Electronic supplementary information for

Design, synthesis and molecular modelling of novel methyl[4-oxo-2-(aroylimino)-3-(substituted phenyl)thiazolidin-5-ylidene]acetates as potent

and selective aldose reductase inhibitors

Sher Ali^a, Aamer Saeed^{b,*}, Naeem Abbas^b, Mohammad Shahid^c, Michael Bolte^d and Jamshed Iqbal^{a,*}

^aDepartment of Pharmaceutical Sciences, COMSATS Institute of Information Technology, Abbottabad, Postal Code 22060, Pakistan

^bDepartment of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan.

^cFraunhofer Institute SCAI, Department of Bioinformatics, Sankt Augustin, Germany

^dInstitut für Anorganische Chemie, J.W.-Goethe-Universität, Max-von-Laue-Str.7, D-60438 Frankfurt/Main, Germany

Contents

- 1. Chemistry S-2
- 2. Table S1
- 3. Figure S1
- 4. Figure S2
- 5. NMR of representative compounds

1. Chemistry S-2

Methyl[4-oxo-2-(benzoylimino)-3-(2-methoxyphenyl)thiazolidin-5-ylidene]acetate

(2a).Yield: 84%; R_f^{*}: 0.22; m.p. 121-123°C; IR: 2953 (CH₃), 1724, 1692, 1652 (3C=O), 1538 (N=C), 1254 (C–S) cm⁻¹. ¹H
NMR (300 MHz, CDCl₃): δ 7.89-7.76 (m, 1H, ArH), 7.65-7.63 (m, 2H, ArH), 7.54-7.48 (m, 1H, ArH), 7.35-7.21 (m, 2H, ArH)

7.20-7.19 (m, 3H, ArH), 7.14 (s, 1H, C=CH-C), 3.78, 3.75 (2OCH₃); ¹³C NMR (75 MHz, CDCl₃): δ 176.7, 165.9, 165.0, 163.7, 141.8, 138.8, 135.4, 134.5, 135.2, 133.4, 132.9, 131.5, 128.4, 127.9, 122.0, 121.8, 53.1, 53.0.**EIMS***m*/*z* (%): 369 [M⁺] (15), 105 (100%), 107 (19), 59 (26).**Anal**. Calcd. for C₂₀H₁₆N₂O₅S: C, 60.60; H, 4.07; N, 7.07; S, 8.09. found: C, 60.67; H, 4.19; N, 7.25; S, 8.24.

Methyl[4-oxo-2-(benzoylimino)-3-(1-naphthalenyl)thiazolidin-5-ylidene]acetate (2b). Yield:

81%; R_f^{*}: 0.23; m.p. 244-246°C; **IR**: 2949 (CH₃), 1727, 1699, 1643 (3C=O), 1525 (N=C), 1260 (C–S) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 8.20-8.02 (m, 2H, ArH), 7.83-7.81 (m, 3H, ArH), 7.64-7.4.9 (m, 2H, ArH), 7.57-7.41 (m, 3H, ArH), 7.45-

7.32 (m, 2H, ArH), 7.13 (s, 1H, C=CH-C), 3.91 (CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 176.6, 165.7, 164.2, 163.7, 140.8, 135.1, 134.8, 133.6, 132.7, 132.4, 132.0, 131.9, 131.3, 130.3, 129.6, 129.5, 128.2, 127.4, 125.9, 120.5, 53.4. **EIMS***m*/*z* (%): 416 [M⁺] (14), 127 (57), 105 (100%), 31 (25). **Anal**. Calcd. for C₂₃H₁₆N₂O₄S: C, 66.33; H, 3.87; N, 6.73; S, 7.70. found: C, 66.41; H, 3.72; N, 6.77; S, 7.92.

Methyl[4-oxo-2-(2-methybenzoylimino)-3-(3-methoxyphenyl)thiazolidin-5-ylidene] acetate

(2c). Yield: 79%; R_f^{*}: 0.34; m.p. 204-206°C; IR: 2949 (CH₃),
1731, 1691, 1643 (3C=O), 1562 (N=C), 1252 (C–S) cm⁻¹. ¹H
NMR (300 MHz, CDCl₃): δ 7.87-7.81 (m, 1H, ArH), 7.78-

7.72 (m, 1H, ArH), 7.66-7.54 (m, 1H, ArH), 7.41-7.39 (m, 2H, ArH), 7.38-7.26 (m, 1H, ArH), 7.22-7.11 (m, 2H, ArH), 7.04 (s, 1H, C=CH-C), 3.88, 3.72 (2OCH₃), 2.40, 2.34 (CH₃); ¹³C NMR (75 MHz, CDCl₃,): δ 176.4, 165.7, 165.0, 163.6, 140.2, 135.9, 134.7, 133.9, 133.0, 132.8, 132.2, 131.5, 128.5, 127.8, 127.7, 124.8, 121.9, 121.6, 51,3, 53.2, 23.9. **EIMS***m*/*z* (%): 410 [M⁺] (19), 266 (14), 119 (100%), 107 (20). **Anal**. Calcd. for C₂₁H₁₈N₂O₅S: C, 61.45; H, 4.42; N, 6.83; S, 7.81. found: C, 61.58; H, 4.61; N, 6.90; S, 7.96.

Methyl[4-oxo-2-(3-methylbenzoylimino)-3-phenylthiazolidin-5-ylidene]acetate (2d). Yield:

86%; R_f^{*}: 0.45; m.p. 202-203°C; **IR**: 2950 (CH₃), 1722, 1708, 1645 (3C=O), 1520 (N=C), 1277 (C–S) cm⁻¹. ¹H **NMR** (300 MHz, CDCl₃): δ 7.80-7.75 (m, 2H, ArH), 7.64-7.61 (m, 3H, ArH), 7.49-7.41 (m, 1H, ArH), 7.38-

7.23 (m, 3H, ArH), 7.14 (s, 1H, C=CH-C), 3.93 (OCH₃), 2.64 (CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 176.6, 165.7, 165.1, 163.5, 140.1, 137.9, 136.5, 134.7, 133.5, 132.4, 131.1, 129.4, 127.6, 125.8, 124.2, 122.2, 53.0, 24.6.**EIMS***m*/*z* (%): 380 [M⁺] (17), 119 (100%), 85 (20), 59 (33) **Anal**. Calcd. for C₂₀H₁₆N₂O₄S: C, 63.14; H, 4.24; N, 7.36; S, 8.43. found: C, 63.30; H, 4.34; N, 7.49; S, 8.60.

Methyl[4-oxo-2-(3-methybenzoylimino)-3-(2-methoxyphenyl)thiazolidin-5-ylidene] acetate

(**2e**).Yield: 82%; R_f^{*}: 0.28; m.p. 160-161°C; **IR**: 2949 (CH₃), 1692, 1646, 1604 (3C=O), 1533 (N=C), 1253 (C– S) cm⁻¹. ¹**H NMR** (300 MHz, CDCl₃): δ 7.82-7.80 (m, 1H, ArH), 7.75-7.73 (m, 1H, ArH), 7.51-7.47 (m, 1H, ArH),

7.31-7.28 (m, 2H, ArH), 7.24-7.20 (m, 1H, ArH), 7.13-7.07 (m, 2H, ArH), 7.04 (s, 1H, C=CH-C), 3.87, 3.78 (2OCH₃), 2.31 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 176.6, 165.9, 165.3, 163.8, 141.4, 138.8, 134.1, 133.8, 133.3, 132.9, 132.0, 131.9, 130.0, 128.5, 126.1, 127.4, 123.7, 120.1, 53.3, 53.0, 21.3. **EIMS***m*/*z* (%): 410 [M⁺] (19), 266 (15), 119 (100%), 107 (60) **Anal**. Calcd. for C₂₁H₁₈N₂O₅S: C, 61.45; H, 4.42; N, 6.83; S, 7.81, found: C, 61.41; H, 4.50; N, 6.91; S, 7.93.

(2f). Yield: 81%; R_f^{*}: 0.35; m.p. 193-195°C; IR: 2919
(CH₃), 1724, 1698, 1650 (3C=O), 1530 (N=C), 1273 (C–S) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.77-7.72 (m, 2H, ArH), 7.64-7.56 (m, 3H, ArH), 7.40-7.39 (m, 2H, ArH), 7.38-7.24 (m, 1H, ArH), 7.14 (s, 1H, C=CH-C), 3.93

(OCH₃), 2.61 (CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 176.6, 165.5, 165.2, 163.5, 140.2, 137.8, 136.2, 135.6, 131.8, 131.1, 130.4, 128.3, 127.8, 124.5, 123.8, 121.3, 53.4, 24.5. **EIMS***m*/*z* (%): 414 [M⁺] (21), 270 (26), 119 (100%), 111 (57), 59 (43). **Anal**. Calcd. for C₂₀H₁₅ClN₂O₄S: C, 57.90; H, 3.64; N, 6.75; S, 7.73. found: C, 57.82; H, 3.51; N, 6.65; S, 7.56.

Methyl[4-oxo-2-(4-methybenzoylimino)-3-(3-chlorophenyl)thiazolidin-5-ylidene] acetate $O_{1} = \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=$

(2g). Yield: 82%; R_f^{*}: 0.16; m.p. 223-226°C; IR: 2950 (CH₃), 1746, 1738, 1658 (3C=O), 1555 (N=C), 1273 (C–S) cm⁻¹.¹H
NMR (300 MHz, CDCl₃): δ 7.81-7.74 (m, 2H, ArH), 7.65-7.59 (m, 3H, ArH), 7.41 (d, 2H, J = 7.5 Hz, ArH), 7.34-7.23 (m, 1H, ArH), 7.14 (s, 1H, C=CH-C), 3.93 (OCH₃), 2.61

(CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 176.6, 165.5, 165.2, 163.6, 140.1, 137.8, 136.4, 135.1, 130.8, 131.1, 130.5, 128.6, 127.9, 124.4, 123.6, 121.7, 53.4, 24.5. **EIMS***m*/*z* (%): 414 [M⁺] (20), 270 (21), 119 (100%), 111 (50), 59 (41). **Anal**. Calcd. for C₂₀H₁₅ClN₂O₄S: C, 57.90; H, 3.64; N, 6.75; S, 7.73. found: C, 57.70; H, 3.49; N, 6.85; S, 7.91.

136.4, 135.1, 133.7, 132.6, 131.6, 129.6, 127.4, 125.2, 124.9, 122.1, 121.8, 53.1. **EIMS***m*/*z* (%): 340 [M⁺] (21), 138 (100%), 77 (41), 59 (60). **Anal**. Calcd. for C₁₉H₁₃ClN₂O₄S: C, 56.93; H, 3.27; N, 6.99; S, 8.00. found: C, 56.81; H, 3.36; N, 6.70; S, 8.16.

Methyl[4-oxo-2-(4-chlorobenzoylimino)-3-(2,3-dichlorophenyl)thiazolidin-5-ylidene]

acetate (2i). Yield: 84%; R_f^* : 0.41; m.p. 244-245°C; IR: 2952 (CH₃), 1742, 1709, 1643 (3C=O), 1589 (N=C), 1266 (C–S) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.78-7.74 (m, 1H, ArH), 7.67 (d, 2H, *J* = 7.5 Hz, ArH), 7.44-7.36 (m, 3H, ArH), 7.26-7.21 (m, 1H, ArH), 7.13 (s, 1H, C=CH-C), 3.91 (OCH₃); ¹³C

NMR (75 MHz, CDCl₃): δ 175.4, 165.5, 165.0, 163.6, 140.1, 137.8, 133.7, 132.1, 131.5, 130.6, 129.4, 126.9, 126.1, 125.2, 123.6, 122.4, 53.5. **EIMS***m*/*z* (%): 467 [M⁺] (19), 138 (100%), 144 (40). **Anal**. Calcd. for C₁₉H₁₁Cl₃N₂O₄S: C, 48.58; H, 2.36; N, 5.96; S, 6.83. found: C, 48.63; H, 2.46; N, 6.04; S, 6.73.

Methyl[4-oxo-2-(2-bromobenzoylimino)-3-(2,3-dichlorophenyl)thiazolidin-5-ylidene]

acetate (2j). Yield: 83%; R_f^{*}: 0.38; m.p. 179-182°C; IR: 2957 (CH₃), 1741, 1706, 1644(3C=O), 1529 (N=C), 1266 (C–S) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.82-7.78 (m, 1H, ArH), 7.68-7.61 (m, 2H, ArH), 7.45-7.40 (m, 1H, ArH), 7.35-7.28 (m, 3H, ArH), 7.14 (s, 1H, C=CH-C), 3.93 (OCH₃);¹³C NMR

(75 MHz, CDCl₃): δ 176.5, 165.9, 165.3, 163.8, 140.0, 134.8, 134.4, 133.5, 133.2, 132.8, 132.0, 131.6, 130.3, 128.4, 127.9, 127.8, 122.7, 121.6, 53.0. **EIMS***m*/*z* (%): 514 [M⁺+2] (14), 367 (15), 144 (41), 182 (100%), 59 (32).**Anal**. Calcd. for C₁₉H₁₁BrCl₂N₂O₄S: C, 44.38; H, 2.16; N, 5.45; S, 6.24. found: C, 44.35; H, 2.25; N, 5.58; S, 6.34.

Methyl[4-oxo-2-(2-bromobenzoylimino)-3-(2,4-dichlorophenyl)thiazolidin-5-ylidene] acetae

(2k). Yield: 79%; R_f^{*}: 0.34; m.p. 200-203°C; IR: 2949 (CH₃), 1741, 1692, 1656 (3C=O), 1538 (N=C), 1255 (C–S) cm⁻¹. ¹H
NMR (300 MHz, CDCl₃): δ 7.78-7.76 (m, 2H, ArH), 7.58-7.50 (m, 2H, ArH), 7.45 (s, 1H, ArH), 7.36-7.29 (m, 2H, ArH), 7.14 (s, 1H, C=CH-C), 3.92 (OCH₃); ¹³C NMR (75 MHz,

CDCl₃): δ 176.8, 165.7, 165.5, 163.9, 140.1, 135.7, 134.9, 133.4, 133.1, 132.5, 132.2, 131.5, 131.3, 128.4, 127.2, 127.1, 123.7, 120.6, 53.3.**EIMS***m*/*z* (%): 514 [M⁺+2] (14), 144 (30), 182

(100%), 72 (10). **Anal**. Calcd. for C₁₉H₁₁BrCl₂N₂O₄S: C, 44.38; H, 2.16; N, 5.45; S, 6.24. found: C, 44.40; H, 2.15; N, 5.45; S, 6.22.

Methyl[4-oxo-2-(4-nitrobenzoylimino)-3-(2-fluorophenyl)thiazolidin-5-ylidene] acetate (2l).

Yield: 76%; R_{f}^{*} : 0.28; m.p. 204-206°C; **IR**: 2950 (CH₃), 1743, 1707, 1660 (3C=O), 1539 (N=C), 1242 (C–S) cm⁻¹. ¹H **NMR** (300 MHz, CDCl₃): δ 8.74 (d, 2H, *J* = 7.5 Hz, ArH), 7.94-7.78 (m, 2H, ArH), 7.41-7.30 (m, 4H, ArH), 7.15 (s,

1H, C=CH-C), 3.93 (OCH₃); ¹³C NMR (75 MHz, CDCl₃): 179.7, 167.5, 166.6, 164.9, 150.9, 150.4 (d, ${}^{1}J = 249.7$ Hz, ArC), 148.4, 131.9, 130.5, 129.6, 128.9 (d, ${}^{2}J = 22.4$ Hz, ArC), 126.7, 124.6 (d, ${}^{3}J = 9.1$ Hz, C), 124.2, 123.5, 122.0, 53.8.**EIMS***m*/*z* (%): 429 [M⁺] (17), 285 (11), 150 (100%), 95 (68), 59 (29).**Anal**. Calcd. for C₁₉H₁₂FN₃O₆S: C, 53.15; H, 2.82; N, 9.79; S, 7.47. found: C, 53.01; H, 2.63; N, 9.61; S, 7.33.

Methyl[4-oxo-2-(4-nitrobenzoylimino)-3-(3-chloro-4-fluorophenyl)thiazolidin-5-

ylidene]acetate (2m). Yield: 74%; R_f^* : 0.44; m.p. 260-262°C; IR: 3064 (CH₃), 1726, 1710, 1662 (3C=O), 1520 (N=C), 1247 (C–S) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 8.83 (d, 2H, *J* = 7.5 Hz, ArH), 8.35 (d, 2H, *J* = 7.5 Hz, ArH) 7.98-7.71 (m, 3H, ArH), 7.16 (s, 1H, C=CH-C), 3.91

(OCH₃); ¹³C NMR (75 MHz, CDCl₃): δ 179.8, 167.7, 166.6, 164.9, 150.8, 149.9 (d, ¹*J* = 249.7 Hz, ArC), 148.6, 131.9, 130.5 (d, ²*J* = 22.4 Hz, ArC), 129.2, 128.7, 126.1, 124.4 (d, ³*J* = 9.2 Hz, C), 124.0, 122.5, 122.3, 53.8.**EIMS***m*/*z* (%): 463 [M⁺] (11), 319 (10), 150 (100%), 128 (71), 59 (66). **Anal**. Calcd. for C₁₉H₁₁ClFN₃O₆S: C, 49.20; H, 2.39; N, 9.06; S, 6.91. found: C, 49.18; H, 2.30; N, 9.10; S, 6.81.

Methyl[4-oxo-2-(2-naphthoylimino)-3-phenylthiazolidin-5-ylidene]acetate (2n).Yield: 83%;

R_f^{*}: 0.34; m.p. 211-212°C; **IR**: 2950 (CH₃), 1737, 1715, 1690 (3C=O), 1531 (N=C), 1271 (C–S) cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 8.04-8.01 (m, 1H, ArH), 7.83-7.80 (m, 4H, ArH), 7.57-7.53 (m, 2H, ArH), 7.50-7.44 (m, 3H, ArH), 7.40-7.34 (m, 2H, ArH), 7.10 (s, 1H, C=CH-C), 3.90 (s, 3H, OCH₃); ¹³C NMR (75 MHz, CDCl₃): δ 176.6, 165.9, 164.2, 163.8, 140.9, 135.9, 134.5, 133.5, 132.4, 132.2, 132.1, 131.9, 131.0, 130.0, 129.5, 129.0, 128.2, 127.6, 125.2, 120.5, 53.4.**EIMS***m*/*z* (%): 416 [M⁺] (21), 155 (100%), 127 (84), 77 (64), 29 (47), **Anal**. Calcd. for C₂₃H₁₆N₂O₄S: C, 66.33; H, 3.87; N, 6.73; S, 7.70. found: C, 66.30; H, 3.89; N, 6.75; S, 7.75.

*(Petroleum ether : Ethyl acetate, 4:1)

2. Table S1 Physical data of methyl[4-oxo-2-(aroylimino)-3-(substituted phenyl)thiazolidin-5-ylidene]acetates

Comp	\mathbf{R}_1	R ₂	Yield (%)	$R_{\rm f}^{\ a}$	m.p ℃
2a	C_6H_5	o-OCH ₃ -C ₆ H ₄	84	0.22	121-123
2b	C_6H_5	1-Naphthyl	81	0.23	224-246
2c	<i>о</i> -СН ₃ - С ₆ Н ₄	m-OCH ₃ -C ₆ H ₄	79	0.34	204-206
2d	m-CH ₃ -C ₆ H ₄	C_6H_5	86	0.45	202-203
2e	m-CH ₃ -C ₆ H ₄	o-OCH ₃ -C ₆ H ₄	82	0.28	160-161
2f	m-CH ₃ -C ₆ H ₄	m-Cl-C ₆ H ₄	81	0.35	193-195
2g	<i>p</i> -CH ₃ -C ₆ H ₄	m-Cl-C ₆ H ₄	82	0.16	223-226
2h	o-Cl-C ₆ H ₄	C_6H_5	78	0.34	198-200
2i	<i>p</i> -Cl-C ₆ H ₄	o,m-di-Cl-C ₆ H ₃	84	0.41	244-245
2j	o-Br-C ₆ H ₄	<i>o,m</i> -di-Cl-C ₆ H ₃	83	0.38	179-182
2k	o-Br-C ₆ H ₄	o,p-di-Cl-C ₆ H ₃	79	0.34	200-203
21	p-NO ₂ -C ₆ H ₄	<i>o</i> -F-C ₆ H ₄	76	0.28	204-206
2m	p-NO ₂ -C ₆ H ₄	m-Cl, p -F-C ₆ H ₃	74	0.44	260-262
2n	2-naphthyl	C_6H_5	83	0.34	211-212

^a(Petroleum ether : acetone) = 4:1

3. Figure S1 Interaction diagrams of compounds **2a** (left) and **2f** (right). The dotted lines indicate hydrogen-bonding interactions with the side-chain of Trp20. The green lines surrounding the aromatic rings of the compounds show the list of hydrophobic interacting residues of the active site pocket of the enzyme.

4. Figure S2 Equilibration steps showing density, temperature, potential energy and backbone RMSD plots of the equilibrated complex.

Electronic Supplementary Material (ESI) for Medicinal Chemistry Communications This journal is The Royal Society of Chemistry 2012

5. NMR of representative compounds

Electronic Supplementary Material (ESI) for Medicinal Chemistry Communications This journal is o The Royal Society of Chemistry 2012