd for C₁₆H₃₄NO₄, 304.2488).

(15,25,35,45,5R)-1-dodecylamino-cyclohexane-2,3,4,5-tetraol (33). White solid (75%). ¹H NMR (CD₃OD, 400 MHz) δ 3.91 (br s, 1H, H-2), 3.41 (dd, J = 9.2, 9.2 Hz, 1H, H-4), 3.27 (m, 1H, H-5), 3.16 (dd, J = 9.6, 2.4 Hz, 1H, H-3), 2.43-2.58 (m, 3H, H-1, -HN<u>CH₂</u>-), 1.82 (m, 1H, H-6), 1.40-1.49 (m, 3H, H-6, -CH₂-), 1.19 (br s, 18H, -(CH₂)₉-), 0.80 (t, J = 6.0 Hz, 3H, -CH₃); ¹³C NMR (CD₃OD, 100 MHz) δ 76.3, 75.1, 72.1, 70.9, 55.6, 47.4, 34.2, 33.1, 30.8, 30.7, 30.7, 30.7, 30.7, 30.6, 30.5, 28.5, 23.7, 14.4; HRMS m/z 332.2804 [M+H]⁺ (calcd for C₁₈H₃₈NO₄, 332.2801).

(1*R*,2*S*,3*S*,4*S*,5*R*)-1-butylamino-cyclohexane-2,3,4,5-tetraol (34). Pale yellow oil (97%). ¹H NMR (D₂O, 400 MHz) δ 3.78 (br s, 1H, H-2), 3.51-3.63 (m, 3H, H-3,4,5), 2.98 (br d, *J* = 4.4 Hz, 1H, H-1), 2.55-2.63 (m, 2H, - HN<u>CH₂</u>-), 1.76 (br s, 2H, H-6), 1.32-1.36 (m, 2H, -CH₂-), 1.13-1.18 (m, 2H, -<u>CH₂</u>CH₃), 0.72 (t, *J* = 7.2 Hz, 3H, -CH₃); ¹³C NMR (D₂O, 100 MHz) δ 73.4, 71.8, 70.2, 69.1, 55.4, 46.2, 30.1, 29.7, 19.7, 13.1; HRMS *m*/*z* 220.1545 [M+H]⁺ (calcd for C₁₀H₂₂NO₄, 220.1549).

(1*R*,2*S*,3*S*,4*S*,5*R*)-1-hexylamino-cyclohexane-2,3,4,5-tetraol (35). White solid (85%). $[α]_D^{20} = +31.6$ (*c* 0.31, H₂O); ¹H NMR (D₂O, 400 MHz) δ 3.79 (m, 1H, H-2), 3.52-3.65 (m, 3H, H-3,4,5), 3.01 (br d, *J* = 4.8 Hz, 1H, H-1), 2.57-2.65 (m, 2H, -HN<u>CH₂</u>-), 1.75-1.81 (m, 2H, H-6), 1.37 (br s, 2H, -CH₂-), 1.12 (br s, 6H, -(CH₂)₃-), 0.68 (br t, *J* = 6.8 Hz, 3H, -CH₃); ¹³C NMR (D₂O, 100 MHz) δ 73.1, 71.7, 70.0, 68.9, 55.3, 46.4, 30.7, 29.9, 27.3, 25.9, 21.9, 13.3; HRMS *m*/z 248.1858 [M+H]⁺ (calcd for C₁₂H₂₆NO₄, 248.1862).

(1*R*,2*S*,3*S*,4*S*,5*R*)-1-decylamino-cyclohexane-2,3,4,5-tetraol (36). White solid (88%). ¹H NMR (CD₃OD, 400 MHz) δ 3.62-3.72 (m, 4H, H-2,3,4,5), 2.90 (br d, J = 4.4 Hz, 1H, H-1), 2.60 (m, 1H, -HN<u>CH₂-</u>), 2.48 (m, 1H, -HN<u>CH₂-</u>), 1.83 (m, 1H, H-6), 1.70 (m, 1H, H-6), 1.41-1.44 (m, 2H, -CH₂-), 1.20 (br s, 14H, -(CH₂)₇-), 0.80 (t, J = 7.2 Hz, 3H, -CH₃); ¹³C NMR (CD₃OD, 100 MHz) δ 74.9, 74.2, 72.6, 71.2, 56.6, 48.4, 33.0, 32.6, 30.7, 30.7, 30.6, 30.5, 30.4, 28.4, 23.7, 14.4; HRMS *m*/z 304.2476 [M+H]⁺ (calcd for C₁₆H₃₄NO₄, 304.2488).

(1R,2S,3S,4S,5R)-1-dodecylamino-cyclohexane-2,3,4,5-tetraol (37). White solid (52%). ¹H NMR (CD₃OD, 400 MHz) δ 3.60-3.69 (m, 4H, H-2,3,4,5), 2.88 (br d, J = 3.2 Hz, 1H, H-1), 2.58 (m, 1H, -HN<u>CH₂-</u>), 2.46 (m, 1H, -HN<u>CH₂-</u>), 1.81 (m, 1H, H-6), 1.69 (m, 1H, H-6), 1.40-1.43 (m, 2H, -CH₂-), 1.19 (br s, 18H, -(CH₂)₉-), 0.80 (t, J = 6.0 Hz, 3H, -CH₃); ¹³C NMR (CD₃OD, 100 MHz) δ 74.9, 74.2, 72.7, 71.2, 56.5, 48.5, 33.1, 32.7, 30.8, 30.7, 30.7, 30.6, 30.6, 30.5, 28.5, 23.7, 14.4; HRMS m/z 332.2799 [M+H]⁺ (calcd for C₁₈H₃₈NO₄, 332.2801).

(1*S*,2*S*,3*S*,4*S*,5*R*)-1-diethylamino-cyclohexane-2,3,4,5-tetraol (38). Colorless oil (quantitative yield). ¹H NMR (D₂O, 400 MHz) δ 4.12 (br s, 1H, H-2), 3.38 (br d, *J* = 7.2 Hz, 2H, H-3,5), 3.25 (br d, *J* = 7.2 Hz, 1H, H-4), 3.09 (br d, *J* = 12.4 Hz, 1H, H-1), 2.99 (br d, *J* = 6.4 Hz, 4H, -HN(<u>CH₂)₂-</u>), 1.98 (br d, *J* = 10.0 Hz, 1H, H-6), 1.68 (m, 1H, H-6), 1.03 (t, *J* = 6.4 Hz, 6H, -(CH₃)₂); ¹³C NMR (D₂O, 100 MHz) δ 73.9, 72.3, 69.7, 68.2, 57.1, 44.1, 28.6, 8.9; HRMS *m*/*z* 220.1550 [M+H]⁺ (calcd for C₁₀H₂₂NO₄, 220.1549).

(15,25,35,45,5R)-1-dibutylamino-cyclohexane-2,3,4,5-tetraol (39). Pale yellow solid (96%). ¹H NMR (D₂O, 400 MHz) δ 4.13 (br s, 1H, H-2), 3.33-3.38 (m, 2H, H-3,5), 3.23-3.27 (m, 2H, H-1,4), 3.01-3.05 (m, 4H, -HN(<u>CH₂)₂-</u>), 2.03 (br d, J = 12 Hz, 1H, H-6), 1.69 (m, 1H, H-6), 1.44-1.48 (m, 4H, -(CH₂)₂-), 1.15-1.20 (m, 4H, -(<u>CH₂)₂CH₃</u>), 0.73 (t, J = 6.8 Hz, 6H, -(CH₃)₂); ¹³C NMR (D₂O, 100 MHz) δ 73.4, 71.9, 69.1, 67.4, 58.5, 49.9, 28.2, 24.9, 19.2, 12.6; HRMS m/z 276.2169 [M+H]⁺ (calcd for C₁₄H₃₀NO₄, 276.2175).

(1*S*,2*S*,3*S*,4*S*,5*R*)-1-dihexylamino-cyclohexane-2,3,4,5-tetraol (40). White powder (49%). ¹H NMR (CD₃OD, 400 MHz) δ 4.02 (br s, 1H, H-2), 3.43 (dd, *J* = 9.2, 9.2 Hz, 1H, H-4), 3.30 (m, 1H, H-5), 3.16 (dd, *J* = 9.6, 2.0 Hz, 1H, H-3), 2.74 (br s, 5H, H-1, -HN(<u>CH₂)</u>₂-), 1.76-1.84 (m, 2H, H-6), 1.43 (br s, 4H, -(CH₂)₂-), 1.23 (br s, 12H, -(CH₂)₆-), 0.82 (t, *J* = 6.4 Hz, 6H, -(CH₃)₂); ¹³C NMR (CD₃OD, 100 MHz) δ 76.2, 74.9, 72.2, 71.2, 59.3, 52.1, 32.8, 31.0, 28.0, 27.4, 23.7, 14.4; HRMS *m*/z 332.2796 [M+H]⁺ (calcd for C₁₈H₃₈NO₄, 332.2801).

(1R,2S,3S,4S,5R)-1-diethylamino-cyclohexane-2,3,4,5-tetraol (41). Colorless oil (quantitative yield). $[\alpha]_D^{20} = +42.5$ (*c* 0.25, H₂O); ¹H NMR (D₂O, 400 MHz) δ 3.94 (br s, 1H, H-2), 3.58 (br s, 2H, H-3,5), 3.51 (m, 1H, H-4), 2.87 (br d, J = 3.6 Hz, 1H, H-1), 2.50-2.65 (m, 4H, -HN(<u>CH₂)₂-</u>), 1.79 (m, 1H, H-6), 1.67 (m, 1H, H-6), 0.86 (t, J = 7.2 Hz, 6H, -(CH₃)₂); ¹³C NMR (D₂O, 100 MHz) δ 73.5, 72.1, 69.5, 68.8, 57.3, 43.4, 27.6, 9.6; HRMS *m*/*z* 220.1552 [M+H]⁺ (calcd for C₁₀H₂₂NO₄, 220.1549).

(1R,2S,3S,4S,5R)-1-dibutylamino-cyclohexane-2,3,4,5-tetraol (42). Pale yellow oil (50%). ¹H NMR (CD₃OD, 400 MHz) δ 3.86 (br s, 1H, H-2), 3.70-3.77 (m, 3H, H-3,4,5), 3.03 (br s, 1H, H-1), 2.54-2.57 (m, 2H, -HN<u>CH₂-</u>), 2.39-2.42 (m, 2H, -HN<u>CH₂-</u>), 1.72-1.75 (m, 2H, H-6), 1.36-1.40 (m, 4H, -(CH₂)₂-), 1.19-1.28 (m, 4H, -(<u>CH₂</u>)₂CH₃), 0.85 (t, *J* = 6.8 Hz, 6H, -(CH₃)₂); ¹³C NMR (CD₃OD, 100 MHz) δ 74.5, 73.2, 72.3, 69.7, 57.3, 51.1, 31.2, 27.9, 21.6, 14.4; HRMS *m*/*z* 276.2169 [M+H]⁺ (calcd for C₁₄H₃₀NO₄, 276.2175).

(1R,2S,3S,4S,5R)-1-dihexylamino-cyclohexane-2,3,4,5-tetraol (43). Pale yellow oil (46%). ¹H NMR (D₂O, 400 MHz) δ 3.91-3.97 (m, 3H, H-2,3,5), 3.84 (br s, 1H, H-4), 3.70 (m, 1H, H-1), 3.08-3.16 (m, 2H, -HN<u>CH₂-</u>), 2.89 (br s, 2H, -HN<u>CH₂-</u>), 1.80-1.94 (m, 2H, H-6), 1.51-1.62 (m, 4H, -(CH₂)₂-), 1.13 (br s, 12H, -(CH₂)₆-), 0.68 (t, *J* = 6.4 Hz, 6H, -(CH₃)₂); ¹³C NMR (D₂O, 100 MHz) δ 73.3, 70.5, 69.2, 65.6, 56.9, 51.2, 30.4, 25.6, 25.1, 24.4, 21.7, 13.2; HRMS *m*/z 332.2799 [M+H]⁺ (calcd for C₁₈H₃₈NO₄, 332.2801).

α -Glucosidase inhibitory activities

Baker's yeast α-glucosidase inhibitory activity

The α -glucosidase inhibition assay was performed according to the slightly modified method of Wacharasindhu *et al.*¹ The α -glucosidase (0.1 U/mL) and substrate (1 mM *p*-nitrophenyl- α -D-glucopyranoside) were dissolved in 0.1 M phosphate buffer, pH 6.9. 10 µL of synthesized compounds (1 mg/mL in DMSO) was pre-incubated with 40 µL of α -glucosidase at 37 °C for 10 min. A 50 µL substrate solution was then added to the reaction mixture and incubated at 37 °C for 20 min, and terminated by adding 100 µL of 1 M Na₂CO₃. Enzymatic activity was quantified by measuring the absorbance at 405 nm (Bio-Rad microplate reader model 3550 UV). The percentage inhibition was calculated by [(A₀-A₁)/A₀] × 100, where A₀ is the absorbance without the sample, and A₁ is the absorbance with the sample. The IC₅₀ value was determined from a plot of percentage inhibition versus sample concentration. Acarbose[®] was used as standard control and the experiment was performed in duplicate.

Rat intestinal α -glucosidase inhibitory activity

Rat intestinal α -glucosidase inhibitory activity was determined according to our previous report.² The crude enzyme solution prepared from rat intestinal acetone powder was used as a source of maltase and sucrase. Rat intestinal acetone powder (1 g) was homogenized in 30 mL of 0.9% NaCl solution. After centrifugation (12,000*g* × 30 min), the aliquot was subjected to assay. A 10 µL of synthesized compounds (1 mg/mL in DMSO) was added with 30 µL of the 0.1 M phosphate buffer (pH 6.9), 20 µL of the substrate solution (maltose: 10 mM; sucrose: 100 mM) in 0.1 M phosphate buffer, 80 µL of glucose assay kit, and 20 µL of the crude enzyme solution. The reaction mixture was then incubated at 37 °C for 10 min (for maltose) and 40 min (for sucrose). Enzymatic activity was quantified by measuring the absorbance at 500 nm (Bio-Red microplate reader model 3550 UV). The percentage inhibition was calculated by $[(A_0-A_1)/A_0] \times 100$, where A_0 is the absorbance without the sample, and A_1 is the absorbance with the sample. The IC₅₀ value was determined from a plot of percentage inhibition versus sample concentration. Acarbose[®] was used as standard control and the experiment was performed in duplicate.

Measurement of kinetic constant²

For kinetic analyses of maltase by the active compounds, enzyme and active compounds were incubated with increasing concentration of maltose (2-20 mM). The type of inhibition was determined by Lineweaver-Burk plot. For calculation of K_i value, slope from a Lineweaver-Burk plot were replotted vs. [I] which gave the secondary plot.

References

S. Wacharasindhu, W. Worawalai, W. Rungprom, P. Phuwapraisirisan, *Tetrahedron Lett.*, 2009, 50, 2189-2192.
A. Wikul, T. Damsud, K. Kataoka, P. Phuwapraisirisan, *Bioorg. Med. Chem. Lett.* (accepted)

NMR spectra of synthesized compounds

Figure 4. ¹³C NMR spectrum of **5** (D_2O)

Figure 10. ¹³C NMR spectrum of 8 (CD₃OD)

Figure 24. ¹³C NMR spectrum of $30 (D_2O)$

ppm (t1)

