Supplementary Information

Flavans from Desmos cochinchinensis as potent aromatase inhibitors

Vilailak Prachyawarakorn, Suwannee Sangpetsiripan, Panida Surawatanawong, Chulabhorn Mahidol, Somsak Ruchirawat, and Prasat Kittakoop

Table S1. Cytotoxicity of compounds 1-8.**Table S2.** The binding energies calculated by Autodock Vina.

Fig. S1. Lowest energy pose (A) andromestenedione and (B) formestane...

- Fig. S2. Lowest energy pose of aromatase inhibitors (A) 2 and (B) 3
- Fig. S3. ¹H NMR spectrum (CDCl₃) of compound 1
- **Fig. S4.** ¹³C NMR spectrum (CDCl₃) of compound **1**

Fig. S5. HMQC spectrum of compound 1

Fig. S6. HMBC spectrum of compound 1

Fig. S7. ¹H NMR spectrum (CDCl₃) of compound **2**

Fig. S8. ¹³C NMR spectrum (CDCl₃) of compound **2**

Fig. S9. HMQC spectrum of compound 2

Fig. S10. HMBC spectrum of compound 2

Fig. S11. ¹H NMR spectrum (CDCl₃) of compound 3

Fig. S12. ¹³C NMR spectrum (CDCl₃) of compound **3**

Fig. S13. HMQC spectrum of compound 3

Fig. S14. HMBC spectrum of compound 3

Fig. S15. ¹H NMR spectrum (CDCl₃) of compound **4**

Fig. S16. ¹³C NMR spectrum (CDCl₃) of compound 4

- Fig. S17. HMQC spectrum of compound 4
- Fig. S18. HMBC spectrum of compound 4

Compound	nd Cytotoxic activity, IC_{50} (μ M), mean±s.d			(n = 3)
Compound	MOLT-3	HepG-2	A549	HuCCA-1
1	24.33±4.57	Inactive	146.67±7.07	130.00±16.50
2	57.41±6.98	99.60±11.55	137.20±0.00	Inactive
3	63.50±10.73	135.35±11.27	Inactive	Inactive
4	41.27±7.23	Inactive	Inactive	140.13±6.75
5	29.81±2.90	143.31±15.92	Inactive	143.31±0.00
6	28.48±2.93	144.81±10.79	103.66±15.09	125.00±4.31
7	71.98±5.97	Inactive	Inactive	Inactive
8	ND	ND	ND	ND
Etoposide ^a	0.03±0.01	22.11±4.81	ND	ND
Doxorubicin ^a	ND	0.50±0.11	0.90±0.03	1.10±0.26

Table S1. Cytotoxicity of compounds 1-8.

^aEtoposide and doxorubicin are standard drugs. ND = not determined

Compound ^a	Rigid binding energy (kcal/mol)	Flexible binding energy (kcal/mole)		
1	-8.1	-8.5		
2	-6.3	-7.3		
3	-6.3	-8.0		
4	-7.5	-8.5		
5	-7.8	-8.5		
6	-7.4	-8.3		
Formestane	-13.1	-13.4		
Andromestenedione	-13.6	-13.7		
Andromestenedione (X-ray)	-13.9	-14.1		

^a Geometry optimization by B3LYP/6-31G(d)

Binding of androstenedione and formestane

Fig. S1. Lowest energy poses of andromestenedione (A) and formestane (B), within the aromatase binding site. The crystal structure is in bright green. The flexible residues are Met374, Arg115, Thr310, Ser478, and Asp309. Due to the flexible docking, some atoms change from their starting positions (shown in dark green and dark yellow). The ligand structures were optimized by B3LYP/6-31G(d).

Binding of inhibitors 2 and 3

Fig. S2. Lowest energy poses of aromatase inhibitors 2 (A) and 3 (B), within the aromatase binding site. The crystal structure is in bright green. The flexible residues are Met374, Arg115, Thr310, Ser478, and Asp309. Due to the flexible docking, some atoms change from their starting positions (shown in pale pink and in dark grey). The ligand structures were optimized by B3LYP/6-31G(d).

Fig. S3. 1 H NMR spectrum (CDCl₃) of compound 1

Fig. S4. ¹³C NMR spectrum (CDCl₃) of compound 1

A526-13-B5

Fig. S5. HMQC spectrum of compound 1

Fig. S6. HMBC spectrum of compound 1

Fig. S8. ¹³C NMR spectrum (CDCl₃) of compound 2

A526-13-B3

Fig. S9. HMQC spectrum of compound 2

Fig. S12. ¹³C NMR spectrum (CDCl₃) of compound 3

A526-14-B3

Fig. S13. HMQC spectrum of compound 3

Fig. S14. HMBC spectrum of compound 3

Fig. S15. ¹H NMR spectrum (CDCl₃) of compound 4

Fig. S16. ¹³C NMR spectrum (CDCl₃) of compound 4 $_{A526-14-B5}$

Fig. S17. HMQC spectrum of compound 4

Fig. S18. HMBC spectrum of compound 4

