Supplementary Information

Synthesis, Radical Scavenging Activity and Structure-Activity Relationship of Uric Acid Analogs.

Daisuke Yasuda, ${ }^{a}$ Kyoko Takahashi, ${ }^{a}$ Tomohiro Kakinoki, ${ }^{a}$ Yoko Tanaka, ${ }^{a}$ Tomoyuki Ohe, Shigeo
Nakamura ${ }^{b}$ and Tadahiko Mashino* ${ }^{a}$

Contents

1. Preparation of Uric acid analogs

2. Scanned copies of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

3. DPPH radical scavenging activity

4. Prediction of pKa values

5. Determination of cytotoxicity.

1. Preparation of Uric acid analogs

1.1. General

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra (500 MHz) were measured on a JEOL JNM-A500 FT-NMR spectrometer with tetramethylsilane as an internal standard $(\delta=0.00)$ in $\mathrm{CD}_{3} \mathrm{OD}$ or DMSO- $d_{6} \cdot{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra (125 MHz) were obtained on the same spectrometer and the chemical shifts were referenced to the signals of $\mathrm{CD}_{3} \mathrm{OD}(\delta=33.3)$ or DMSO- $d_{6}(\delta=39.5)$. Melting points were determined using a Yanagimoto MP-J3 micro-melting point apparatus and uncorrected. Column chromatography was performed using Merck Silica gel 60. 6-Hydroxy-2-benzoxazolinone 4, 5-indanol 7 were purchased from Sigma-Aldrich Chemical Co., 5-hydroxyoxindole 3a was purchased from Apin Chemical Co. 5-hydroxyindole 5, 6-hydroxyindole 6, Benzimidazole 8 and 2-indanone 9 were purchased from Kanto Chemical Co., 1,1-diphenyl-2-picrylhydrazyl, hydroquinone, p-aminophenol and uric acid were purchased from Tokyo Kasei Kogyo Co. The regioisomers of 2a and 3a were synthesized according to the method reported by R. J. S. Beer et al (J. chem. Soc., 1948, 1605-1609) with some suitable modification.

1-2 Preparation of 1,3-dihydro-7-methoxy-2H-imidazo[4,5-b]pyridine-2-one (1b)

To solution of urea $(0.45 \mathrm{~g}, 7.5 \mathrm{mmol})$ and $o-6$-methoxy-2,3-pyridinediamine $(1.59 \mathrm{~g}, 7.5 \mathrm{mmol})$ in N, N-dimethylformamide (12 mL) was added $\mathrm{ZnO}(442.5 \mathrm{mg}, 5.44 \mathrm{mmol})$ and reacted for 5 hr under microwave irradiation condition $\left(120^{\circ} \mathrm{C}, 150 \mathrm{~W}\right)$. Whole the reaction mixturewas diluted with $\mathrm{H}_{2} \mathrm{O}$, extracted with ethyl acetate twice. The organic layer was washed with sat. NaCl solution, dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The residue was recrystalyzed from CHCl_{3} : MeOH to brown crystal ($459.5 \mathrm{mg}, 37$ \%).
${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(\mathbf{D M S O}-\boldsymbol{d}_{\boldsymbol{6}}, \mathbf{5 0 0 M H z}\right) \delta 3.78\left(s, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 6.36(d, 1 \mathrm{H}, J=8.50 \mathrm{~Hz}, 8-\mathrm{H}), 7.21(d, 1 \mathrm{H}, J=$ $8.00 \mathrm{~Hz}, 9-\mathrm{H}), 10.54$ (brs, 1H, -NH-), 11.20 (brs, 1H, -NH-). .
${ }^{13}$ C-NMR (DMSO- $\left.\boldsymbol{d}_{6}, 125 \mathbf{~ M H z}\right) \delta 53\left(-\mathrm{OCH}_{3}\right), 101$ (8C), 117 (4C), 119 (9C), 142 (5C), 154 (7C), 159 (2C).

FAB-MS: $m / z=166[\mathrm{M}+\mathrm{H}]^{+}(84 \%), 165[\mathrm{M}]^{+}(64 \%), 138(40 \%), 137(77 \%), 136(100 \%), 107(29 \%)$, $89(24 \%), 77$ (21%).

FAB-HRMS: calcd. for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}_{2} 166.0617$, found 166.0633.

1-3. Preparation of 5-methoxy-2-benzimidazolinone $\mathbf{2 b}$

To solution of urea $(0.55 \mathrm{~g}, 9.19 \mathrm{mmol})$ and 4-methoxy-1,2-phenylenediamine ($1.94 \mathrm{~g}, 9.19 \mathrm{mmol}$) in N, N-dimethylformamide (20 mL) was added $\mathrm{ZnO}(540.0 \mathrm{mg}, 6.63 \mathrm{mmol})$ and reacted for 10 hr under microwave irradiation condition $\left(120^{\circ} \mathrm{C}, 150 \mathrm{~W}\right)$. Whole the reaction mixturewas diluted with $\mathrm{H}_{2} \mathrm{O}$, extracted with ethyl acetate twice. The organic layer was washed with sat. NaCl solution, dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The residue was recrystalyzed from CHCl_{3} : MeOH to give yellow crystal ($560 \mathrm{mg}, 37 \%$).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathbf{C D}_{3} \mathbf{O D}, 500 \mathrm{MHz}\right) \delta 3.69\left(s, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 6.55(d d, 1 \mathrm{H}, J=8.50 \mathrm{~Hz}, 2.14 \mathrm{~Hz}, 6-\mathrm{H}), 6.59(d$, $1 \mathrm{H}, J=2.14 \mathrm{~Hz}, 4-\mathrm{H}), 6.85(d, 1 \mathrm{H}, J=8.54 \mathrm{~Hz}, 7-\mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($\left.\mathbf{C D}_{3} \mathbf{O D}, 125 \mathrm{MHz}\right) \delta 56\left(-\mathrm{OCH}_{3}\right), 108(4 \mathrm{C}), 110(6 \mathrm{C}), 124(7 \mathrm{C}), 131$ (9C), 157 (5C), 158
(2C).

1-4. Preparation of 2-benzimidazolinone 2c

To solution of urea ($0.20 \mathrm{~g}, 3.33 \mathrm{mmol}$) and o-phenylenediamine ($0.36 \mathrm{~g}, 3.33 \mathrm{mmol}$) in N, N-dimethylformamide (8 mL) was added $\mathrm{ZnO}(196.7 \mathrm{mg}, 2.42 \mathrm{mmol})$ and reacted for 6 hr under microwave irradiation condition $\left(120^{\circ} \mathrm{C}, 150 \mathrm{~W}\right)$. Whole the reaction mixturewas diluted with $\mathrm{H}_{2} \mathrm{O}$, extracted with ethyl acetate twice. The organic layer was washed with sat. NaCl solution, dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The residue was recrystalyzed from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: MeOH to give black crystal ($37.3 \mathrm{mg}, 8 \%$).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathbf{C D}_{3} \mathbf{O D}, 600 \mathrm{MHz}\right) \delta 7.01$ ($\mathrm{s}, 4 \mathrm{H}, 4,5,6,7-\mathrm{H}$).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{C D}_{3} \mathbf{O D}, 125 \mathbf{M H z}\right) \delta 110(5 \mathrm{C}, 6 \mathrm{C}), 122(4 \mathrm{C}, 7 \mathrm{C}), 130$ (8C, 9C), 158 (2C).

1-5 Preparation of 1,3-dihydro-7-hydroxy-2H-imidazo[4,5-b]pyridine-2-one (1a)

$\mathbf{1 b}(100.0 \mathrm{mg}, 0.61 \mathrm{mmol})$ was dissolved in 47% aqueous $\mathrm{HBr}(1.0 \mathrm{~mL})$ and stirred at $130^{\circ} \mathrm{C}$ for 3 hr . After excess HBr and $\mathrm{H}_{2} \mathrm{O}$ were removed by evaporation, the crude product (101.2 mg) was purified by column chromatography $\left(\mathrm{SiO}_{2}\right)$ to give white solid ($10.0 \mathrm{mg}, 11 \%$).
${ }^{\mathbf{1}} \mathbf{H}-$ NMR (DMSO- $\left.\boldsymbol{d}_{\boldsymbol{6}}, \mathbf{5 0 0 M H z}\right) \delta 6.17(d, 1 \mathrm{H}, J=8.30 \mathrm{~Hz}, 7-\mathrm{H}), 7.11(d, 1 \mathrm{H}, J=8.06 \mathrm{~Hz}, 8-\mathrm{H}), 10.04$ (brs, 1H, -OH), $10.40(s, 1 \mathrm{H},-\mathrm{NH}-), 11.02(s, 1 \mathrm{H},-\mathrm{NH}-)$.
${ }^{13}$ C-NMR (DMSO- $\left.\boldsymbol{d}_{6}, 125 \mathrm{MHz}\right) \delta 100$ (8C), 116 (4C), 118 (9C), 142 (5C), 154 (7C), 158 (2C).
FAB-MS: $m / z=152[\mathrm{M}+\mathrm{H}]^{+}(39 \%), 151[\mathrm{M}]^{+}(19 \%), 138(39 \%), 137(76 \%), 136(100 \%), 107(28 \%)$, 89 (25%), 77 (21%).

FAB-HRMS: calcd. for $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{2} 152.0460$, found 152.0472.
Mp. : over $300^{\circ} \mathrm{C}$ (decomp.)

1-6. Preparation of 5-hydroxy-2-benzimidazolinone 2a

2b ($80.6 \mathrm{mg}, 0.49 \mathrm{mmol}$) was dissolved in 47% aqueous $\mathrm{HBr}(1.0 \mathrm{~mL})$ and stirred at $130{ }^{\circ} \mathrm{C}$ for 3 hr . After excess HBr and $\mathrm{H}_{2} \mathrm{O}$ were removed by evaporation, the crude product (81.5 mg) was purified by column chromatography $\left(\mathrm{SiO}_{2}\right)$ to give white solid ($65.6 \mathrm{mg}, 89 \%$).
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{C D}_{3} \mathbf{O D}, 500 \mathbf{~ M H z}\right) \delta 6.49(d d, 1 \mathrm{H}, J=8.50 \mathrm{~Hz}, 2.14 \mathrm{~Hz}, 6-\mathrm{H}), 6.53(d, 1 \mathrm{H}, J=1.83,4-\mathrm{H})$, $6.83(d, 1 \mathrm{H}, J=8.28 \mathrm{~Hz}, 7-\mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{C D}_{3} \mathbf{O D}, 125 \mathrm{MHz}\right) \delta 98$ (4C), 109 (6C), 110 (1C), 123 (7C), 131 (3C), 153 (5C), 158 (2C)
M. p. : over $300^{\circ} \mathrm{C}$ (decomp.)
2. Scanned copies of the ${ }^{1} H$ and ${ }^{13} C$ NMR spectra

3. DPPH radical scavenging activity

The measurement procedure is a modification of the method of Yamaji et al (Yamaji, K.; Sarker, K. P.; Maruyama, I.; Hizukuri, S. Planta Med., 2002, 60. 16). Sample ($500 \mu \mathrm{M}$) and DPPH ($50 \mu \mathrm{M}$) was mixed in a solution of MES buffer (pH 7.4) and ethanol (3:2) at $25^{\circ} \mathrm{C}$. The decrease in absorbance at 517 nm was recorded on a stopped-flow Rapid-Scan Spectrophotometer RSP-1000 (UNISOKU Co., Ltd.) for 60 sec . The second-order rate constant was calculated based on a decreasing curve fitting method (UNISOKU Spectroscopy \& Kinetics, NISOKU Co., Ltd.).

4. Prediction of pKa values

Apparent $\mathrm{p} K$ a values of all UA analogs were theoretically calculated by using $\mathrm{ACD} / \mathrm{pKa} \mathrm{DB}$ (version 9.0) software.

4. Determination of cytotoxicity.

HL-60 cells (5×10^{5} cells $/ \mathrm{mL}$) were plated onto a six-well multi-plate and incubated with the test compound in DMSO $(0.5-100 \mu \mathrm{M})$ at $37^{\circ} \mathrm{C}$ for 24 h under a $5 \% \mathrm{CO}_{2}$ atmosphere. Only the cells treated with DMSO were used as a non-treated control. The concentration of DMSO was set at $1 \mathrm{v} / \mathrm{v} \%$. The incubation mixture was centrifuged at $1,000 \mathrm{rpm}$ for 5 min , and the pellet was suspended in 2 mL of PBS(-). The cells were stained with trypan blue, and the viable cells were counted by a Vi-CELL ${ }^{\mathrm{TM}}$ cell viability analyzer (Beckman Coulter Inc.). Cell viability was calculated by the following equation. Cell Viability $(\%)=($ treated viable cells $) /($ non-treated control viable cells $) \times 100$.

