Supplementary Material

Bioguided discovery and pharmacophore modeling of the mycotoxic indole diterpene alkaloids penitrems as breast cancer proliferation, migration, and invasion inhibitors

Asmaa A. Sallam,^a Wael E. Houssen,^{b,c} Chris R. Gissendanner,^a Khaled Y. Orabi,^d

Ahmed I. Foudah,^a Khalid A. El Sayed^a*

* To whom correspondence should be addressed. Tel: 318-342-1725. Fax: 318-342-1737. E-mail: elsayed@ulm.edu

^aDepartment of Basic Pharmaceutical Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71201 USA.

^bMarine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE Scotland, UK.

^cInstitute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, UK.

^dDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Health Sciences Center, Kuwait University, Safat 13110, Kuwait.

Electronic Supplementary Material (ESI) for Medicinal Chemistry Communications This journal is The Royal Society of Chemistry 2013

Fig. SI1. RP-HPLC Separation of Compounds 1-5. Column: Cosmosil 5C18-AR-II (20 x 250 mm) Mobile Phase: isocratic elution (CH₃CN-H₂O; 80:20) UV detection shown: at 296 nm Injection volume: 2 mL Flow rate: 5 mL min⁻¹

Fig. SI2. RP-HPLC Purification of Compounds **6** and **7**. Column: Cosmosil 5C18-AR-II (20 x 250 mm) Mobile Phase: isocratic elution (CH₃CN-H₂O; 80:20) UV detection shown: at 296 nm Injection volume: 2 mL Flow rate: 5 mL min⁻¹ Total amount injected: 25 mg

Electronic Supplementary Material (ESI) for Medicinal Chemistry Communications This journal is C The Royal Society of Chemistry 2013

Figure SI3. ¹H NMR Spectrum of Compound 8 (Acetone-d₆).

Electronic Supplementary Material (ESI) for Medicinal Chemistry Communications This journal is © The Royal Society of Chemistry 2013

Figure SI4. PENDANT Spectrum of Compound 8 (Acetone-d₆).

Electronic Supplementary Material (ESI) for Medicinal Chemistry Communications This journal is C The Royal Society of Chemistry 2013

Figure SI5. ¹H NMR Spectrum of Compound **9** (Acetone-d₆).

Figure SI6. PENDANT Spectrum of Compound 9 (Acetone-d₆).

Fig. SI7. Mean graph of the effect of $10 \,\mu\text{M}$ dose of 1 on the percent growth of the NCI's 60 cell lines.

One Dose Mean Graph Experiment ID: 10070590 Report Date: Feb D5, 2011 Panel/Cell Line Growth Percent Mean Growth Percent - Growth Percent Lewieming CCRF-CEM H-600(T6) 23.94 23.95 20.95 2	One Dose Mean Graph Panel/Cell Line Growth Percent Leukemia 2000 CCRF-CEM 21.34 HL-60(TB) 28.96 K-562 19.90 MOLT-4 36.42 RPMI-8226 20.37 SR 45.92 Non-Small Cell Lung Cancer 43.13 EKVX 63.02 HOP-62 93.85 NCI-H226 82.26 NCI-H226 82.26 NCI-H226 78.48 Colon Cancer 78.48 Colon Cancer 60.655 HCT-15 74.35 HC1-15 74.35 HC1-15 74.35 HT29 38.36 WG12 40.91 SW-620 64.13 CNS Cancer 977 SNB-19 71.77 SNB-75 68.15 U251 66.28
Panel/Cell Line Crowth Percent Mean Growth Percent - Growth Percent Lawkerning GCRF-CEM H-GO(TR) 2:34 19:00 19:0	Panel/Cell Line Growth Percent Leukemia 21.34 CCRF-CEM 21.34 HL:60(TB) 28.96 K-562 19.90 MOLT-4 36.42 RPMI-8226 20.37 SR 45.92 Non-Small Cell Lung Cancer 45.92 A549/ATCC 43.13 EKVX 63.02 HOP-62 93.95 NCI-H26 82.26 NCI-H27 73.16 NCI-H27 78.48 Colon Cancer 70.49 COLO 205 76.49 HCT-116 25.33 HCT-15 74.35 HCT-15 74.35 HCT-15 74.35 HCT-15 74.35 HCT-15 74.35 HCT-15 74.35 HCT-2988 49.18 SF-268 49.18 SF-268 49.18 SF-268 49.18 SF-268 49.18 SF-268 49.18 <t< th=""></t<>
Levieme CCRF-CEM CCRF-CEM H-0.60(T6) 20.95 RF RFMI-9226 RFMI-9226 RC-1226 HC-126 HC-1226 HC-126	Leukemia 21.34 CCRF-CEM 21.34 HL-60(TB) 28.96 K-562 19.90 MOLT-4 36.42 RPMI-8226 20.37 SR 45.92 Non-Small Cell Lung Cancer A5.49/ATCC A5.49/ATCC 43.13 EKVX 63.02 HOP-62 93.95 NCI-H226 82.26 NCI-H226 82.26 NCI-H226 82.26 NCI-H227 78.48 Colon Cancer 70.65 COL 0205 76.49 HCC-2998 106.55 HCT-116 25.33 HCT-15 74.35 HT29 38.36 KM12 40.91 SW-620 64.13 CNS Cancer 95.738 SF-268 49.18 SF-268 49.18 SF-268 49.18 SF-268 49.18 SF-268 49.18 SF-268 49.18
	Metantorna 39.45 LOX.IMVI 39.45 MALME-3M 67.41 M14 34.50 MDA-MB-435 33.87 SK-MEL-2 87.84 SK-MEL-2 87.84 SK-MEL-2 94.12 SK-MEL-5 61.11 UACC-257 44.72 UACC-62 76.79 Ovarian Cancer 66.33 OVCAR-3 48.84 OVCAR-4 66.33 OVCAR-5 101.78 OVCAR-6 101.78 OVCAR-73 90.33 Real Cancer 70.34 786-0 70.34 ACHN 59.28 SIN12C 38.62 TK-10 83.97 UO-31 11.52 Prostate Cancer 77.77 PC-3 27.77 DU-145 64.39 Breast Cancer 77.75 HS 578T 42.40 BT-549 63.73 T-47D 64.48
	Range 95.03

Fig. SI8. Mean graph of the effect of 10 μ M dose of **2** on the percent growth of the NCI's 60 cell lines.

Developmental Ther	apeutics Program	NSC: D-752822/1	Conc: 1.00E-5 Molar	Test Date: Jul 26, 2010	
One Dose Mean Graph		Experiment ID: 10070S90		Report Date: Feb 05, 2011	
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Per	cent	
Leukemia CCRF-CEM H-60(TB) K-562 MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer A 549/ATCC EK/X HOF-62 NGI-H226 NGI-H226 NGI-H227 NGI-H220 NGI-H222 Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-998 HCT-116 HCT-998 HCT-116 HCT-998 SNB-75 U251 Melanoma LOX IMVI MALME-33 SNB-75 U251 Melanoma LOX IMVI MALME-33 SNB-75 U251 Melanoma LOX IMVI MALME-33 SK-MEL-2 SK-MEL-2 SK-MEL-2 SK-MEL-5 UACC-257 UA	67.99 100.62 76.91 76.91 77.48 91.94 92.64 104.16 99.24 99.24 99.24 99.24 99.24 99.41 100.50 86.01 105.66 103.80 92.44 98.87 90.56 109.93 106.14 88.93 90.70 100.59 84.36 98.98 104.83 98.98 104.83 98.98 104.83 98.98 105.52 103.52 104.83 98.98 106.43 106.43 106.43 106.43 106.44 106.79 102.81 96.88 108.79 102.81 96.21 101.41 102.83 99.19 102.81 99.19 102.81 99.19 100.65 100.41 101.18 92.23 100.65 100.41 101.18 92.23 100.65 100.41 101.18 92.23 100.65 94.75 96.61 97.45 29.46 49.09		الليعيدية مديه مدينية باللية عديا ومعنا		
100	450	100 50		100 155	
	150	100 50	0 -50	-100 -150	

Fig. SI9. Mean graph of the effect of 10 μ M dose of 4 on the percent growth of the NCI's 60 cell lines.