Electronic Supplementary Information

Synthesis and antiproliferative activity of some 3-(pyrid-2yl)-pyrazolines

Alexander Ciupa, Paul A. De Bank, Mary F. Mahon, Pauline J. Wood and

Lorenzo Caggiano*

General Experimental	•	•	S2
MTS Cell Proliferation Assay			S 3
Cell Cycle Analysis			S5
In Vitro Tubulin Polymerisation Assay			S 6
Confocal Microscopy			S 7
Experimental			S 8
References			S21
¹ H and ¹³ C NMR Spectra \dots \dots \dots \dots			S22
HPLC Traces			S 32
MTS Assays			S40
NCI Data for Pyrazoline 8i (NSC 761258)			S53
COMPARE Analysis for Pyrazoline 8i (NSC 761258).			S55
Cell Cycle Analysis for Pyrazoline 8i			S56
X-ray Crystallography Data for Pyrazoline 8e (CCDC 926530))		S58
X-ray Crystallography Data for Pyrazoline 8i (CCDC 926531)		S63

General Experimental

Chemicals, solvents and reagents used are commercially available and were used without further purification. PE refers to petroleum ether, bp 40-60 °C. TLCs were carried out on Merck Aluminium backed TLC plates Silica Gel 60 F254 and viewed using UV light of wavelength 254 nm and then stained with potassium permanganate. Merck Silica Gel (0.040-0.063 mm) was used for column chromatography. Compounds were loaded as an oil, CH_2Cl_2 solution or dry loaded by adsorption onto silica. Melting points were obtained using a Reichert-Jung heated-stage microscope. Infrared spectra were recorded on a Perkin-Elmer Spectrum RXI FT-IR system and all values are recorded in cm⁻¹.

NMR spectra were obtained on a Bruker Avance III (500 MHz) spectrometer. The chemical shifts are recorded in parts per million (ppm) with reference to tetramethylsilane. The coupling constants *J* are quoted to the nearest 0.5 Hz and are not corrected. The multiplicities are assigned as a singlet (s), doublet (d), triplet (t), doublet of doublets (dd), quartet (q) and multiplet (m). Mass spectra and high resolution mass spectra were obtained on a micrOTOFTM from Bruker Daltonics (Bremen, Germany) coupled with an electrospray source (ESI-TOF) using an autosampler in an Agilent 1100 LC system. Data was processed using external calibration with the Bruker Daltonics software, DataAnalysisTM as part of the overall hardware control software, Compass 1.1TM.

X-ray Crystallography: Single crystals were analysed at 150(2) K using graphite monochromated Mo(K α) radiation and a Nonius Kappa CCD diffractometer. The structures were solved using SHELXS-97 and refined using SHELXL-97. *In vitro* tubulin polymerisation assays were performed on a BMG labtech Fluostar plate reader prewarmed to 37 °C. Cell cycle analysis was performed on a Becton Dickinson flow cytometer FACSCantoTM and confocal microscopy was performed on a Zeiss LSM 510 META confocal microscope.

Analytical RP-HPLC was performed on a JASCO HPLC system equipped with a phenomenex Max-RP 80A 4 μ m C-18 (150 × 4.6 mm) column with a flow rate of 1.0 mL/min. with detection at 274 nm and 254 nm shown. Mobile phase A was H₂O and mobile phase B was MeCN and all runs were performed with A:B 50:50 ratio.

MTS Cell Proliferation Assay¹

Human cancer cell lines HT29 and MDA-MB-231 were supplied by Cancer Research UK. They were maintained in DMEM with high glucose (4.5 g/L) and _L-glutamine, supplemented with penicillin 100 U/mL, streptomycin 100 μ g/mL and foetal bovine serum at 10%. All reagents supplied by Invitrogen.

- 1. Cells were maintained in 75 cm^2 tissue culture flasks (Nunc) with a weekly 1:10 split.
- For the MTS assay, seed densities of 500 and 1000 cells per well in 50 μL were used for HT29 and MDA-MB-231 cell lines respectively. The seed densities had been determined previously to give an acceptable optical density value after 3 days incubation.
- 3. Plates were incubated at 37 $^{\circ}$ C, in humidified 5% CO₂ in air for 2-4 h.
- 4. Test agents were prepared at $100 \times$ final concentration in DMSO (Sigma), diluted 1 in 50 in culture medium and 50 µL added to the appropriate wells, to give a final volume of 100 µL.
- Quadruplicate samples were run as follows:
 Culture medium only (background)
 Cells only
 Cells + 1% DMSO
 Cells + test compound
- Plates were incubated at 37 °C, in humidified 5% CO₂ in air. This exposure time appears to be adequate to demonstrate anti-proliferative activity, and is routinely used by other workers.
- The MTS reagent was added, 20 μL per well. This is Promega Cell Titer
 Aqueous One Solution Cell Proliferation Assay.

- 8. Plates were incubated at 37 $^{\circ}$ C, in humidified 5% CO₂ in air, for colour development.
- 9. Optical density readings at 490 nm were taken at 1-4 h, because the culture medium gives a high OD_{490nm} this was subtracted from all other OD_{490nm} .
- Means and standard deviations were calculated from background corrected OD_{490nm} values.
- IC₅₀ values were calculated using the pharmacology function in SigmaPlot 8 (SPSS Inc). Each assay was repeated on three separate occasions.

Note: This assay is based upon the development of a coloured metabolite from viable cells. Therefore the inhibition of colour development by an active agent does not distinguish between inhibition of cell metabolism *ie* cytostasis and reduction in cell number *ie* cytotoxicity. Nevertheless, this assay provides a very quick and easy first approach for screening test compounds.

Cell Cycle Analysis

Following the procedure reported,² except using HT29 cells:

- 1. Cells were subcultured into a T25 flask (5×10^5 cells, 3 mL media) and grown for 24 h.
- Fresh media containing required concentration of drug/control was added (3 mL) and the cells were incubated with drug for a further 24 h.
- The supernatant media was collected, and combined with a PBS wash (5 mL).
 Trypsin (1 mL) was added and cells incubated for 5 min.
- 4. The trypsin was neutralised with media (2 mL) and this was combined with the supernatant and a further PBS wash (5 mL). The cell suspension was centrifuged (1000 rpm, 6 min), the supernatant was removed, and the cell pellet was resuspended in PBS (5 mL).
- 5. This was centrifuged (1000 rpm, 6 min), and the supernatant was removed. The cell pellet was resuspended in PBS (0.5 mL), and this suspension was carefully added to ice cold 70% ethanol solution (4.5 mL). The cells were fixed for a minimum of 2 h, before centrifuging (1000 rpm, 5 min).
- 6. The supernatant was removed and the cells resuspended in PBS (5 mL). The cells were washed *via* two centrifuging and resuspension cycles, and were finally resuspended in 1 mL of a solution of DNase-free RNase A ($20 \mu g/mL$) and propidium iodide ($20 \mu g/mL$) in 0.1% (v/v) Triton X-100 in PBS.
- Cells were incubated at rt for 30 min in the dark. Cell fluorescence was determined using a FACSCanto[™] (BDBiosciences), gating for mononuclear cells.

In Vitro Tubulin Polymerisation Assay

Performed using the Cytoskeleton BK004P In Vitro Tubulin Polymerisation Assay Kit.³

Following the manufacturer instructions (Cat # BK004P):

- One 4 mg tube of tubulin (HTS03) was resuspended with 1 mL of cold G-PEM buffer (990 µl general tubulin buffer with 10 µl GTP stock) to give a final protein concentration of 4 mg/mL. The tube was placed on ice for 3 min until complete resuspension of the protein was observed.
- 2. A 96 well half area plate was prewarmed to 37 °C by placing in an incubator for 30 mins prior.
- 3. Pipette 10 μ L of compound of interest at 10x strength in G-PEM buffer into two wells of the prewarmed 96 well half area plate and 10 μ L of general tubulin buffer only into two of the control wells and incubate the plate for 2 min at 37 °C.
- 4. Remove the 96 well half area plate and pipette 100 μ L of tubulin into the required wells and immediately place the plate into the spectrophotometer prewarmed to 37 °C and start recording using optical density reading at 340 nm at one reading per minute for one hour.
- 5. The optical density of each compound was plotted against time to obtain the tubulin polymerisation assay curves.

Confocal Microscopy

Following the procedure reported,² except using HT29 cells:

- HT29 cells were subcultured in each well of a six well plate containing a glass coverslip and incubated at 37 °C for 24 h.
- 2. When the cells were approximately 50% confluent, the coverslips were removed and placed into a well of a new 6 well plate containing 450 μ L medium. Drug solution in medium (50 μ L, 10× concentrations to give appropriate 1× final concentrations) was then added along with a blank (50 μ L of medium) and plates incubated for 24 h.
- After 24 h the media was aspirated, the coverslips washed with PBS (500 μL per well) followed by fixation in freshly diluted 3% formaldehyde solution in PBS (500 μL) followed by incubation at 37 °C for 10 min.
- 4. After aspiration cells were permeabilised with PBS-T (0.1% Triton in PBS, 500 μ L) for 5 min, and then incubated at 37 °C with blocking solution (10% bovine serum albumin (BSA) in PBS (500 μ L)) for 5 min.
- 5. This was removed and Dm1A primary mouse antibody (purchased from Sigma, 1 in 200 in blocking solution, 500 μ L) was added and incubated at 37 °C for 2 h.
- 6. The primary antibody solution was removed and the cells were washed 3 times (5 min at 37 °C) with PBS-T (500 μ L). The appropriate Alexa Fluor® 546-coupled secondary antibody was then added as a solution in BSA in PBS (1 in 200 in blocking solution, 500 μ L) and the plate returned to the incubator for a further 2 h ensuring minimal light exposure.
- 7. Cells washed 3 times (5 min at 37 °C) with PBS-T (500 μ L), with a final wash in water (500 μ L). The coverslips inverted onto microscope slides with mounting medium containing DAPI (4',6-diamidino-2-phenylindole dihydrochloride) stain (30 μ L) and allowed to dry at rt overnight and then stored at 4 °C until they were viewed using a Zeiss LSM510META confocal microscope.

Experimental

(*E*)-3-Phenyl-1-(pyridin-2-yl)prop-2-en-1-one (4)

Following the procedure previously reported,⁴ 2-acetylpyridine (1.33 g, 11.0 mmol) and benzaldehyde (1.06 g, 1.02 mL, 10.0 mmol) were added to distilled water (100 mL) cooled to 4 $^{\circ}$ C and shaken thoroughly forming a fine emulsion. 10 mL of 10% of NaOH aqueous solution was then added and shaken again for 30 seconds and the reaction left at 4 $^{\circ}$ C. After 24 h the solid product was filtered, dried and recrystallised from EtOH to give the chalcone **4** (2.02 g, 97%) as pale green crystals.

R_f [PE-EtOAc 4:6] 0.88; **Mp** 72-74 °C (EtOH); **IR** v_{max} (film)/cm⁻¹ 1667, 1601, 1337 and 1030; ¹**H NMR** $\delta_{\rm H}$ (500 MHz; CDCl₃) 7.40-7.49 (4 H, m, Ph CH), 7.72-7.73 (2 H, m, Ph CH and py CH), 7.85-7.88 (1 H, m, py CH), 7.94 (1 H, d, *J* 16.0 Hz, COC*H*=CH), 8.18-8.19 (1 H, m, py CH), 8.30 (1 H, d, *J* 16.0 Hz, COC*H*=C*H*) and 8.74-8.76 (1 H, m, py CH); ¹³C **NMR** $\delta_{\rm C}$ (125 MHz; CDCl₃) 120.9 (CH), 122.9 (CH), 126.9 (CH), 128.8 (CH), 128.9 (CH), 130.6 (CH), 135.2 (Cq), 137.0 (CH), 144.8 (CH), 148.9 (CH), 154.3 (Cq) and 189.5 (Cq); **MS** m/z (ES⁺) Found 232.0749 (MNa⁺), C₁₄H₁₁N₁NaO (MNa⁺) requires 232.0738.

Consistent with the spectroscopic data previously reported for this compound.^{4c}

(*E*)-1-(Pyridin-2-yl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (5)

Crushed KOH pellets (5.0 mmol) were added to a rapidly stirred solution of 2acetylpyridine (10.0 mmol) and 3,4,5-trimethoxybenzaldehyde (12.0 mmol) in EtOH (20 mL) and allowed to stir at rt (20 $^{\circ}$ C). After 24 h the solvent was removed under reduced pressure and the resulting solid purified by column chromatography with silica gel using PE:EtOAc 6:4 to afford the chalcone **5** as a yellow solid (2.54 g, 85%).

R_f [PE-EtOAc 4:6] 0.77; **Mp** 155-156 °C (MeOH); **IR** v_{max} (film)/cm⁻¹ 1605, 1217 and 791; ¹H NMR δ_H (500 MHz; CDCl₃) 3.89 (3 H, s, OCH₃), 3.92 (6 H, s, OCH₃), 6.94 (2 H, s, Ar CH), 7.45 (1 H, dt, *J* 8.0 and 1.0 Hz, py CH), 7.86 (1 H, d, *J* 16.0 Hz, COC*H*=CH), 7.87 (1 H, dt, *J* 7.5 and 1.5, py CH), 8.16 (1 H, d, *J* 16.0 Hz, COCH=C*H*), 8.18-8.19 (1 H, m, py CH) and 8.73-8.74 (1 H, m, py CH); ¹³C NMR δ_C (125 MHz; CDCl₃) 56.2 (OCH₃), 60.9 (OCH₃), 106.0 (CH), 119.9 (CH), 122.9 (CH), 126.8 (CH), 130.6 (Cq), 137.0 (CH), 140.5 (Cq), 145.0 (CH), 148.7 (CH), 153.4 (Cq), 154.2 (Cq) and 189.2 (Cq); **MS** m/z (ES⁺) Found 322.1074 (MNa⁺), C₁₇H₁₇NNaO₄ (MNa⁺) requires 322.1055; **Elemental Analysis** Found C (68.35%) H (5.79%) N (4.72%) requires C (68.21%) H (5.72%) N (4.68%); **HPLC** (analytical) *t*_R = 5.4 min.

Consistent with the spectroscopic data previously reported for this compound.⁵

2-(1-Methyl-5-phenyl-4,5-dihydro-1*H*-pyrazol-3-yl)pyridine (8a)

Following the procedure previously reported,^{4c} chalcone **4** (0.42 g, 2.0 mmol) was dissolved in EtOH (10 mL) and stirred for 10 min at rt until fully dissolved then methylhydrazine (0.37 g, 0.42 mL, 8.0 mmol) was added dropwise and stirred at room temperature for 3 h. The solvent was removed under reduced pressure and the resulting yellow oil purified by column chromatography with silica gel using PE:EtOAc 6:4 to afford pyrazoline **8a** (0.34 g, 72%) as a yellow oil, which solidified upon cooling and was recrystallised from Et₂O to give pale yellow crystals.

R_f [PE-EtOAc 4:6] 0.82; **Mp** 52-55 °C (Et₂O); **IR** v_{max}(film)/cm⁻¹ 2971, 1570, 1456 and 1122; ¹H NMR δ_H (500 MHz; CDCl₃) 2.88 (3 H, s, CH₃), 3.08 (1 H, dd, *J* 16.5 and 14.5 Hz, pyrazoline CH), 3.71 (1 H, dd, *J* 16.5 and 10.5 Hz, pyrazoline CH), 4.21 (1 H, dd, *J* 14.5 and 10.5 Hz, pyrazoline CH), 7.18 (1 H, dd, *J* 7.5 and 5.0 Hz, py CH), 7.29-7.34 (1 H, m, Ph CH), 7.35-7.40 (2 H, m, Ph CH), 7.45-7.48 (2 H, m, Ph), 7.66 (1 H, td, *J* 7.5 and 1.0 Hz, py CH), 7.91 (1 H, dt, *J* 8.0 and 1.0 Hz, py CH) and 8.56 (1 H, br.d, *J* 5.0 Hz, py CH); ¹³C NMR δ_C (125 MHz; CDCl₃) 41.1 (CH₃), 42.6 (CH₂), 73.5 (CH), 120.4 (CH), 122.6 (CH), 127.4 (CH), 127.8 (CH), 128.6 (CH), 136.0 (CH), 140.2 (Cq), 149.1 (CH), 150.4 (Cq) and 152.1 (Cq); MS m/z (ES⁺) Found 260.1158 (MNa⁺), C₁₅H₁₅N₃Na (MNa⁺) requires 260.1164; **HPLC** (analytical) $t_{\rm R} = 18.3$ min.

Consistent with the spectroscopic data previously reported for this compound.^{4c}

2-(1,5-Diphenyl-4,5-dihydro-1*H*-pyrazol-3-yl)pyridine (8b)

Following a modified procedure to that reported,⁶ phenyl hydrazine (10.0 mmol) was added to a rapidly stirred solution of chalcone **4** (5 mmol) in EtOH (10 mL) and heated to 70 °C for 18 h. The solvent was then removed under reduced pressure and the solid was purified by column chromatography with silica gel using PE:EtOAc 6:4 to afford the desired pyrazoline **8b** as an orange solid (0.73 g, 49%).

R_f [PE-EtOAc 4:6] 0.82; **Mp** 111-113 °C (EtOAc); **IR** v_{max} (film)/cm⁻¹ 1598, 1559, 1402 and 1132; ¹H NMR δ_H (500 MHz; CDCl₃) 3.33 (1 H, dd, *J* 18.0 and 7.0 Hz, pyrazoline CH), 3.98 (1 H, dd, *J* 18.0 and 12.5 Hz, pyrazoline CH)), 5.36 (1 H, dd, *J* 12.5 and 7.0 Hz, pyrazoline CH), 6.79-6.83 (1 H, m, Ph CH), 7.10-7.20 (2 H, m, Ph CH), 7.21-7.34 (8 H, m, Ph CH and py CH), 7.70 (1 H, td, *J* 7.5 and 1.5 Hz, py CH), 8.15 (1 H, d, *J* 8.0, py CH), 8.53-8.54 (1 H, m, py CH); ¹³C NMR δ_C (125 MHz; CDCl₃) 43.1 (CH₃), 64.6 (CH), 113.5 (CH), 119.5 (CH), 120.6 (CH), 122.6 (CH), 125.8 (CH), 127.5 (CH), 128.9 (CH), 129.1 (CH), 135.9 (CH), 142.2 (Cq), 144.2 (Cq), 147.9 (Cq), 149.0 (CH), 152.0 (Cq); MS m/z (ES⁺) Found 300.1494 (MH⁺) and 322.1319 (MNa⁺), C₂₀H₁₈N₃ (MH⁺) requires 300.1501 and C₂₀H₁₇N₃Na (MNa⁺) requires 322.1320; **HPLC** (analytical) *t*_R = 7.8 min.

1-(5-Phenyl-3-(pyridin-2-yl)-4,5-dihydro-1*H*-pyrazol-1-yl)ethanone (8c)

Hydrazine monohydrate (20.0 mmol) was added to a rapidly stirred solution of chalcone **4** (5.0 mmol) in EtOH (20 mL) and heated to 80 $^{\circ}$ C for 2 h. The solvent was removed under reduced pressure and the resulting brown oil was dissolved in CH₂Cl₂ (20 mL) and acetyl chloride (10.0 mmol) added dropwise followed by NEt₃ (10.0 mmol) and the solution stirred at rt for 3 h. The solvent was then removed under reduced pressure and the solid was purified by column chromatography with silica gel using PE:EtOAc 6:4 to afford the desired pyrazoline **8c** as a white solid (0.95 g, 72%).

R_f [PE-EtOAc 4:6] 0.23; **Mp** 120-121 °C (EtOAc); **IR** v_{max} (film)/cm⁻¹ 1655, 1580, 1413 and 1335; ¹H NMR δ_H (500 MHz; CDCl₃) 2.43 (3 H, s, CH₃), 3.38 (1 H, dd, *J* 18.5 and 5.0 Hz, pyrazoline CH), 3.84 (1 H, dd, *J* 18.5 and 12.0 Hz, pyrazoline CH), 5.60 (1 H, dd, *J* 12.0 and 5.0 Hz, pyrazoline CH), 7.21-7.31 (6 H, m, Ph CH and py CH), 7.71-7.75 (1 H, td, *J* 8.0 and 2.0 Hz, py CH), 8.08 (1 H, d, *J* 8.0 Hz, py CH) and 8.58 (1 H, d, *J* 5.0 Hz, py CH); ¹³C NMR δ_C (125 MHz; CDCl₃) 21.8 (CH₃), 42.0 (CH₂), 60.1 (CH), 121.1 (CH), 124.2 (CH), 125.5 (CH), 127.5 (CH), 128.7 (CH), 136.2 (CH), 141.6 (CH), 149.3 (Cq), 150.6 (Cq), 155.3 (Cq) and 168.9 (Cq); MS m/z (ES⁺) Found 288.1166 (MNa⁺), C₁₆H₁₅N₃NaO (MNa⁺) requires 288.1113; HPLC (analytical) *t*_R = 6.1 min.

2,2,2-Trifluoro-1-(5-phenyl-3-(pyridin-2-yl)-4,5-dihydro-1*H*-pyrazol-1-yl)ethanone (8d)

Hydrazine monohydrate (10.0 mmol) was added to a rapidly stirred solution of chalcone **4** (2.5 mmol) in EtOH (20 mL) and heated to 80 $^{\circ}$ C for 2 h. The solvent was removed under reduced pressure and the resulting brown oil was dissolved in CH₂Cl₂ (20 mL) and trifluoroacetic anhydride (7.5 mmol) added dropwise followed by NEt₃ (7.5 mmol) and the solution stirred at rt for 3 h. The solvent was then removed under reduced pressure and the solid was purified by column chromatography with silica gel using PE:EtOAc 6:4 to afford the desired pyrazoline **8d** as a white solid (0.52 g, 65%).

R_f [PE-EtOAc 4:6] 0.87; **Mp** 143-145 °C (EtOH); **IR** v_{max} (film)/cm⁻¹ 1701, 1587, 1463 and 1171; ¹**H NMR** $\delta_{\mathbf{H}}$ (500 MHz; CDCl₃) 3.50 (1 H, dd, *J* 19.0 and 5.0 Hz, pyrazoline CH), 3.92 (1 H, dd, *J* 19.0 and 11.5 Hz, pyrazoline CH), 5.64 (1 H, dd, *J* 11.5 and 4.5 Hz, pyrazoline CH), 7.24-7.38 (6 H, m, Ph CH and py CH), 7.80 (1 H, td, *J* 7.5 and 2.0 Hz, py CH), 8.19 (1 H, d, *J* 7.0 Hz, py CH) and 8.62 (1 H, d, *J* 6.0 Hz, py CH); ¹³C **NMR** $\delta_{\mathbf{C}}$ (125 MHz; CDCl₃) 41.7 (CH₂), 61.8 (CH), 116.2 (COCF₃, q, *J*_{C-F} 287.0 Hz), 122.0 (CH), 125.2 (CH), 125.7 (CH), 128.4 (CH), 129.1 (CH), 136.5 (CH), 139.5 (Cq), 149.5 (Cq), 149.7 (CH), 154.2 (COCF₃, q, *J*_{C-F} 38.5 Hz) and 159.6 (Cq); ¹⁹F **NMR** $\delta_{\mathbf{F}}$ (470 MHz; CDCl₃) –71.35; **MS** m/z (ES⁺) Found 320.1066 (MH⁺) and 342.0888 (MNa⁺), C₁₆H₁₃F₃N₃O (MH⁺) requires 320.1011 and C₁₆H₁₂F₃N₃NaO (MNa⁺) requires 342.0831; **HPLC** (analytical) *t*_R = 16.4 min.

5-Phenyl-3-(pyridin-2-yl)-4,5-dihydro-1*H*-pyrazole-1-carbothioamide (8e)

Following a modified procedure to that reported,⁷ chalcone **4** (5.0 mmol) and thiosemicarbazide (7.5 mmol) were added to EtOH (50 mL) followed by a solution of sodium hydroxide (5.0 mmol, 0.28 g) in water (10 mL) and refluxed for 6 h. The solvent was then concentrated and the product crystallised from ethanol to give the carbothioamide **8e** as yellow crystals (0.94 g, 67%).

R_f [PE-EtOAc 4:6] 0.55; **Mp** 185-189 °C (EtOH); **IR** v_{max} (film)/cm⁻¹ 3523, 3395, 1569, 1349 and 1195; ¹**H NMR** $\delta_{\mathbf{H}}$ (500 MHz; CDCl₃) 3.45 (1 H, dd, *J* 20.0 and 4.0 Hz, pyrazoline CH), 3.96 (1 H, dd, *J* 20.0 and 12.0 Hz, pyrazoline CH), 6.10 (1 H, dd, *J* 12.0 and 4.0 Hz, pyrazoline CH), 6.30 (1 H, br. s, NH), 7.17 (1 H, br. s, NH), 7.26-7.35 (6 H, m, Ph CH and py CH), 7.78 (1 H, td, *J* 8.0 and 4.0 Hz, py CH), 8.07 (1 H, d, *J* 8.0 Hz, py CH) and 8.64 (1 H, d, *J* 8.0 Hz, py CH); ¹³C **NMR** $\delta_{\mathbf{C}}$ (125 MHz; CDCl₃) 42.9 (CH₂), 63.7 (CH), 121.5 (CH), 124.8 (CH), 125.3 (CH), 127.5 (CH), 128.8 (CH), 136.3 (CH), 141.6 (Cq), 149.7 (CH), 150.0 (Cq), 157.2 (Cq) and 177.3 (C=S); **MS** m/z (ES⁺) Found 283.1004 (MH⁺) and 305.0824 (MNa⁺), C₁₅H₁₅N₄S (MH⁺) requires 283.1017 and C₁₅H₁₄N₄NaS (MNa⁺) requires 305.0837; **HPLC** (analytical) *t*_R = 6.1 min.

Consistent with the spectroscopic data previously reported for this compound.^{7b}

N-Methyl-5-phenyl-3-(pyridin-2-yl)-4,5-dihydro-1*H*-pyrazole-1-carbothioamide (8f)

Following a modified procedure to that reported,⁸ carbothioamide **8e** (1.4 mmol) was added to a solution of potassium hydroxide (4.2 mmol) in THF (20 ml) and stirred for 15 min, methyl iodide (4.2 mmol) was then added and stirring continued for 2 h. Water (100 ml) was then added and stirring continued for 2 h resulting in the formation of a precipitate which was collected by filtration and recrystallised from EtOAc to afford carbothioamide **8f** as yellow crystals (0.37 g, 89%).

R_f [PE-EtOAc 4:6] 0.15; **Mp** 157-158 °C (EtOH); **IR** v_{max} (film)/cm⁻¹ 1604, 1566, 1320 and 1399; ¹**H NMR** $\delta_{\rm H}$ (500 MHz; CDCl₃) 2.30 (3 H, s, CH₃), 3.34 (1 H, dd, *J* 18.5 and 6.0 Hz, pyrazoline CH), 3.93 (1 H, dd, *J* 18.5 and 12.0 Hz, pyrazoline CH), 5.63 (1 H, dd, *J* 12.0 and 6.0 Hz, pyrazoline CH), 7.24-7.35 (7 H, m, NH, Ph CH and py CH), 7.71 (1 H, td, *J* 7.5 and 1.5 Hz, py CH), 8.12 (1 H, d, *J* 7.5 Hz, py CH) and 8.55 (1 H, d, *J* 7.5 Hz, py CH); ¹³C **NMR** $\delta_{\rm C}$ (125 MHz; CDCl₃) 13.1 (CH₃), 42.8 (CH₂), 63.3 (CH), 121.1 (CH), 123.7 (CH), 125.5 (CH), 127.6 (CH), 128.9 (CH), 136.1 (CH), 149.1 (CH), 149.2 (Cq) 151.0 (Cq), 152.3 (Cq) and 160.0 (Cq); **MS** m/z (ES⁺) Found 297.1182 (MH⁺), C₁₆H₁₇N₄S (MH⁺) requires 297.1174; **HPLC** (analytical) $t_{\rm R} = 5.6$ min.

Phenyl(5-phenyl-3-(pyridin-2-yl)-4,5-dihydro-1*H*-pyrazol-1-yl)methanone (8h)

Hydrazine monohydrate (20.0 mmol) was added to a rapidly stirred solution of chalcone **4** (5.0 mmol) in EtOH (20 mL) and heated to 80 $^{\circ}$ C for 2 h. The solvent was removed under reduced pressure and the resulting brown oil was dissolved in CH₂Cl₂ (20 mL) and benzoyl chloride (10.0 mmol) added dropwise followed by NEt₃ (10.0 mmol) and the solution stirred at rt for 3 h. The solvent was then removed under reduced pressure and the solid was purified by column chromatography with silica gel using PE:EtOAc 6:4 to afford the desired pyrazoline **8h** as a white solid (1.24 g, 76%).

R_f [PE-EtOAc 4:6] 0.76; **Mp** 139-140 °C (EtOAc); **IR** v_{max} (film)/cm⁻¹ 1641, 1577, 1413 and 1338; ¹H **NMR** $\delta_{\rm H}$ (500 MHz; CDCl₃) 3.44 (1 H, dd, *J* 18.5 and 5.0 Hz, pyrazoline CH), 3.91 (1 H, dd, *J* 18.5 and 12.0 Hz, pyrazoline CH) 5.85 (1 H, dd, *J* 12.0 and 5.0 Hz, pyrazoline CH), 7.27-7.35 (6 H, m, Ph CH and py CH), 7.43-7.50 (3 H, m, Ph CH), 7.70 (1 H, td, *J* 7.5 and 1.5 Hz, py CH), 8.01-8.04 (3 H, m, Ph CH and py CH) and 8.59 (1 H, d, *J* 7.5 Hz, py CH); ¹³C **NMR** $\delta_{\rm C}$ (125 MHz; CDCl₃) 41.4 (CH₂), 61.5 (CH), 121.4 (CH), 124.3 (CH), 125.7 (CH), 127.5 (CH), 127.6 (CH), 128.8 (CH), 129.9 (CH), 130.9 (CH), 134.2 (Cq), 136.2 (CH), 141.6 (Cq), 149.3 (CH), 150.7 (Cq), 156.2 (Cq) and 166.6 (Cq); **MS** m/z (ES⁺) Found 350.1282 (MNa⁺), C₂₁H₁₇N₃NaO (MNa⁺) requires 350.1269; **HPLC** (analytical) *t*_R = 11.7 min.

(5-Phenyl-3-(pyridin-2-yl)-4,5-dihydro-1*H*-pyrazol-1-yl)(3,4,5trimethoxyphenyl)methanone (8i))

Hydrazine monohydrate (20.0 mmol) was added to a rapidly stirred solution of chalcone **4** (5.0 mmol) in EtOH (20 mL) and heated to 80 $^{\circ}$ C for 2 h. The solvent was removed under reduced pressure and the resulting brown oil was dissolved in CH₂Cl₂ (20 mL) and 3,4,5-trimethoxybenzoyl chloride (10.0 mmol) added dropwise followed by NEt₃ (10.0 mmol) and the solution stirred at rt for 3 h. The solvent was then removed under reduced pressure and the solid was purified by column chromatography with silica gel using PE:EtOAc 6:4 to afford the desired pyrazoline **8i** as a white solid (1.56 g, 75%).

R_f [PE-EtOAc 4:6] 0.55; **Mp** 173-175 °C (EtOAc); **IR** v_{max}(film)/cm⁻¹ 1643, 1579, 1412 and 1341; ¹**H NMR** $\delta_{\rm H}$ (500 MHz; CDCl₃) 3.44 (1 H, dd, *J* 18.5 and 5.0 Hz, pyrazoline CH), 3.88-3.94 (10 H, m, OCH₃ and pyrazoline CH), 5.82 (1 H, dd, *J* 12.0 and 5.0 Hz, pyrazoline CH), 7.25-7.33 (6 H, m, Ph CH and py CH), 7.40 (2 H, s, Ar CH), 7.74 (1 H, td, *J* 8.0 and 2.0 Hz, py CH), 8.05 (1 H, d, *J* 8.0 Hz, py CH) and 8.61 (1 H, d, *J* 7.5 Hz, py CH); ¹³C **NMR** $\delta_{\rm C}$ (125 MHz; CDCl₃) 41.2 (CH₂), 56.2 (CH), 60.9 (OCH₃), 62.0 (OCH₃), 108.0 (CH), 121.0 (CH), 124.4 (CH), 125.7 (CH), 127.6 (CH), 128.9 (CH), 136.2 (CH), 140.7 (Cq), 141.6 (Cq), 149.5 (CH), 150.8 (Cq), 152.3 (Cq), 156.0 (Cq), 156.5 (Cq) and 165.6 (Cq); **MS** m/z (ES⁺) Found 418.1776 (MH⁺) and 440.1587 (MNa⁺), C₂₄H₂₄N₃O₄ (MH⁺) requires 418.1767 and C₂₄H₂₃N₃NaO₄ (MNa⁺) requires 440.1586; **Elemental Analysis** Found C (69.15%) H (5.37%) N (9.92%) requires C (69.05%) H (5.55%) N (10.07%); **HPLC** (analytical) *t*_R = 9.3 min.

2-(1-Phenyl-5-(3,4,5-trimethoxyphenyl)-4,5-dihydro-1*H*-pyrazol-3-yl)pyridine (9b)

Following a modified procedure to that reported,⁶ phenyl hydrazine (5.0 mmol) was added to a rapidly stirred solution of chalcone **5** (2.5 mmol) in EtOH (20 mL) and heated to 80 $^{\circ}$ C for 3 h. The solvent was then removed under reduced pressure and the solid was purified by column chromatography with silica gel using PE:EtOAc 6:4 to afford the desired pyrazoline **9b** as a yellow solid (0.33 g, 34%).

R_f [PE-EtOAc 4:6] 0.70; **Mp** 75-77 °C (EtOAc); **IR** v_{max} (film)/cm⁻¹ 1601, 1502, 1214 and 1128; ¹**H NMR** δ_{**H**} (500 MHz; CDCl₃) 3.33 (1 H, dd, *J* 18.0 and 7.5 Hz, pyrazoline CH), 3.79 (6 H, s, OCH₃), 3.82 (3 H, s, OCH₃), 3.98 (1 H, dd, *J* 18.0 and 12.5 Hz, pyrazoline CH), 5.24 (1 H, dd, *J* 12.5 and 7.5 Hz, pyrazoline CH), 6.51 (2 H, s, Ar CH), 6.85 (1 H, td, *J* 7.0 and 1.0 Hz, py CH), 7.12 (2 H, d, *J* 8.5 Hz, Ph CH), 7.20-7.24 (3 H, m, Ph CH), 7.71 (1 H, td, *J* 7.5 and 1.5 Hz, py CH), 8.14 (1 H, d, *J* 8.0 Hz, py CH) and 8.54-8.55 (1 H, d, *J* 7.5 Hz, py CH); ¹³C NMR δ_C (125 MHz; CDCl₃) 43.3 (CH₂), 55.9 (CH), 56.1 (OCH₃), 60.8 (OCH₃), 65.2 (CH), 102.4 (CH), 113.7 (CH), 119.8 (CH), 120.7 (CH), 122.7 (CH), 128.9 (CH), 130.0 (Cq), 136.1 (CH), 137.1 (Cq), 138.1 (Cq),140.3 (Cq) 144.6 (Cq) and 153.8 (Cq); **MS** m/z (ES⁺) Found 390.1882 (MH⁺) and 412.1649 (MNa⁺), C₂₃H₂₄N₃O₃ (MH⁺) requires 390.1818 and C₂₃H₂₃N₃NaO₃ (MNa⁺) requires 412.1637; **HPLC** (analytical) *t*_R = 14.6 min.

1-(3-(Pyridin-2-yl)-5-(3,4,5-trimethoxyphenyl)-4,5-dihydro-1*H*-pyrazol-1-yl)ethanone (9c)

Hydrazine monohydrate (8.0 mmol) was added to a rapidly stirred solution of chalcone **5** (4.0 mmol) in EtOH (20 mL) and heated to 80 $^{\circ}$ C for 2 h. The solvent was removed under reduced pressure and the resulting brown oil was dissolved in CH₂Cl₂ (20 mL) and acetyl chloride (8.0 mmol) added dropwise followed by NEt₃ (8.0 mmol) and the solution stirred at rt for 3 h. The solvent was then removed under reduced pressure and the solvent was then removed under reduced pressure and the solution stirred at rt for 3 h. The solvent was then removed under reduced pressure and the solid was purified by column chromatography with silica gel using PE:EtOAc 6:4 to afford the desired pyrazoline **9c** as a white solid (1.14 g, 80%).

R_f [PE-EtOAc 4:6] 0.24; **Mp** 173-174 °C (EtOH); **IR** v_{max} (film)/cm⁻¹ 1662, 1594, 1416, 1327 and 1132; ¹H NMR δ_H (500 MHz; CDCl₃) 2.43 (3 H, s, CH₃), 3.34 (1 H, dd, *J* 18.5 and 5.0 Hz, pyrazoline CH), 3.77 (3 H, s, OCH₃), 3.79-3.87 (7 H, m, OCH₃ and pyrazoline CH), 5.51 (1 H, dd, *J* 12.0 and 5.0 Hz, pyrazoline CH), 6.40 (2 H, s, Ar CH), 7.26-7.30 (1 H, m, py CH), 7.73 (1 H, td, *J* 7.5 and 1.5 Hz, py CH), 8.06 (1 H, d, *J* 8.0 Hz, py CH) and 8.57 (1 H, d, *J* 4.5 Hz, py CH); ¹³C NMR δ_C (125 MHz; CDCl₃) 21.8 (C=OCH₃), 42.2 (CH₂), 56.0 (CH), 60.3 (OCH₃), 60.6 (OCH₃), 102.3 (CH), 121.1 (CH), 124.3 (CH), 136.2 (CH), 137.2 (Cq), 137.4 (Cq), 149.4 (CH), 150.5 (Cq), 153.4 (Cq), 155.4 (Cq) and 169.1 (Cq); MS m/z (ES⁺) Found 378.1481 (MNa⁺), C₁₉H₂₁N₃NaO₄ (MNa⁺) requires 378.1430; **HPLC** (analytical) *t*_R = 4.2 min.

(3-(Pyridin-2-yl)-5-(3,4,5-trimethoxyphenyl)-4,5-dihydro-1*H*-pyrazol-1-yl)(3,4,5-trimethoxyphenyl)methanone (9i)

Hydrazine monohydrate (8.0 mmol) was added to a rapidly stirred solution of chalcone **5** (2.0 mmol) in EtOH (20 mL) and heated to 80 $^{\circ}$ C for 2 h. The solvent was removed under reduced pressure and the resulting brown oil was dissolved in CH₂Cl₂ (20 mL) and 3,4,5-trimethoxybenzoyl chloride (4.0 mmol) added dropwise followed by NEt₃ (4.0 mmol) and the solution stirred at rt for 3 h. The solvent was then removed under reduced pressure and the solid was purified by column chromatography with silica gel using PE:EtOAc 6:4 to afford the desired pyrazoline **9i** as a white solid (0.85 g, 84%).

R_f [PE-EtOAc 4:6] 0.41; **Mp** 174-175 °C (EtOH); **IR** v_{max} (film)/cm⁻¹ 1641, 1580, 1416 and 1128; ¹**H NMR** δ_{**H**} (500 MHz; CDCl₃) 3.42 (1 H, dd, *J* 19.0 and 5.0 Hz, pyrazoline CH), 3.81 (3 H, s, OCH₃), 3.82 (6 H, s, OCH₃), 3.85-3.93 (10 H, m, OCH₃ and pyrazoline CH), 5.75 (1 H, dd, *J* 12.0 and 5.0 Hz, pyrazoline CH), 6.52 (2 H, s, Ar CH), 7.32 (1 H, td, *J* 5.0 and 1.0 Hz, py CH), 7.40 (2 H, s, Ar CH), 7.74 (1 H, td, *J* 7.5 and 1.5 Hz, py CH), 8.04 (1 H, d, *J* 8.0 Hz, py CH) and 8.61 (1 H, d, *J* 5.5 Hz, py CH); ¹³C **NMR** δ_C (125 MHz; CDCl₃) 41.4 (CH₂), 56.1 (OCH₃), 56.2 (OCH₃), 56.3 (OCH₃) 60.7 (OCH₃), 62.2 (CH), 102.5 (CH), 108.0 (CH), 121.1 (CH), 124.5 (CH), 128.9 (CH), 136.3 (CH), 137.4 (Cq), 137.5 (Cq), 140.9 (Cq), 149.6 (Cq), 150.7 (Cq), 152.5 (Cq), 153.6 (Cq), 156.7 (Cq) and 165.8 (C=O); **MS** m/z (ES⁺) Found 508.2078 (MH⁺) and 530.1898 (MNa⁺), C₂₇H₃₀N₃O₇ (MH⁺) requires 508.2084 and C₂₇H₂₉N₃NaO₇ (MNa⁺) requires 530.1903; **HPLC** (analytical) *t*_R = 5.4 min.

References

- MTS is 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4sulfophenyl)-2H-tetrazolium. A. H. Cory, T. C. Owen, J. A. Barltrop and J. G. Cory, *Cancer Commum.*, 1991, 3, 207.
- T.M. Beale, R.M. Myers, J.W. Shearman, D.S. Charnock-Jones, J.D. Brenton,
 F.V. Gergely and S.V. Ley, *Med. Chem. Commun.*, 2010, 1, 202-208.
- M.L. Shelanski, F. Gaskin and C.R Cantor, *Proc. Nat. Acad. Sci. USA.*, 1973, 70, 765-768.
- (a) S. Otto, F. Bertoncin and J. B. F. N. Engberts, J. Am. Chem. Soc., 1996, 118, 7702–7707; (b) E. B. Mubofu and J. B. F. N. Engberts, J. Phys. Org. Chem., 2004, 17, 180–186; (c) A. Ciupa, M. F. Mahon, P. A. De Bank and L. Caggiano, Org. Biomol. Chem., 2012, 10, 8753-8757.
- (a) T.-D. Tran, T.-T.-N. Nguyen, T.-H. Do, T.-N.-P. Huynh, C.-D. Tran and K.-M. Thai, *Molecules*, 2012, **17**, 6684-6696; (*b*) T. Suwunwong, S. Chantrapromma and H.-K. Fun, *Chem. Pap.*, 2011, **65**, 890-897;
- 6. P. Wang, N. Onozawa-Komatsuzaki, Y. Himeda, H. Sugihara, H. Arakawa and K. Kasuga, *Tetrahedron Lett.*, 2001, **42**, 9199–9201.
- (a) N. Gökhan-Kelekçi, S. Yabanoğlu, E. Küpeli, U. Salgin, Ö. Özgen, G. Uçar, E. Yeşilada, E. Kendi, A. Yeşilada and A. A. Bilgin, *Biorg. Med. Chem.*, 2007, 15, 5775-5786; (b) S. Wang, W. Shao, H. Li, C. Liu, K. Wang and J. Zhang, *Eur. J. Med. Chem.*, 2011, 46, 1914-1918.
- 8. S. Wang, B. Shi, Y. Li, Syn. Comm., 2003, 33, 1449-1457.

¹H and ¹³C NMR Spectra

HPLC traces at 254nm

HPLC traces at 274 nm

Compound 5

 $\frac{1}{1}$

423.70 839.41

100.00

9429578.48 395322.46 100.00

18720.00 22060.00

12 9.686

150

100

Compound 8c

Compound 9c

Compound 9i

MTS Assays

n = 4

Compound 8a

1% DMSO only Points are means ± s.d n = 4

Compound 8b

Compound 8c

Compound 8d

Compound 8e

Compound 8f

Compound 8h

Compound 8i

Compound 9b

Compound 9c

Compound 9i

Electronic Supplementary Material (ESI) for Medicinal Chemistry Communications This journal is © The Royal Society of Chemistry 2013

Colchicine

NCI Data

Pyrazoline 8i – Single Dose

Developmental There	apeutics Program	NSC: D-761258/1	Conc: 1.00E-5 Molar	Test Date: Aug 22, 2011
One Dose Mea	an Graph	Experiment ID: 1108	OS12	Report Date: Sep 12, 2011
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Perc	ent
Leukemia CCRF-CEM	15.28		-	
HL-60(TB)	-19.74			
K-562	13.92			
MOLT-4	27.77			
SR	14 19			
Non-Small Cell Lung Cancer				
A549/ATCC	22.14		• •	
EKVX	44.62			
HOP-62	29.96			
NCI-H226	27.06			
NCI-H23	37.40			
NCI-H322M	39.12			
NCI-H460	11.46		-	
NCI-H522	-43.64			
COLO 205	-1.56			
HCC-2998	38.08			
HCT-116	22.61		• 1	
HCT-15	28.98			
H129 KM12	20.10			
SW-620	29.02			
CNS Cancer				
SF-268	50.59			
SF-295 SE-520	20.52			
SNB-19	25.23		-	
U251	29.87		_	
Melanoma	40.04			
MALME-3M	28 74			
M14	4.20			
MDA-MB-435	-50.29			
SK-MEL-2 SK-MEL-28	-2.85			
SK-MEL-20	6.98			
UACC-257	76.69			
UACC-62	53.39			
Ovarian Cancer	20.81			
OVCAR-3	-40.78			
OVCAR-5	37.71			
OVCAR-8	31.28			
SK-OV-3	5.62			
Renal Cancer				
786-0	32.68			
A498 ACHN	21.00			
CAKI-1	27.53			
RXF 393	-24.74			
SN12C	37.15			
UO-31	34.84			
Prostate Cancer	04.00			
PC-3	19.36			
DU-145 Broast Cancor	-12.00			
MCF7	20.41			
MDA-MB-231/ATCC	51.03			
HS 578T	20.94			
T-47D	31 13			
MDA-MB-468	-7.41			
	10.01			
Mean	19.84 70.12			
Range	126.98			
-				
		400		100
	150	100 50	0 -50	-100 -150

Pyrazoline 8i – Five Dose

National Cancer Institute Developmental Therapeutics Program In-Vitro Testing Results															
NSC : D - 761	258 / 1				Exp	Experiment ID : 1109NS21			Test	Type : 08	Units : I	Violar			
Report Date :	Octobe	r 26, 20	11		Tes	st Date	: Septe	mber 12,	2011			QNS	3:	MC :	
COMI : AC03:	:44 (109	9726)			Sta	in Rea	gent : S	RB Dual	-Pass I	Related	I	SSF	PL : 0Y8X		
	_					L	og10 Cor	ncentration	_						
Panel/Cell Line	Time Zero	Ctrl	-8.0	Mea -7.0	n Optica -6.0	l Densit -5.0	ies -4.0	-8.0	P -7.0	ercent G -6.0	irowth -5.0	-4.0	GI50	TGI	LC50
Leukemia CCRF-CEM HL-80(TB) MOLT-4 RPMI-8226 SR	0.380 0.695 0.518 0.673 0.449	1.644 2.424 2.348 2.632 2.410	1.659 2.467 2.443 2.607 2.379	1.714 2.384 2.465 2.555 2.292	1.206 1.440 2.096 2.361 0.896	0.596 0.703 1.075 1.769 0.760	0.533 0.586 0.807 1.627 0.707	101 102 105 99 98	106 98 106 96 94	65 43 86 86 23	17 30 56 16	12 -16 16 49 13	2.08E-6 2 7.47E-7 4.46E-6 2 6.63E-5 2 4.15E-7 2	 1.00E-4 1.07E-5 1.00E-4 1.00E-4 1.00E-4 	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4
Non-Small Cell Lung A549/ATCC EKVX HOP-82 HOP-92 NCI-H226 NCI-H226 NCI-H227 NCI-H322M NCI-H480 NCI-H522	g Cancer 0.410 0.836 0.407 0.903 0.668 0.445 0.717 0.172 0.798	1.844 2.041 1.042 2.203 1.606 1.402 1.919 1.991 1.713	1.794 1.957 1.029 2.125 1.527 1.384 1.958 2.027 1.732	1.773 1.925 1.028 2.055 1.493 1.354 1.914 1.955 1.709	1.113 1.746 0.772 1.855 1.195 1.093 1.766 0.714 1.168	0.772 1.473 0.589 1.707 0.733 0.778 1.486 0.358 0.838	0.710 1.440 0.573 1.611 0.745 0.719 1.487 0.285 0.801	96 93 98 94 92 98 103 102 102	95 90 98 89 88 95 100 98 100	49 75 57 73 56 68 87 30 40	25 53 29 62 7 35 64 10 4	21 50 26 54 8 29 64 6	9.52E-7 > 1.00E-4 1.82E-6 > 1.00E-4 1.33E-6 3.45E-6 > 1.00E-4 5.05E-7 6.88E-7	 1.00E-4 	<pre>> 1.00E-4 > 1.00E-4</pre>
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620	0.315 0.424 0.194 0.395 0.216 0.322 0.196	1.241 1.711 1.504 1.905 1.256 2.445 1.788	1.314 1.699 1.597 1.888 1.318 2.591 1.737	1.333 1.663 1.552 1.806 1.344 2.570 1.724	0.610 1.303 0.637 1.099 0.386 1.177 0.753	0.239 0.658 0.445 0.696 0.263 0.966 0.601	0.254 0.625 0.269 0.572 0.241 0.792 0.599	108 99 107 99 106 107 97	110 96 104 93 108 106 96	32 68 34 47 16 40 35	-24 18 19 20 5 30 25	-20 16 6 12 22 25	5.85E-7 2.32E-6 5.86E-7 4.31E-7 7.11E-7 5.67E-7	3.71E-6 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4
CNS Canoer SF-268 SF-539 SNB-19 SNB-75 U251	0.280 0.713 0.476 0.863 0.365	1.747 1.970 1.593 1.553 1.638	1.814 2.023 1.549 1.427 1.578	1.797 2.122 1.497 1.423 1.544	1.262 1.362 1.145 0.938 0.966	1.114 0.634 0.745 0.762 0.641	0.922 0.663 0.804 1.041 0.568	105 104 96 82 95	103 112 91 81 93	67 52 60 11 47	57 -11 24 -12 22	44 -7 29 26 16	3.34E-5 1.06E-6 1.89E-6 2.77E-7 8.68E-7	 1.00E-4 6.64E-6 1.00E-4 1.00E-4 1.00E-4 	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4
Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-2 SK-MEL-2 SK-MEL-5 UACC-257 UACC-62	0.247 0.602 0.317 0.551 0.821 0.533 0.497 0.874 0.563	1.585 1.465 1.167 2.497 1.506 1.401 2.284 1.786 1.932	1.488 1.451 1.165 2.488 1.576 1.385 2.204 1.727 1.835	1.476 1.455 1.170 2.250 1.598 1.338 2.074 1.705 1.787	0.924 1.102 0.697 0.588 1.083 1.002 0.999 1.433 1.052	0.763 1.034 0.398 0.275 0.830 0.807 0.799 1.520 1.070	0.505 1.077 0.480 0.304 0.915 0.811 0.558 1.496 0.957	93 98 100 100 110 98 96 94 93	92 99 100 87 114 93 88 91 89	51 58 45 2 38 54 28 61 36	39 50 -50 1 32 17 71 37	19 55 19 -45 14 32 3 68 29	1.13E-6 > 1.00E-4 > 8.01E-7 > 2.73E-7 6.99E-7 > 1.51E-6 > 4.32E-7 > 1.00E-4 > 5.41E-7	1.00E-4 1.00E-4 1.09E-6 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4	<pre>> 1.00E-4 > 1.00E-4</pre>
Ovarian Canoer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-5 NCI/ADR-RES SK-OV-3	0.570 0.235 0.580 0.521 0.498 0.500 0.563	1.803 1.764 1.192 1.401 1.977 1.581 1.262	1.895 1.918 1.178 1.385 1.968 1.559 1.300	1.933 1.887 1.136 1.404 1.900 1.515 1.279	1.365 0.851 0.984 1.257 1.564 0.851 0.864	1.156 0.656 0.858 0.767 0.932 0.480 0.509	0.918 0.566 0.703 0.758 0.832 0.543 0.495	107 110 98 98 99 98 105	111 108 91 100 95 94 102	64 40 66 84 72 32 43	48 28 45 28 29 -4 -10	28 22 20 27 23 4 -12	7.13E-6 7.19E-7 5.95E-6 3.28E-6 5.19E-7 7.62E-7	1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 6.57E-6	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4
Renal Cancer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	0.661 0.701 0.346 0.638 0.511 0.473 0.909 0.370	2.219 1.890 1.359 2.038 1.095 1.790 1.799 1.389	2.186 1.702 1.432 1.947 1.073 1.691 1.815 1.329	2.202 1.621 1.386 1.883 1.043 1.660 1.848 1.352	1.542 1.287 0.994 1.097 0.810 1.403 1.645 1.131	1.001 1.154 0.771 0.962 0.364 0.908 1.530 0.772	0.985 1.116 0.596 0.854 0.495 0.755 1.490 0.642	98 84 107 94 96 93 102 94	99 77 103 89 91 90 106 96	57 49 64 33 51 71 83 75	22 38 42 23 -29 33 70 39	21 35 25 15 -3 21 65 27	1.54E-6 > 9.43E-7 > 4.29E-6 > 4.03E-7 > 1.03E-6 > 5.53E-6 > 5.01E-6 >	1.00E-4 1.00E-4 1.00E-4 1.00E-4 4.36E-6 1.00E-4 1.00E-4 1.00E-4	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4
Prostate Cancer PC-3 DU-145	0.364 0.173	1.552 1.526	1.514 1.659	1.432 1.698	1.177 1.267	0.991 0.603	0.988 0.545	97 110	90 113	68 81	53 32	53 27	> 1.00E-4 > 4.26E-6 >	1.00E-4	> 1.00E-4 > 1.00E-4
Breast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468	0.280 0.638 0.449 0.868 0.549 0.579	1.531 1.692 1.874 1.836 1.229 1.175	1.438 1.648 1.827 1.862 1.247 1.133	1.357 1.576 1.769 1.899 1.241 1.080	0.474 1.163 1.518 1.512 0.956 0.753	0.470 1.101 1.148 1.287 0.928 0.545	0.444 0.982 1.141 0.874 0.908 0.579	93 96 97 103 103 93	86 89 93 107 102 84	15 50 75 67 60 29	15 44 49 43 56 -6	13 33 49 1 53	3.24E-7 > 9.89E-7 > 9.18E-8 > 5.13E-6 > > 1.00E-4 > 4.17E-7	1.00E-4 1.00E-4 1.00E-4 1.00E-4 1.00E-4 6.80E-6	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4

Rank	Correlation	namecode	Seed Vector ident For Display	Seed Vector descriptor For Display	Target Vector ident For Display	Target Vector descriptor For Display	Count Common Cell Lines	Seed Standard Deviation	Target Standard Deviation
1	0.49	PUBLIC	NSC:S761258 Endpt:GI50 Expld:1109NS21 hiConc:-4.0		NSC:S357704 Endpt:GI50 Expld:AVGDATA hiConc:-7.7	cyanomorpholino- ADR	57	0.795	0.416
2	0.43	PUBLIC	NSC:S761258 Endpt:GI50 Expld:1109NS21 hiConc:-4.0		NSC:S150014 Endpt:GI50 Expld:AVGDATA hiConc:-2.5	hydrazine sulfate	55	0.797	0.381
3	0.413	PUBLIC	NSC:S761258 Endpt:GI50 Expld:1109NS21 hiConc:-4.0		NSC:S237020 Endpt:GI50 Expld:AVGDATA hiConc:2.6	largomycin	57	0.795	0.327
4	0.406	PUBLIC	NSC:S761258 Endpt:GI50 Expld:1109NS21 hiConc:-4.0		NSC:S26980 Endpt:GI50 Expld:AVGDATA hiConc:-4.6	mitomycin C	58	0.794	0.556
5	0.39	PUBLIC	NSC:S761258 Endpt:GI50 Expld:1109NS21 hiConc:-4.0		NSC:S87574 Endpt:GI50 Expld:AVGDATA hiConc:-3.0	vincristine sulfate	57	0.795	0.657
6	0.381	PUBLIC	NSC:S761258 Endpt:GI50 Expld:1109NS21 hiConc:-4.0		NSC:S332598 Endpt:GI50 Expld:AVGDATA hiConc:-4.3	rhizoxin	45	0.755	0.848
7	0.372	PUBLIC	NSC:S781258 Endpt:GI50 Expld:1109NS21 hiConc:-4.0		NSC:S182986 Endpt:GI50 Expld:AVGDATA hiConc:-3.6	AZQ	50	0.765	0.466
8	0.371	PUBLIC	NSC:S761258 Endpt:GI50 Expld:1109NS21 hiConc:-4.0		NSC:S375575 Endpt:GI50 Expld:AVGDATA hiConc:-5.0	cyclopentenylcytosine	51	0.788	0.89
9	0.37	PUBLIC	NSC:S761258 Endpt:GI50 Expld:1109NS21 hiConc:-4.0		NSC:S224131 Endpt:GI50 Expld:AVGDATA hiConc:-2.0	PALA	56	0.791	0.715
10	0.369	PUBLIC	NSC:S761258 Endpt:GI50 Expld:1109NS21 hiConc:-4.0		NSC:S157365 Endpt:GI50 Expld:AVGDATA hiConc:2.3	neocarzinostatin	54	0.775	0.243
11	0.359	PUBLIC	NSC:S781258 Endpt:GI50 Expld:1109NS21 hiConc:-4.0		NSC:S237020 Endpt:GI50 Expld:AVGDATA hiConc:1.6	largomycin	52	0.797	0.466
12	0.356	PUBLIC	NSC:S761258 Endpt:GI50 Expld:1109NS21 hiConc:-4.0		NSC:S153858 Endpt:GI50 Expld:AVGDATA hiConc:-7.0	maytansine	56	0.8	0.724
13	0.35	PUBLIC	NSC:S761258 Endpt:GI50 Expld:1109NS21 hiConc:-4.0		NSC:S619003 Endpt:GI50 Expld:AVGDATA hiConc:-4.0	MX2 HCI	45	0.755	0.473

COMPARE Analysis of Pyrazoline 8i

Cell Cycle Analysis

S56

X-Ray Data

X-ray Structure Determination of Pyrazoline (8e) CCDC 926530

k10farm2

X-ray crystal structure of compound **8e** shown here is in a different orientation to that given in Fig. 2 in the paper, however it is of the same crystal structure (data below)

Table 1. Crystal data and structure refinement for 8e.

Identification code	k10farm2
Empirical formula	C15 H14 N4 S
Formula weight	282.36
Temperature	150(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P21/n
Unit cell dimensions	$a = 9.7950(2)$ Å $\alpha = 90^{\circ}$
	$b = 14.7280(3)$ Å $\beta = 107.768(1)^{\circ}$
	$c = 10.0360(2)$ Å $\gamma = 90^{\circ}$
Volume	1378.74(5) Å ³
Ζ	4
Density (calculated)	1.360 Mg/m^3
Absorption coefficient	0.230 mm^{-1}
F(000)	592
Crystal size	0.35 x 0.35 x 0.12 mm
Theta range for data collection	3.52 to 27.52°
Index ranges	-12<=h<=12; -19<=k<=19; -13<=l<=13
Reflections collected	24456
Independent reflections	3152 [R(int) = 0.0669]
Reflections observed (> 2σ)	2385
Data Completeness	0.996
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.938 and 0.716

Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3152 / 2 / 190
Goodness-of-fit on F ²	1.025
Final R indices $[I>2\sigma(I)]$	R1 = 0.0392 $wR2 = 0.0883$
R indices (all data)	R1 = 0.0608 WR2 = 0.0979
Largest diff. peak and hole	$0.249 \text{ and } -0.250 \text{ e}\text{Å}^{-3}$

Notes:

H1A and H1B located and refined at a distance of 0.98Å from N1.

Hydrogen bonding in the lattice.

Hydrogen bonds with H..A < r(A) + 2.000 Angstroms and <DHA > 110 deg.

D-H	d (D-H)	d(HA)	<dha< th=""><th>d(DA)</th><th>А</th></dha<>	d(DA)	А
N1-H1A y+1/2, z+1/2]	0.974	2.131	151.06	3.020	N4 [x-1/2, -
N1-H1B y+1/2, z-1/2]	0.973	2.685	153.02	3.579	S1 [x-1/2, -

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² $x \ 10^3$) for **8e**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom	Х	у	Z	U(eq)
S(1)	4628(1)	1778(1)	10745(1)	31(1)
N(1)	2367(2)	2474(1)	8805(2)	29(1)
N(2)	4541(1)	2782(1)	8521(1)	22(1)
N(3)	3811(1)	3255(1)	7308(1)	21(1)
N(4)	4898(1)	3550(1)	4307(1)	24(1)
C(1)	3790(2)	2369(1)	9288(2)	22(1)
C(2)	6091(2)	2733(1)	8703(2)	21(1)
C(3)	6924(2)	3463(1)	9689(2)	21(1)
C(4)	6280(2)	4048(1)	10399(2)	27(1)
C(5)	7078(2)	4704(1)	11299(2)	35(1)
C(6)	8530(2)	4781(1)	11503(2)	39(1)
C(7)	9185(2)	4210(1)	10789(2)	36(1)
C(8)	8388(2)	3558(1)	9887(2)	27(1)
C(9)	6100(2)	2885(1)	7186(2)	22(1)
C(10)	4676(2)	3346(1)	6575(2)	19(1)
C(11)	4195(2)	3800(1)	5208(2)	19(1)
C(12)	4427(2)	3897(1)	3010(2)	28(1)
C(13)	3310(2)	4510(1)	2582(2)	28(1)
C(14)	2626(2)	4782(1)	3531(2)	27(1)
C(15)	3063(2)	4417(1)	4866(2)	24(1)

S(1)-C(1)	1.6842(16)	N(1)-C(1)	1.338(2)
N(1)-H(1A)	0.974(5)	N(1)-H(1B)	0.973(5)
N(2)-C(1)	1.359(2)	N(2)-N(3)	1.3960(17)
N(2)-C(2)	1.4748(19)	N(3)-C(10)	1.2870(19)
N(4)-C(12)	1.343(2)	N(4)-C(11)	1.3440(19)
C(2)-C(3)	1.519(2)	C(2)-C(9)	1.541(2)
C(2)-H(2)	1.0000	C(3)-C(4)	1.386(2)
C(3)-C(8)	1.393(2)	C(4)-C(5)	1.390(2)
C(4)-H(4)	0.9500	C(5)-C(6)	1.379(3)
C(5)-H(5)	0.9500	C(6)-C(7)	1.384(3)
C(6)-H(6)	0.9500	C(7)-C(8)	1.385(2)
C(7)-H(7)	0.9500	C(8)-H(8)	0.9500
C(9)-C(10)	1.504(2)	C(9)-H(9A)	0.9900
C(9)-H(9B)	0.9900	C(10)-C(11)	1.468(2)
C(11)-C(15)	1.394(2)	C(12)-C(13)	1.382(2)
C(12)-H(12)	0.9500	C(13)-C(14)	1.380(2)
C(13)-H(13)	0.9500	C(14)-C(15)	1.384(2)
C(14)-H(14)	0.9500	C(15)-H(15)	0.9500
C(1)-N(1)-H(1A)	117.5(13)	C(1)-N(1)-H(1B)	120.9(12)
H(1A)-N(1)-H(1B)	120.4(17)	C(1)-N(2)-N(3)	119.74(12)
C(1)-N(2)-C(2)	128.48(13)	N(3)-N(2)-C(2)	111.48(11)
C(10)-N(3)-N(2)	107.42(12)	C(12)-N(4)-C(11)	116.95(14)
N(1)-C(1)-N(2)	115.28(14)	N(1)-C(1)-S(1)	123.48(12)
N(2)-C(1)-S(1)	121.23(12)	N(2)-C(2)-C(3)	111.95(12)
N(2)-C(2)-C(9)	100.77(11)	C(3)-C(2)-C(9)	112.13(12)
N(2)-C(2)-H(2)	110.5	C(3)-C(2)-H(2)	110.5
C(9)-C(2)-H(2)	110.5	C(4)-C(3)-C(8)	118.34(15)
C(4)-C(3)-C(2)	122.43(14)	C(8)-C(3)-C(2)	119.23(14)
C(3)-C(4)-C(5)	120.80(16)	C(3)-C(4)-H(4)	119.6
C(5)-C(4)-H(4)	119.6	C(6)-C(5)-C(4)	120.29(17)
C(6)-C(5)-H(5)	119.9	C(4)-C(5)-H(5)	119.9
C(5)-C(6)-C(7)	119.55(17)	C(5)-C(6)-H(6)	120.2
C(7)-C(6)-H(6)	120.2	C(6)-C(7)-C(8)	120.13(16)
C(6)-C(7)-H(7)	119.9	C(8)-C(7)-H(7)	119.9
C(7)-C(8)-C(3)	120.87(16)	C(7)-C(8)-H(8)	119.6
C(3)-C(8)-H(8)	119.6	C(10)-C(9)-C(2)	100.62(12)
C(10)-C(9)-H(9A)	111.6	C(2)-C(9)-H(9A)	111.6
C(10)-C(9)-H(9B)	111.6	C(2)-C(9)-H(9B)	111.6
H(9A)-C(9)-H(9B)	109.4	N(3)-C(10)-C(11)	120.13(13)
N(3)-C(10)-C(9)	114.22(13)	C(11)-C(10)-C(9)	125.43(13)
N(4)-C(11)-C(15)	123.04(14)	N(4)-C(11)-C(10)	114.83(13)
C(15)-C(11)-C(10)	122.10(13)	N(4)-C(12)-C(13)	123.74(15)
N(4)-C(12)-H(12)	118.1	C(13)-C(12)-H(12)	118.1
C(14)-C(13)-C(12)	118.66(15)	C(14)-C(13)-H(13)	120.7
C(12)-C(13)-H(13)	120.7	C(13)-C(14)-C(15)	118.95(15)
C(13)-C(14)-H(14)	120.5	C(15)-C(14)-H(14)	120.5
C(14)-C(15)-C(11)	118.61(14)	C(14)-C(15)-H(15)	120.7
C(11)-C(15)-H(15)	120.7		

Table 3. Bond lengths [Å] and angles [°] for $\boldsymbol{8e}.$

Symmetry transformations used to generate equivalent atoms:

Atom	U11	U22	U33	U23	U13	U12
S(1)	28(1)	36(1)	25(1)	10(1)	4(1)	-5(1)
N(1)	21(1)	42(1)	25(1)	8(1)	8(1)	-4(1)
N(2)	17(1)	28(1)	20(1)	4(1)	5(1)	-1(1)
N(3)	21(1)	23(1)	16(1)	0(1)	4(1)	-2(1)
N(4)	25(1)	28(1)	20(1)	1(1)	11(1)	0(1)
C(1)	22(1)	25(1)	20(1)	-1(1)	7(1)	-5(1)
C(2)	17(1)	23(1)	22(1)	3(1)	6(1)	1(1)
C(3)	22(1)	23(1)	17(1)	6(1)	4(1)	1(1)
C(4)	28(1)	33(1)	21(1)	1(1)	9(1)	-2(1)
C(5)	43(1)	36(1)	26(1)	-7(1)	11(1)	-1(1)
C(6)	40(1)	34(1)	35(1)	-5(1)	-1(1)	-8(1)
C(7)	24(1)	32(1)	44(1)	2(1)	-1(1)	-4(1)
C(8)	24(1)	24(1)	33(1)	3(1)	6(1)	2(1)
C(9)	21(1)	25(1)	21(1)	-2(1)	7(1)	0(1)
C(10)	20(1)	20(1)	18(1)	-3(1)	7(1)	-2(1)
C(11)	19(1)	20(1)	17(1)	-3(1)	7(1)	-5(1)
C(12)	33(1)	34(1)	21(1)	1(1)	13(1)	0(1)
C(13)	31(1)	29(1)	21(1)	7(1)	4(1)	-3(1)
C(14)	23(1)	24(1)	29(1)	2(1)	3(1)	1(1)
C(15)	24(1)	24(1)	25(1)	-3(1)	9(1)	-1(1)

Table 4. Anisotropic displacement parameters (Å² x 10³) for **8e**. The anisotropic displacement factor exponent takes the form: -2 gpi² [$h^2 a^{*2} U11 + ... + 2 h k a^* b^* U$.

Table 5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2\ x\ 10^3$) for **8e**.

Atom	Х	у	Z	U(eq)
H(2)	6473	2117	9040	25
H(4)	5280	3999	10268	32
H(5)	6621	5101	11775	42
H(6)	9078	5224	12130	47
H(7)	10184	4264	10918	43
H(8)	8845	3171	9396	33
H(9A)	6905	3280	7147	27
H(9B)	6150	2303	6708	27
H(12)	4889	3712	2349	34
H(13)	3018	4739	1653	33
H(14)	1868	5212	3272	32
H(15)	2600	4585	5535	28
H(1A)	1791(19)	2159(13)	9300(20)	55(6)
H(1B)	1915(19)	2747(13)	7894(11)	47(6)

Atom1 - Atom2 - Atom3 - Atom4	Dihedral
C(1) - N(2) - N(3) - C(10)	-161.42(14)
C(2) - N(2) - N(3) - C(10)	12.75(16)
N(3) - N(2) - C(1) - N(1)	-1.3(2)
C(2) - N(2) - C(1) - N(1)	-174.40(14)
N(3) - N(2) - C(1) - S(1)	179.10(11)
C(2) - N(2) - C(1) - S(1)	6.0(2)
C(1) - N(2) - C(2) - C(3)	-89.28(18)
N(3) - N(2) - C(2) - C(3)	97.19(14)
C(1) - N(2) - C(2) - C(9)	151.37(15)
N(3) - N(2) - C(2) - C(9)	-22.16(15)
N(2) - C(2) - C(3) - C(4)	4.7(2)
C(9) - C(2) - C(3) - C(4)	117.11(16)
N(2) - C(2) - C(3) - C(8)	-174.86(13)
C(9) - C(2) - C(3) - C(8)	-62.44(18)
C(8) - C(3) - C(4) - C(5)	-0.8(2)
C(2) - C(3) - C(4) - C(5)	179.62(15)
C(3) - C(4) - C(5) - C(6)	-0.2(3)
C(4) - C(5) - C(6) - C(7)	1.0(3)
C(5) - C(6) - C(7) - C(8)	-0.7(3)
C(6) - C(7) - C(8) - C(3)	-0.4(3)
C(4) - C(3) - C(8) - C(7)	1.2(2)
C(2) - C(3) - C(8) - C(7)	-179.28(15)
N(2) - C(2) - C(9) - C(10)	21.41(14)
C(3) - C(2) - C(9) - C(10)	-97.81(14)
N(2) - N(3) - C(10) - C(11)	178.38(12)
N(2) - N(3) - C(10) - C(9)	3.41(17)
C(2) - C(9) - C(10) - N(3)	-16.74(16)
C(2) - C(9) - C(10) - C(11)	168.61(13)
C(12) - N(4) - C(11) - C(15)	-2.5(2)
C(12) - N(4) - C(11) - C(10)	175.33(13)
N(3) - C(10) - C(11) - N(4)	-154.21(14)
C(9) - C(10) - C(11) - N(4)	20.1(2)
N(3) - C(10) - C(11) - C(15)	23.7(2)
C(9) - C(10) - C(11) - C(15)	-161.97(14)
C(11) - N(4) - C(12) - C(13)	2.2(2)
N(4) - C(12) - C(13) - C(14)	-0.3(3)
C(12) - C(13) - C(14) - C(15)	-1.4(2)
C(13) - C(14) - C(15) - C(11)	1.0(2)
N(4) - C(11) - C(15) - C(14)	1.0(2)
C(10) - C(11) - C(15) - C(14)	-176.75(14)

Table 6. Dihedral angles [^o] for **8e**.

Symmetry transformations used to generate equivalent atoms:

X-ray Structure Determination of pyrazoline (8i) CCDC 926531

Table 1. Crystal data and structure refinement for pyrazoline (8i).

Identification code	k11farm1
Empirical formula	C24 H23 N3 O4
Formula weight	417.45
Temperature	150(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	Pbca
Unit cell dimensions	$a = 6.9770(1)$ Å $\alpha = 90^{\circ}$
	$b = 22.0950(2)$ Å $\beta = 90^{\circ}$
	$c = 26.6010(3)$ Å $\gamma = 90^{\circ}$
Volume	4100.73(8) Å ³
Ζ	8
Density (calculated)	1.352 Mg/m^3
Absorption coefficient	0.093 mm^{-1}
F(000)	1760
Crystal size	0.40 x 0.25 x 0.25 mm
Theta range for data collection	3.54 to 27.47°
Index ranges	-8<=h<=9; -28<=k<=27; -34<=l<=34
Reflections collected	56599
Independent reflections	4679 [R(int) = 0.0645]
Reflections observed (> 2σ)	3531
Data Completeness	0.997
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.982 and 0.893
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4679 / 0 / 283
Goodness-of-fit on F ²	1.051
Final R indices $[I>2\sigma(I)]$	R1 = 0.0422 $wR2 = 0.0882$
R indices (all data)	R1 = 0.0649 wR2 = 0.0991
Largest diff. peak and hole	$0.182 \text{ and } -0.215 \text{ e}\text{\AA}^{-3}$

Atom	Х	у	Z	U(eq)
O(1)	8672(2)	1985(1)	7146(1)	34(1)
O(2)	13646(1)	441(1)	6698(1)	32(1)
O(3)	12242(1)	-195(1)	5936(1)	29(1)
O(4)	8769(2)	32(1)	5556(1)	36(1)
N(1)	6394(2)	2016(1)	6564(1)	25(1)
N(2)	5409(2)	1815(1)	6142(1)	25(1)
N(3)	982(2)	2382(1)	5679(1)	31(1)
C(1)	8030(2)	1763(1)	6756(1)	25(1)
C(2)	9030(2)	1235(1)	6514(1)	23(1)
C(3)	10824(2)	1096(1)	6719(1)	24(1)
C(4)	11870(2)	613(1)	6532(1)	23(1)
C(5)	11148(2)	263(1)	6140(1)	24(1)
C(6)	9351(2)	399(1)	5941(1)	26(1)
C(7)	8287(2)	882(1)	6126(1)	26(1)
C(8)	14362(2)	728(1)	7139(1)	32(1)
C(9)	11790(2)	-777(1)	6138(1)	38(1)
C(10)	6969(2)	171(1)	5328(1)	41(1)
C(11)	5385(2)	2514(1)	6834(1)	24(1)
C(12)	3449(2)	2530(1)	6551(1)	26(1)
C(13)	3785(2)	2096(1)	6126(1)	24(1)
C(14)	2400(2)	1975(1)	5720(1)	25(1)
C(15)	2544(2)	1469(1)	5410(1)	29(1)
C(16)	1184(2)	1382(1)	5039(1)	34(1)
C(17)	-269(2)	1802(1)	4988(1)	34(1)
C(18)	-314(2)	2286(1)	5315(1)	35(1)
C(19)	6439(2)	3111(1)	6804(1)	26(1)
C(20)	7541(2)	3265(1)	6388(1)	37(1)
C(21)	8358(2)	3836(1)	6354(1)	51(1)
C(22)	8092(3)	4255(1)	6730(1)	58(1)
C(23)	7013(3)	4104(1)	7147(1)	55(1)
C(24)	6190(2)	3533(1)	7187(1)	38(1)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² $x \ 10^3$) for **8i**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Table 3. Bond lengths [Å] and angles [°] for **8i**.

O(1)-C(1)	1.2310(17)	O(2)-C(4)	1.3690(17)
O(2)-C(8)	1.4238(18)	O(3)-C(5)	1.3787(16)
O(3)-C(9)	1.4294(18)	O(4)-C(6)	1.3670(17)
O(4)-C(10)	1.4276(19)	N(1)-C(1)	1.3705(18)
N(1)-N(2)	1.3873(16)	N(1)-C(11)	1.4921(17)
N(2)-C(13)	1.2918(18)	N(3)-C(18)	1.341(2)
N(3)-C(14)	1.3421(18)	C(1)-C(2)	1.5041(19)
C(2)-C(7)	1.393(2)	C(2)-C(3)	1.400(2)
C(3)-C(4)	1.3843(19)	C(3)-H(3)	0.9500
C(4)-C(5)	1.394(2)	C(5)-C(6)	1.394(2)
C(6)-C(7)	1.389(2)	C(7)-H(7)	0.9500
C(8)-H(8A)	0.9800	C(8)-H(8B)	0.9800
C(8)-H(8C)	0.9800	C(9)-H(9A)	0.9800
C(9)-H(9B)	0.9800	C(9)-H(9C)	0.9800
C(10)-H(10A)	0.9800	C(10)-H(10B)	0.9800
C(10)-H(10C)	0.9800	C(11)-C(19)	1.5117(19)

C(11)-C(12)	1.5468(19)	C(11)-H(11)	1.0000
C(12)-C(13)	1.500(2)	C(12)-H(12A)	0.9900
C(12)-H(12B)	0.9900	C(13)-C(14)	1.473(2)
C(14)-C(15)	1.395(2)	C(15)-C(16)	1.381(2)
C(15)-H(15)	0.9500	C(16)-C(17)	1.380(2)
C(16)-H(16)	0.9500	C(17)-C(18)	1.379(2)
C(17)-H(17)	0.9500	C(18)-H(18)	0.9500
C(19)-C(20)	1.389(2)	C(19)-C(24)	1.391(2)
C(20)-C(21)	1.387(2)	C(20)-H(20)	0.9500
C(21)-C(22)	1.375(3)	C(21)-H(21)	0.9500
C(22)-C(23)	1.382(3)	C(22)-H(22)	0.9500
C(23)-C(24)	1.391(3)	C(23)-H(23)	0.9500
C(24)-H(24)	0.9500		
C(4)-O(2)-C(8)	117.34(11)	C(5)-O(3)-C(9)	113.00(11)
C(6)-O(4)-C(10)	116.84(11)	C(1)-N(1)-N(2)	125.76(11)
C(1)-N(1)-C(11)	120.92(11)	N(2)-N(1)-C(11)	113.05(11)
C(13)-N(2)-N(1)	107.96(11)	C(18)-N(3)-C(14)	116.80(13)
O(1)-C(1)-N(1)	117.08(12)	O(1)-C(1)-C(2)	120.08(13)
N(1)-C(1)-C(2)	122.84(12)	C(7)-C(2)-C(3)	119.87(13)
C(7)-C(2)-C(1)	125.41(13)	C(3)-C(2)-C(1)	114.70(12)
C(4)-C(3)-C(2)	120.04(13)	C(4)-C(3)-H(3)	120.0
C(2)-C(3)-H(3)	120.0	O(2)-C(4)-C(3)	125.15(13)
O(2)-C(4)-C(5)	114.44(12)	C(3)-C(4)-C(5)	120.40(13)
O(3)-C(5)-C(4)	120.14(12)	O(3)-C(5)-C(6)	120.46(13)
C(4)-C(5)-C(6)	119.33(12)	O(4)-C(6)-C(7)	124.25(13)
O(4)-C(6)-C(5)	115.03(12)	C(7)-C(6)-C(5)	120.71(13)
C(6)-C(7)-C(2)	119.63(13)	C(6)-C(7)-H(7)	120.2
C(2)-C(7)-H(7)	120.2	O(2)-C(8)-H(8A)	109.5
O(2)-C(8)-H(8B)	109.5	H(8A)-C(8)-H(8B)	109.5
O(2)-C(8)-H(8C)	109.5	H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5	O(3)-C(9)-H(9A)	109.5
O(3)-C(9)-H(9B)	109.5	H(9A)-C(9)-H(9B)	109.5
O(3)-C(9)-H(9C)	109.5	H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5	O(4)-C(10)-H(10A)	109.5
O(4)-C(10)-H(10B)	109.5	H(10A)-C(10)-H(10B)	109.5
O(4)-C(10)-H(10C)	109.5	H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5	N(1)-C(11)-C(19)	112.84(11)
N(1)-C(11)-C(12)	101.14(11)	C(19)-C(11)-C(12)	112.32(11)
N(1)-C(11)-H(11)	110.1	C(19)-C(11)-H(11)	110.1
C(12)-C(11)-H(11)	110.1	C(13)-C(12)-C(11)	102.50(11)
C(13)-C(12)-H(12A)	111.3	C(11)-C(12)-H(12A)	111.3
C(13)-C(12)-H(12B)	111.3	C(11)-C(12)-H(12B)	111.3
H(12A)-C(12)-H(12B)	109.2	N(2)-C(13)-C(14)	120.86(13)
N(2)-C(13)-C(12)	114.72(12)	C(14)-C(13)-C(12)	124.40(12)
N(3)-C(14)-C(15)	122.79(13)	N(3)-C(14)-C(13)	115.03(13)
C(15)-C(14)-C(13)	122.17(13)	C(16)-C(15)-C(14)	118.97(14)
C(16)-C(15)-H(15)	120.5	C(14)-C(15)-H(15)	120.5
C(17)-C(16)-C(15)	118.79(14)	C(17)-C(16)-H(16)	120.6
C(15)-C(16)-H(16)	120.6	C(18)-C(17)-C(16)	118.43(14)
C(18)-C(17)-H(17)	120.8	C(16)-C(17)-H(17)	120.8
N(3)-C(18)-C(17)	124.20(14)	N(3)-C(18)-H(18)	117.9
C(17)-C(18)-H(18)	117.9	C(20)-C(19)-C(24)	119.25(14)
C(20)-C(19)-C(11)	121.66(13)	C(24)-C(19)-C(11)	118.94(14)
C(21)-C(20)-C(19)	120.06(17)	C(21)-C(20)-H(20)	120.0
C(19)-C(20)-H(20)	120.0	C(22)-C(21)-C(20)	120.71(19)
C(22)-C(21)-H(21)	119.6	C(20)-C(21)-H(21)	119.6
C(21)-C(22)-C(23)	119.58(17)	C(21)-C(22)-H(22)	120.2

C(23)-C(22)-H(22)	120.2	C(22)-C(23)-C(24)	120.34(18)
C(22)-C(23)-H(23)	119.8	C(24)-C(23)-H(23)	119.8
C(19)-C(24)-C(23)	120.05(18)	C(19)-C(24)-H(24)	120.0
C(23)-C(24)-H(24)	120.0		

Table 4. Anisotropic displacement parameters $(\text{\AA}^2 \times 10^3)$ for **8i**. The anisotropic displacement factor exponent takes the form: -2 gpi² [$\text{h}^2 a^{*2} U11 + ... + 2 h k a^* b^* U$.

Atom	U11	U22	U33	U23	U13	U12
O(1)	36(1)	34(1)	32(1)	-10(1)	-10(1)	9(1)
O(2)	22(1)	35(1)	39(1)	-10(1)	-7(1)	7(1)
O(3)	26(1)	28(1)	33(1)	-4(1)	3(1)	5(1)
O(4)	34(1)	37(1)	37(1)	-15(1)	-14(1)	11(1)
N(1)	24(1)	22(1)	28(1)	-4(1)	-3(1)	3(1)
N(2)	25(1)	24(1)	24(1)	1(1)	-3(1)	1(1)
N(3)	31(1)	33(1)	29(1)	1(1)	-4(1)	9(1)
C(1)	25(1)	22(1)	26(1)	0(1)	-2(1)	1(1)
C(2)	24(1)	21(1)	24(1)	2(1)	0(1)	0(1)
C(3)	23(1)	23(1)	25(1)	0(1)	-1(1)	-2(1)
C(4)	18(1)	25(1)	26(1)	3(1)	0(1)	0(1)
C(5)	23(1)	23(1)	26(1)	0(1)	4(1)	2(1)
C(6)	28(1)	25(1)	25(1)	-2(1)	-2(1)	0(1)
C(7)	25(1)	25(1)	28(1)	-1(1)	-4(1)	4(1)
C(8)	22(1)	36(1)	38(1)	-6(1)	-5(1)	1(1)
C(9)	31(1)	25(1)	59(1)	-3(1)	-1(1)	3(1)
C(10)	38(1)	44(1)	42(1)	-15(1)	-18(1)	11(1)
C(11)	23(1)	23(1)	27(1)	-1(1)	3(1)	3(1)
C(12)	23(1)	22(1)	33(1)	-2(1)	0(1)	0(1)
C(13)	23(1)	21(1)	27(1)	4(1)	2(1)	0(1)
C(14)	23(1)	25(1)	26(1)	6(1)	2(1)	1(1)
C(15)	28(1)	26(1)	35(1)	1(1)	-3(1)	3(1)
C(16)	37(1)	29(1)	36(1)	-2(1)	-5(1)	0(1)
C(17)	32(1)	38(1)	31(1)	2(1)	-9(1)	2(1)
C(18)	34(1)	40(1)	32(1)	1(1)	-6(1)	12(1)
C(19)	20(1)	23(1)	34(1)	-1(1)	-4(1)	3(1)
C(20)	28(1)	32(1)	50(1)	3(1)	8(1)	1(1)
C(21)	28(1)	43(1)	82(2)	19(1)	2(1)	-7(1)
C(22)	43(1)	29(1)	103(2)	7(1)	-26(1)	-11(1)
C(23)	58(1)	30(1)	77(2)	-17(1)	-26(1)	3(1)
C(24)	39(1)	32(1)	43(1)	-11(1)	-7(1)	5(1)

Atom	Х	у	Z	U(eq)
H(3)	11325	1333	6987	28
H(7)	7060	970	5990	31
H(8A)	14436	1166	7083	48
H(8B)	15643	571	7215	48
H(8C)	13502	645	7422	48
H(9A)	12140	-789	6495	57
H(9B)	12509	-1089	5956	57
H(9C)	10413	-853	6103	57
H(10A)	5941	115	5575	62
H(10B)	6755	-100	5042	62
H(10C)	6975	591	5212	62
H(11)	5175	2400	7194	29
H(12A)	2385	2393	6769	32
H(12B)	3162	2941	6424	32
H(15)	3561	1187	5452	35
H(16)	1248	1040	4823	40
H(17)	-1215	1758	4734	41
H(18)	-1328	2570	5280	42
H(20)	7736	2978	6126	44
H(21)	9110	3938	6069	61
H(22)	8646	4646	6702	70
H(23)	6833	4391	7408	66
H(24)	5456	3430	7475	46

Table 5. Hydrogen coordinates	$(x \ 10^4)$ and isotropic displacement	parameters ($Å^2 \ge 10^3$) for 8i .
ruble b. Hydrogen coordinates	A TO) and isonopic displacement	

Table 6. Dihedral angles [°] for **8i**.

Atom1 - Atom2 - Atom3 - Atom4	Dihedral
C(1) - N(1) - N(2) - C(13)	169.20(13)
C(11) - N(1) - N(2) - C(13)	-4.79(15)
N(2) - N(1) - C(1) - O(1)	-177.09(13)
C(11) - N(1) - C(1) - O(1)	-3.5(2)
N(2) - N(1) - C(1) - C(2)	2.6(2)
C(11) - N(1) - C(1) - C(2)	176.19(12)
O(1) - C(1) - C(2) - C(7)	168.54(14)
N(1) - C(1) - C(2) - C(7)	-11.2(2)
O(1) - C(1) - C(2) - C(3)	-9.42(19)
N(1) - C(1) - C(2) - C(3)	170.87(13)
C(7) - C(2) - C(3) - C(4)	0.9(2)
C(1) - C(2) - C(3) - C(4)	179.01(12)
C(8) - O(2) - C(4) - C(3)	8.8(2)
C(8) - O(2) - C(4) - C(5)	-172.17(12)
C(2) - C(3) - C(4) - O(2)	179.03(13)
C(2) - C(3) - C(4) - C(5)	0.0(2)
C(9) - O(3) - C(5) - C(4)	97.25(16)
C(9) - O(3) - C(5) - C(6)	-85.70(16)
O(2) - C(4) - C(5) - O(3)	-2.82(19)
C(3) - C(4) - C(5) - O(3)	176.28(12)
O(2) - C(4) - C(5) - C(6)	-179.90(12)
C(3) - C(4) - C(5) - C(6)	-0.8(2)

C(10) - O(4) - C(6) - C(7)	1.5(2)
C(10) - O(4) - C(6) - C(5)	-177.62(14)
O(3) - C(5) - C(6) - O(4)	2.7(2)
C(4) - C(5) - C(6) - O(4)	179.79(13)
O(3) - C(5) - C(6) - C(7)	-176.46(13)
C(4) - C(5) - C(6) - C(7)	0.6(2)
O(4) - C(6) - C(7) - C(2)	-178.76(14)
C(5) - C(6) - C(7) - C(2)	0.3(2)
C(3) - C(2) - C(7) - C(6)	-1.1(2)
C(1) - C(2) - C(7) - C(6)	-178.97(13)
C(1) - N(1) - C(11) - C(19)	73.16(16)
N(2) - N(1) - C(11) - C(19)	-112.52(13)
C(1) - N(1) - C(11) - C(12)	-166.64(12)
N(2) - N(1) - C(11) - C(12)	7.68(14)
N(1) - C(11) - C(12) - C(13)	-7.14(13)
C(19) - C(11) - C(12) - C(13)	113.43(13)
N(1) - N(2) - C(13) - C(14)	-179.52(12)
N(1) - N(2) - C(13) - C(12)	-0.65(16)
C(11) - C(12) - C(13) - N(2)	5.34(16)
C(11) - C(12) - C(13) - C(14)	-175.84(12)
C(18) - N(3) - C(14) - C(15)	-0.7(2)
C(18) - N(3) - C(14) - C(13)	-179.71(13)
N(2) - C(13) - C(14) - N(3)	-165.69(13)
C(12) - C(13) - C(14) - N(3)	15.6(2)
N(2) - C(13) - C(14) - C(15)	15.3(2)
C(12) - C(13) - C(14) - C(15)	-163.49(14)
N(3) - C(14) - C(15) - C(16)	0.6(2)
C(13) - C(14) - C(15) - C(16)	179.55(14)
C(14) - C(15) - C(16) - C(17)	0.2(2)
C(15) - C(16) - C(17) - C(18)	-0.8(2)
C(14) - N(3) - C(18) - C(17)	0.0(2)
C(16) - C(17) - C(18) - N(3)	0.8(3)
N(1) - C(11) - C(19) - C(20)	31.53(19)
C(12) - C(11) - C(19) - C(20)	-82.02(17)
N(1) - C(11) - C(19) - C(24)	-153.00(13)
C(12) - C(11) - C(19) - C(24)	93.45(16)
C(24) - C(19) - C(20) - C(21)	-0.8(2)
C(11) - C(19) - C(20) - C(21)	174.63(15)
C(19) - C(20) - C(21) - C(22)	0.0(3)
C(20) - C(21) - C(22) - C(23)	0.6(3)
C(21) - C(22) - C(23) - C(24)	-0.4(3)
C(20) - C(19) - C(24) - C(23)	1.0(2)
C(11) - C(19) - C(24) - C(23)	-174.57(15)
C(22) - C(23) - C(24) - C(19)	-0.4(3)