Phenazine N,N'-dioxide scaffold as selective hypoxic cytotoxin pharmacophore. Structural modifications looking for further DNA topoisomerase II-inhibition activity

Mariana Gonda, Marcos Nieves, Elia Nunes, Adela López de Ceráin, Antonio Monge, María Laura Lavaggi, Mercedes González and Hugo Cerecetto

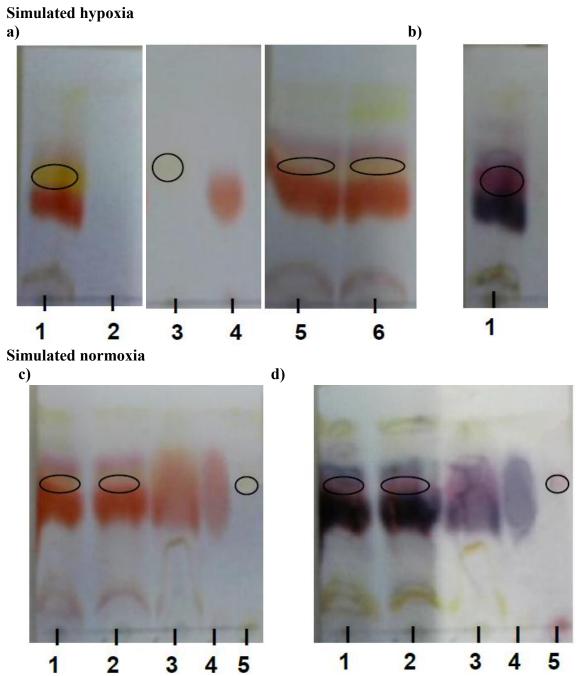
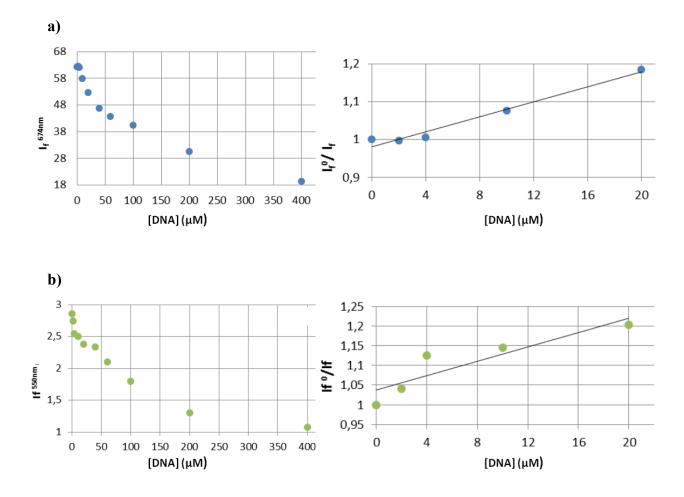

Figure S1	ESI-2
Γable S1	ESI-3
Figure S2	ESI-4
Figure S3	ESI-5
Figure S4	ESI-6
Experimental details for the synthesis of benzofuroxan (IV)	ESI-7
Selected NMR spectra	ESI-8

Figure S1. Synthetic scheme and results in the preparation of PDO **19**. This compound was obtained mixed with the corresponding imine (secondary product). This mixture treated with aminoguanidine yield PDO **21**.


Table S1. Proportions of 7- and 8-Isomers of Studied Compounds.

compound	7:8 isomers ratio ^a
6	50:50
7	55:45
8	50:50
9	53:47
10	51:49
11	44:56
12	52:48
13	65:35
14	59:41
15	56:44
16	55: 45
17	58:42
18	60:40
19	$60:40^{b}$
20	65:35 ^b
21	58:42 ^b
22	$60:40^{\rm b}$
23	56:44
25	50:50 ^b
	20.20

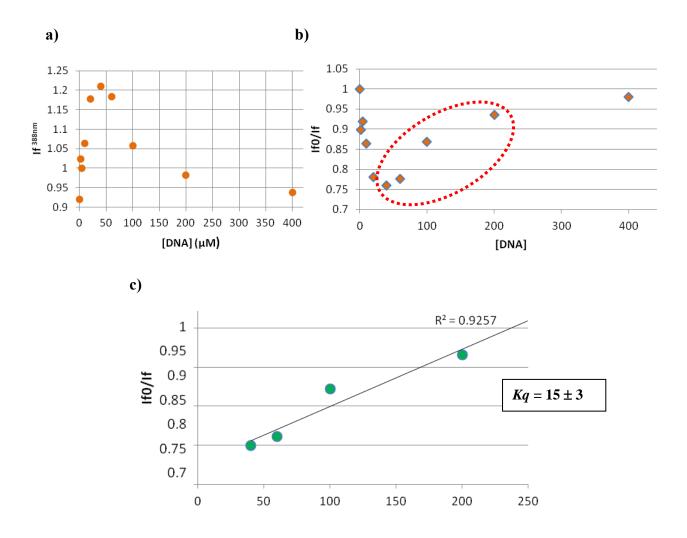
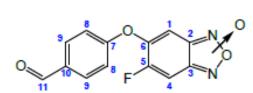

^a Determined by ¹H-NMR from the isolated products. ^b 7-fluoro- and 8-fluoro-isomers.

Figure S2. TLC chromatograms (see Material and methods for experimental conditions) taken after 30 min of incubation of PDO **12** with different protein fractions and in different gasification conditions. **Simulated hypoxia: a**) Spots without revealed (PDO, orange; phenazine monoxides, yellow); **b**) Run 1 spots visualised by spraying with a solution of *p*-anisaldehyde:H₂SO₄(c):EtOH (95:4:1) followed by heating. Runs: **1.** Incubation with S9 fraction; **2.** Control of enzymatic fractions; **3.** PDO **23**; **4.** PDO **12**; **5.** Incubation with cytosolic fraction; **6.** Incubation with microsomal fraction. **Simulated normoxia: c**) Spots without revealed (PDO, orange; phenazine monoxides, yellow); **d**) Spots visualised by spraying with a solution of *p*-anisaldehyde:H₂SO₄(c):EtOH (95:4:1) followed by heating. Runs: **1-3.** Incubations with cytosolic, microsomal, and S9 fractions; **4.** PDO **12**; **5.** PDO **23**.

Figure S3. Stern–Volmer quenching plot (right) from the fluorescence data with increasing concentrations of DNA in PBS (left). **a)** For toluene blue (reference compound). **b)** For PDO 7.

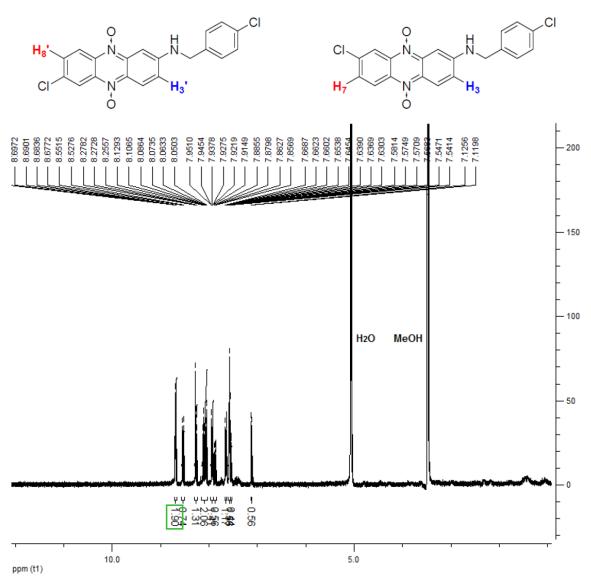

Figure S4. a) Variation of fluorescence of PDO **6** with increasing concentrations of DNA. b) Stern–Volmer quenching plot from the fluorescence data with increasing concentrations of DNA in PBS for PDO **6**. The red circle point to the region used to determine the Kp (c)). c) Kp determination for PDO **6** in the DNA concentrations range 40-200 μ M.

Detailed experimental procedures and spectroscopic characterization of benzofuroxan (IV)

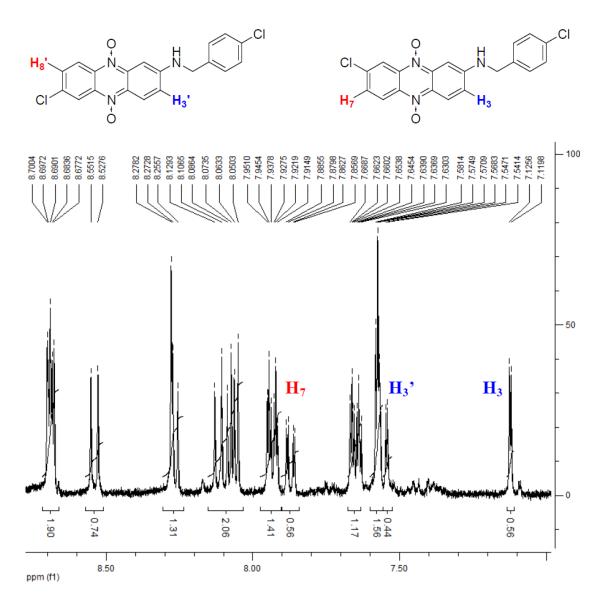
$$O_2N$$

Synthesis of 4-(5-amino-2-fluoro-4-nitrophenoxy)benzaldehyde. Dried molecular sieves (3 Å) were loaded into the main chamber of a Soxhlet extractor equipment. Then the extractor was placed onto a

flask containing a mixture of 4,5-difluoro-2-nitroaniline (4.5 mmol), *p*-hydroxybenzaldehyde (4.1 mmol), anhydrous potassium carbonate (4.1 mmol), 18-crown-6 (4.1 mmol) and dried toluene (70 mL). The mixture was heated at reflux during 2.5 h. After that, the toluene was evaporated *in vacuo* and the residue was dissolved in EtOAc (50 mL) and washed with an aqueous solution of sodium hydroxide (10 %) (3 × 20 mL). The organic phase was dried over anhydrous Na₂SO₄ and evaporated *in vacuo*. The formed solid corresponded to the desired product. Green solid (91 %). ¹H-NMR (CDCl₃+D₂O, 400 MHz) δ (ppm): 10.01 (1H, s, H₁), 8.04 (1H, d, J= 10.8Hz, H₈), 7.94 (2H, d, J= 8.6 Hz, H₃), 7.21 (2H, d, J= 8.6 Hz, H₄), 6.41 (1H, d, J= 6.8 Hz, H₁₁). ¹³C-NMR (CDCl₃, 100 MHz) δ (ppm): 191.8, 160.7, 151.0, 146.5, 137.1, 132.6, 130.1, 127.5, 119.1, 114.5, 108.8. MS, *m/z* (%): 276 (M⁺, 100), 260 (M⁺ - 16, 2), 246 (M⁺ - 30, 10), 230 (M⁺ - [NO₂], 10).


Synthesis of 5-fluoro-6-(4-formylphenoxy)benzo[1,2-c][1,2,5]oxadiazole (IV). A solution of 4-(5-Amino-2-fluoro-4-nitrophenoxy)benzaldehyde (4.3 mmol) in acetone (19 mL) and glacial acetic acid (12 mL) was

cooled at 0 °C and a solution of sodium nitrite (4.3 mmol) in concentrated hydrochloric acid (1.2 mL) and water (3.3 mL) was added dropwise. Then the reaction mixture was stirred during 30 min at 0 °C. After that, a solution of sodium azide (4.3 mmol) and sodium acetate (4.3 mmol) in water (1.1 mL) was added dropwise and the reaction mixture was raised to room temperature and stirred for 2 h. The acetone was evaporated *in vacuo* and the residue was dissolved in EtOAc (50 mL) and washed with an aqueous solution of sodium hydroxide (10 %) (3 × 20 mL). The organic phase was dried over anhydrous Na₂SO₄ and evaporated *in vacuo*. The residue was dissolved in toluene (75 mL) and the solution was heated at reflux for 2 h. The toluene was evaporated *in vacuo*. The residue was purified by chromatography (SiO₂, petroleum ether:EtOAc, 8:2) yielding the desired product as a yellow solid (71 %). ¹H-NMR (CDCl₃, 400 MHz) δ (ppm): 10.05 (1H, s, H₁₁), 8.01 (2H, d, J= 9.1 Hz, H₉), 7.30 (2H, d, J= 9.0 Hz, H₈), 7.45-7.20 (1H, bs, H₁), 7.25-7.05 (1H, bs, H₄). ¹³C-NMR (CDCl₃, 100 MHz) δ (ppm): 190.7, 159.4, 159.3, 149.0, 134.3, 132.7, 118.9, 118.4, 113.1. MS, *m/z* (%):274 (M⁺, 100), 258 (M⁺ - [O], 15), 228 (M⁺ - [NO₂], 2), 213 (M⁺ - [N₂O₂] - [H], 85).

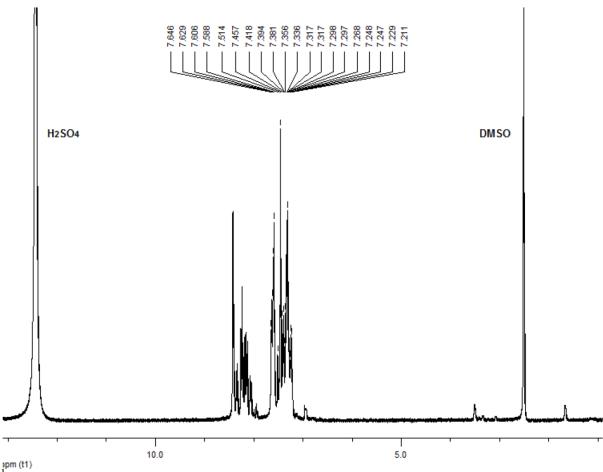

Selected NMR spectra

7(8)-Chloro-2-(4-chlorobenzylamino)phenazine 5,10-dioxide (11)

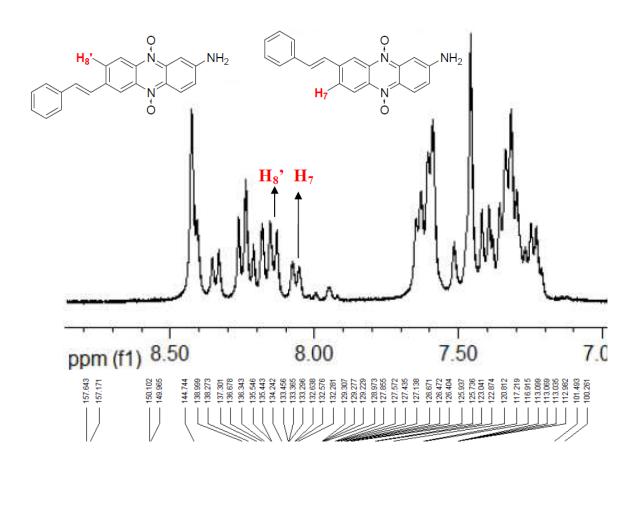
(7:8 isomers ratio, 44:56)

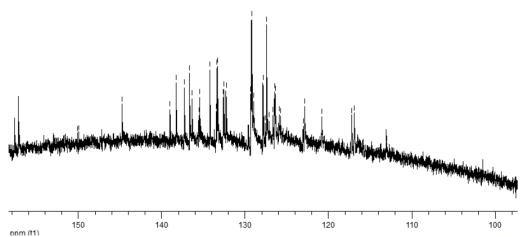
 ^{1}H NMR spectrum recorded on a Bruker DPX-400 spectrometer at 298 K and using CD₃OD:D₂O (9:1) as solvent.

Selected region, aromatics, of the proton NMR spectrum recorded on a Bruker DPX-400 spectrometer at 298 K and using CD₃OD:D₂O (9:1) as solvent.


7(8)-Bromo-2-(4-methylphenylsulfonylamino)phenazine 5,10-dioxide (12)

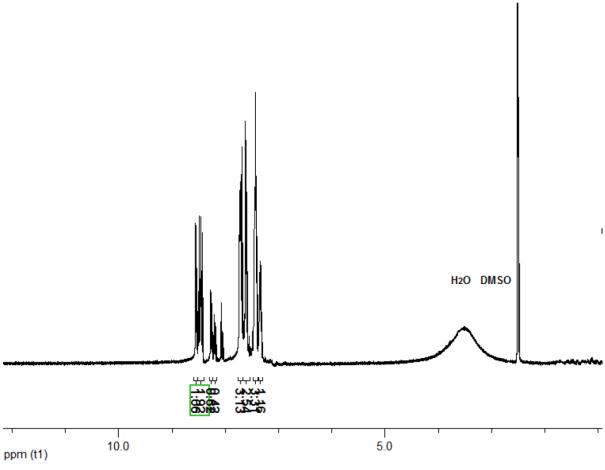
(7:8 isomers ratio, 52:48)

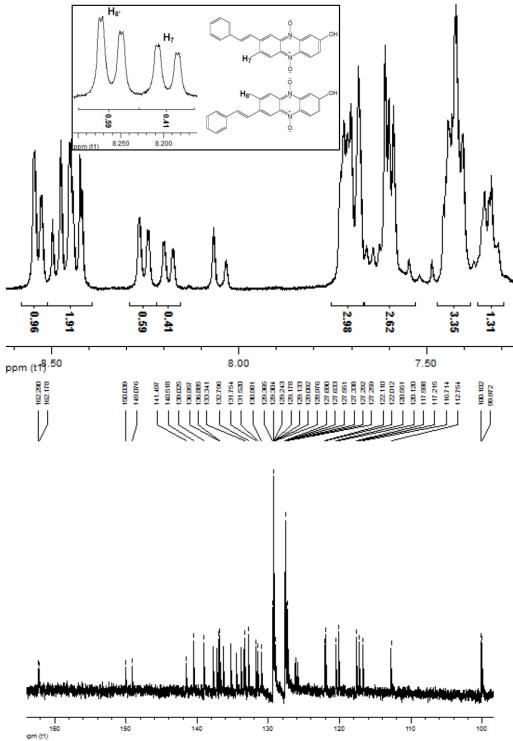

Selected region, aromatics, of the proton NMR spectrum recorded on a Bruker DPX-400 spectrometer at 298 K and using DMSO- d_6 :D₂O (1:1) as solvent. Inset: region of the methyl-protons.


2-Amino-7(8)-(E-2-phenylethenyl)phenazine 5,10-dioxide (13)

(7:8 isomers ratio, 65:35)

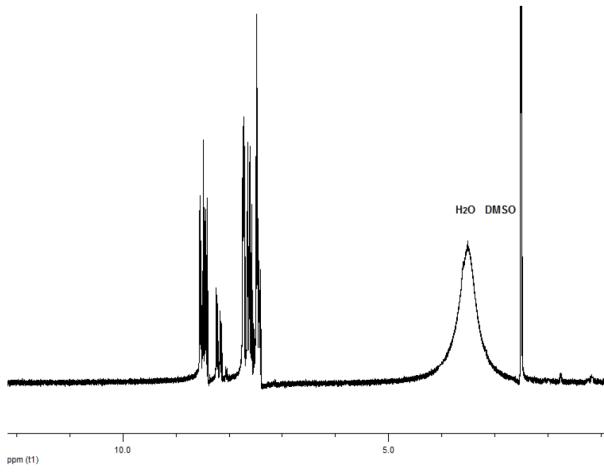
¹H NMR spectrum recorded on a Bruker DPX-400 spectrometer at 298 K and using DMSO-*d*₆:D₂SO₄ (9.5:0.5) as solvent.

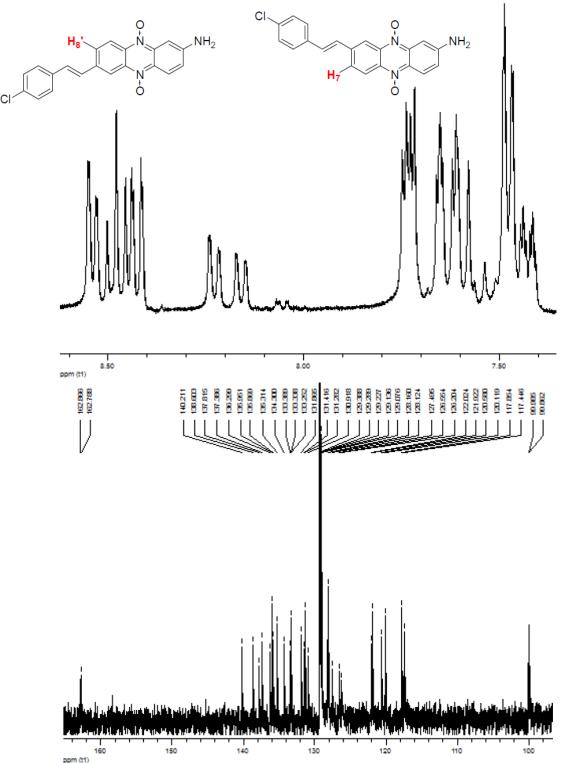



Selected regions, aromatics, of the proton and carbon NMR spectra recorded on a Bruker DPX-400 spectrometer at 298 K and using DMSO- d_6 :D₂SO₄ (9.5:0.5) as solvent.

2-Hydroxy-7(8)-(*E*-2-phenylethenyl)phenazine 5,10-dioxide (14)

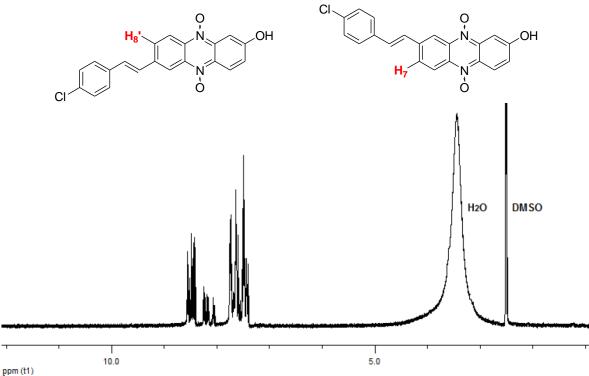
(7:8 isomers ratio, 59:41)

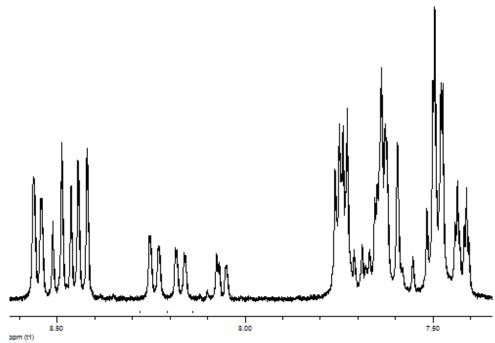

 1 H NMR spectrum recorded on a Bruker DPX-400 spectrometer at 298 K and using DMSO- d_6 :D₂O (9.5:0.5) as solvent.


Selected regions, aromatics, of the proton and carbon NMR spectra recorded on a Bruker DPX-400 spectrometer at 298 K and using DMSO- d_6 :D₂O (9.5:0.5) as solvent.. Inset: protons that allowed to determine the ratio of isomers.

2-Amino-7(8)-[E-2-(4-chlorophenyl)ethenyl)phenazine 5,10-dioxide (15)

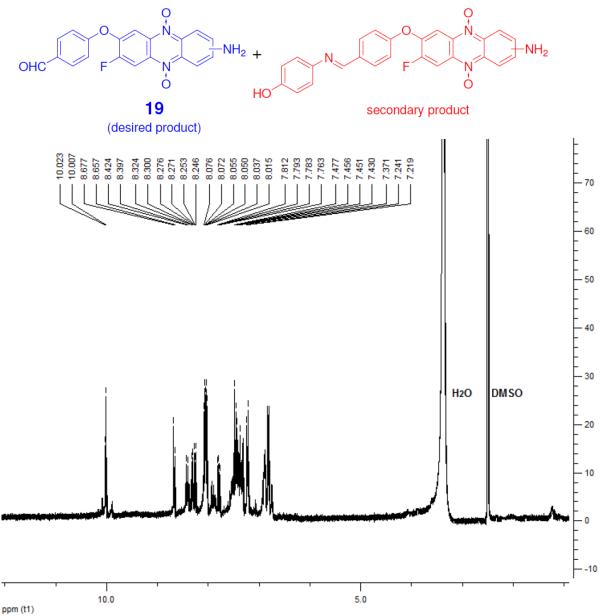
(7:8 isomers ratio, 56:44)

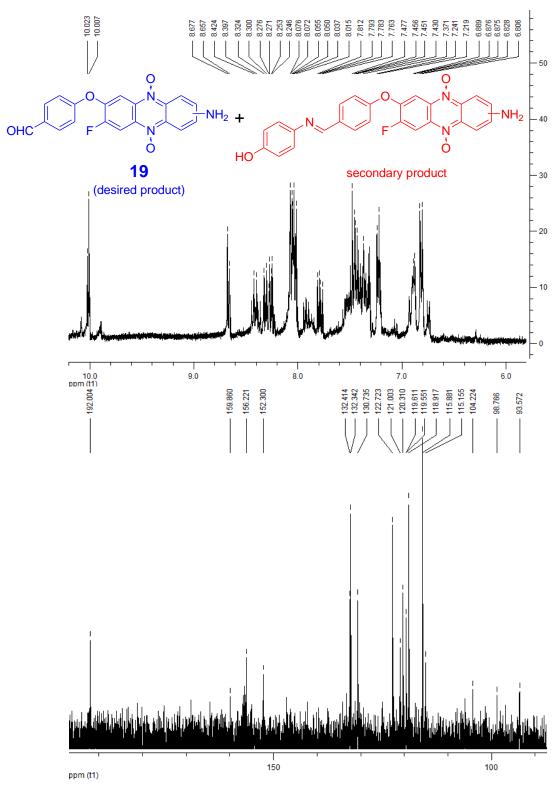

 1 H NMR spectrum recorded on a Bruker DPX-400 spectrometer at 298 K and using DMSO- d_6 :D₂O (9.5:0.5) as solvent.


Selected regions, aromatics, of the proton and carbon NMR spectra recorded on a Bruker DPX-400 spectrometer at 298 K and using DMSO- d_6 :D₂O (9.5:0.5) as solvent.

7(8)-[E-2-(4-Chlorophenyl)ethenyl)-2-hydroxyphenazine 5,10-dioxide (16)

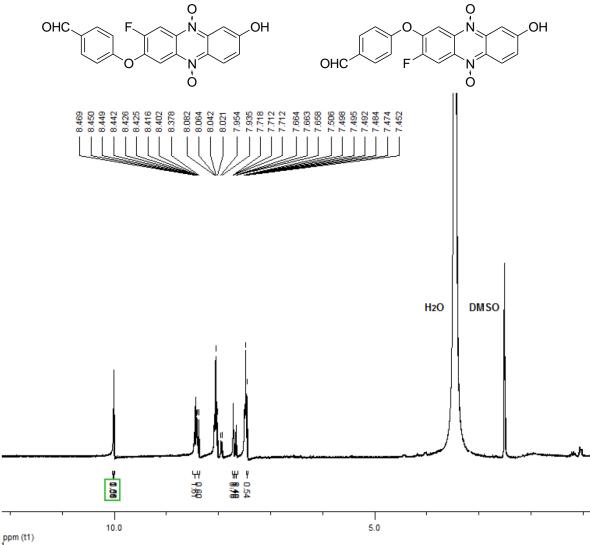
(7:8 isomers ratio, 55:45)


Ppm (t1) H NMR spectrum recorded on a Bruker DPX-400 spectrometer at 298 K and using DMSO-d₆:D₂O (9.5:0.5) as solvent.

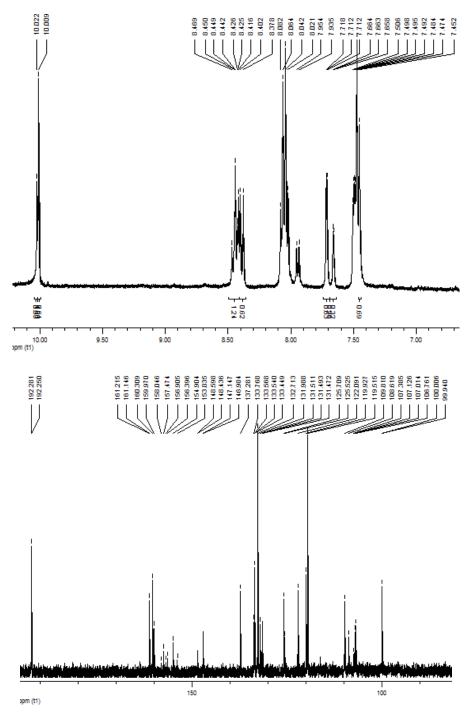

Selected regions, aromatics, of the proton NMR spectrum recorded on a Bruker DPX-400 spectrometer at 298 K and using DMSO- d_6 :D₂O (9.5:0.5) as solvent.

2-Amino-7(8)-fluoro-8(7)-(4-formylphenyloxy)phenazine 5,10-dioxide (19)

(as mixture of aldehyde and the corresponding imine)

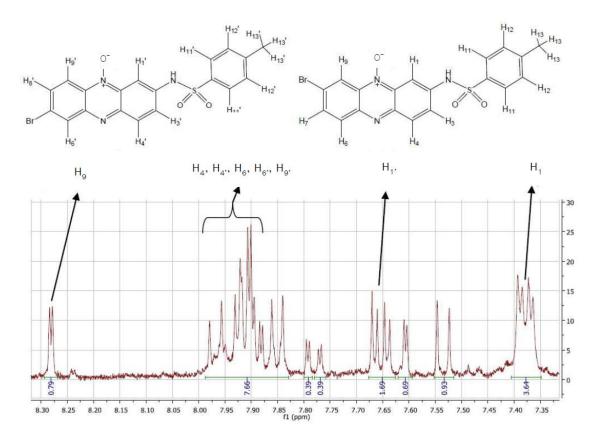

 1 H NMR spectrum recorded on a Bruker DPX-400 spectrometer at 298 K and using DMSO- d_6 :D₂O (9.5:0.5) as solvent.

Selected regions, aromatics, of the proton and carbon NMR spectra recorded on a Bruker DPX-400 spectrometer at 298 K and using DMSO- d_6 :D₂O (9.5:0.5) as solvent.

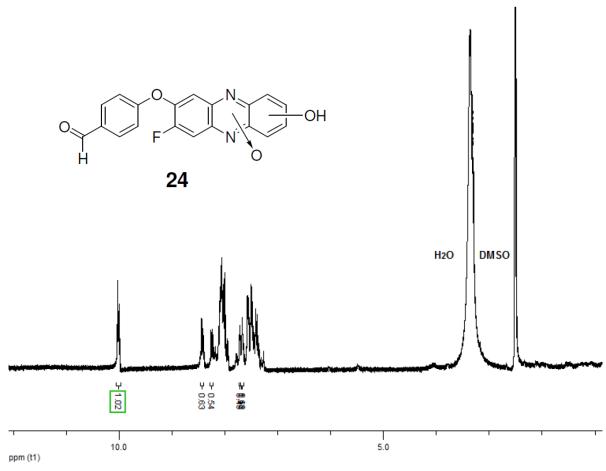

7(8)-Fluoro-8(7)-(4-formylphenyloxy)-2-hydroxyphenazine 5,10-dioxide (20)

(7:8 isomers ratio, 65:35)

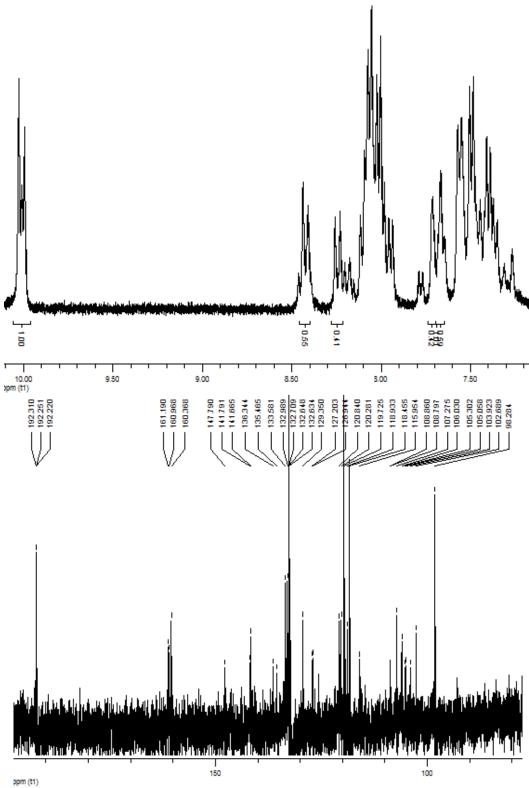
Pppm (t1)


H NMR spectrum recorded on a Bruker DPX-400 spectrometer at 298 K and using DMSO-d₆:D₂O (9.5:0.5) as solvent.

Selected regions, aromatics, of the proton and carbon NMR spectra recorded on a Bruker DPX-400 spectrometer at 298 K and using DMSO- d_6 :D₂O (9.5:0.5) as solvent.

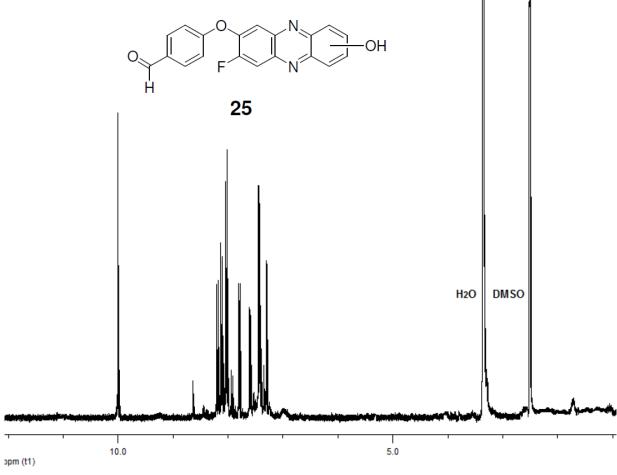

7(8)-Bromo-2-(4-methylphenylsulfonylamino)phenazine N^{10} -oxide (23)

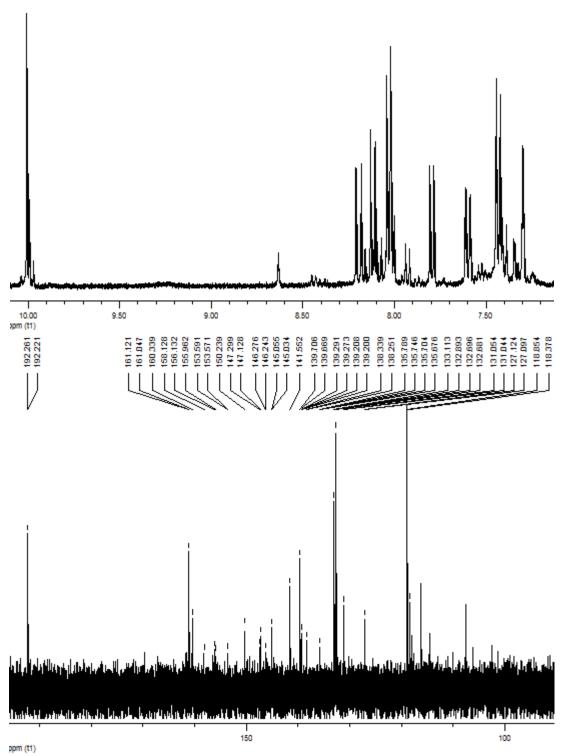
(7:8 isomers ratio, 56:44)



Selected regions, aromatics, of the proton NMR spectrum recorded on a Bruker DPX-400 spectrometer at 298 K and using DMSO-*d*₆:D₂O (1:1) as solvent.

7(8)-Fluoro-8(7)-(4-formylphenyloxy)-2-hydroxyphenazine N-oxide (24)


 1 H NMR spectrum recorded on a Bruker DPX-400 spectrometer at 298 K and using DMSO- d_6 :D₂O (9.5:0.5) as solvent.


Selected regions, aromatics, of the proton and carbon NMR spectra recorded on a Bruker DPX-400 spectrometer at 298 K and using DMSO- d_6 :D₂O (9.5:0.5) as solvent.

7(8)-fluoro-8(7)-(4-formylphenyloxy)-2-hydroxyphenazine (25)

(7:8 isomers ratio, 50:50)

 1 H NMR spectrum recorded on a Bruker DPX-400 spectrometer at 298 K and using DMSO- d_6 :D₂O (9.5:0.5) as solvent.

Selected regions, aromatics, of the proton and carbon NMR spectra recorded on a Bruker DPX-400 spectrometer at 298 K and using DMSO- d_6 :D₂O (9.5:0.5) as solvent.