Supporting Information

Heterocycle-fused Lupane Triterpenoids Inhibit Leishmania donovani Amastigotes

Raisa Haavikko^{*a*}, Abedelmajeed Nasereddin^{*b*}, Nina Sacerdoti-Sierra^{*b*}, Dmitry Kopelyanskiy^{*b*}, Sami Alakurtti^{*c*}, Mari Tikka^{*a*}, Charles L. Jaffe^{*b*} and Jari Yli-Kauhaluoma^{*a*}*

^a Faculty of Pharmacy, Division of Pharmaceutical Chemistry, University of Helsinki, Viikinkaari 5 E (P. O. Box 56), FI-00014 University of Helsinki, Helsinki, Finland, Tel: +358-9-191 59170; E-mail: jari.yli-kauhaluoma@helsinki,fi

^b Department of Microbiology and Molecular Genetics, IMRIC, Hebrew University-Hadassah Medical School, P. O. Box 12272, Jerusalem 91220, Israel. Tel: +97226757435; E-mail: cjaffe@cc.huji.ac.il

^c VTT Technical Research Centre of Finland, VTT, P. O. Box 1000, FI-02044 VTT (Espoo), Finland

SYNTHESIS

General experimental details

Commercially available reagents were used without further purification and all of the solvents were HPLC grade. THF was distilled over sodium/benzophenone ketyl. Other anhydrous solvents were purchased from Sigma-Aldrich and used without further drying. All reactions in anhydrous solvents were performed in oven dried glassware under an inert atmosphere of dry argon. Thin layer chromatography (TLC) was performed on E. Merck Silica Gel 60 aluminium packed plates, with visualization accomplished by UV illumination and staining with 5% H₂SO₄ in MeOH. Flash chromatography on a silica gel with a Biotage SP1 purification system (Uppsala, Sweden) using appropriate size cartridge. IR-spectra were recorded on a Bruker Vertex 70 FT-IR spectrometer (Ettlingen, Germany) with ATR technique. The ¹H and ¹³C NMR spectra were measured on a Varian Mercury 300 MHz spectrometer (Varian, Palo Alto, CA) or Bruker Avance III 500 MHz spectrometer. ¹H and ¹³C NMR were recorded as solutions in DMSO- d_6 , CDCl₃, (CD₃)₂CO or CD₃OD. Deuterated solvents were purchased from Aldrich. Chemical shifts (δ) are given as parts per million (ppm) relative to the NMR solvent signals (DMSO- d_6 2.50 and 39.50 ppm, CDCl₃ 7.26 and 77.00 ppm, (CD₃)₂CO 2.05 and 29.84 ppm, CD₃OD 3.31 and 49.00 ppm for ¹H and ¹³C NMR respectively). High resolution mass spectra (HRMS) were measured on a Waters Acquity UPLC® system (Waters, Milford MA, USA) equipped with Synapt G2 HDMS mass spectrometer (Waters, Milford MA, USA).

Chemistry

Lup-20(29)-ene-36,28-diol (betulin) (1)

Betulin was isolated (95% purity) from the bark of birch (*Betula* sp.) by extraction and was obtained from UPM Kymmene (Lappeenranta, Finland). The crude betulin was recrystallized from 2-propanol/H₂O azeotrope to give betulin as a white solid.¹ mp 252-253 °C; $R_f 0.2$ (1:4 EtOAc/*n*-hexane); ¹H NMR (300 MHz, CDCl₃) δ 4.68 (s, 1H), 4.57 (s, 1H), 3.79 (d, J = 10.8 Hz, 1H), 3.32 (d, J = 10.8 Hz, 1H), 3.18 (dd, J = 5.1, 10.8 Hz, 1H), 2.38 (m, 1H), 1.68 (s, 3H), 1.02 (s, 3H), 0.97 (s, 6H), 0.96 (s, 3H), 0.82 (s, 3H), 0.75 (s, 3H); ¹³C NMR (75 MHz, DMSO- d_6) δ 150.4, 109.7, 79.0, 60.5, 55.2, 50.4, 48.7, 47.7, 47.7, 42.7, 40.9, 38.8, 38.7, 37.3, 37.1, 34.2, 33.9, 29.7, 29.1, 27.9, 27.3, 27.0, 25.2, 20.8, 19.1, 18.3, 16.1, 15.9, 15.3, 14.7; FTIR (ν , cm⁻¹): 879, 1009, 1035, 1232, 1375, 1452, 1739, 2939, 3360; MS (direct, EI+): m/z 442; Anal. ($C_{30}H_{50}O_2$) C, H.

3-Oxo-20(29)-lupen-28-oic acid (betulonic acid) (2)

To a solution of betulin (50.0 g, 113 mmol) in acetone (1500 mL) was added freshly prepared Jones reagent [Na₂Cr₂O₇, (66.5 g, 226 mmol) and H₂SO₄ (60 mL) in water (500 mL)] during 1 h in an ice bath. The reaction mixture was allowed to warm to room temperature and stirring was continued for 21 h. First, MeOH (700 mL) was added and then water (1000 mL) to the reaction mixture. Precipitate was filtered off and washed with water (500 mL). The crude product was dried in a vacuum, dissolved to Et₂O (600 mL) and washed with water (300 mL), 7.5% hydrochloric acid (200 mL), water (200 mL), a saturated aqueous solution of NaHCO₃ (200 mL) and water (200 mL). Two thirds of Et₂O was removed *in vacuo*, and the residue was treated with a 10% aqueous solution of NaOH (75 mL). The formed precipitate was filtered off by suction, and dried in *vacuo*. Precipitate was dissolved to boiling MeOH (100 mL), and acetic acid (10 mL) was added. The product was precipitated by adding water (200 mL) and then filtered by suction, washed with water (300 mL) and dried *in vacuo* to give betulonic acid (22.3 g, 44%) as a white solid. mp 230-235 °C; R_f 0.4 (1:4 EtOAc/*n*-hexane); ¹H NMR (300 MHz, CDCl₃) δ 4.74 (s, 1H), 4.62 (s, 1H), 3.01 (m, 1H), 2.44 (m, 2H), 2.27 (m, 2H), 1.96 (m, 3H),

1.70 (s, 3H), 1.07 (s, 3H), 1.02 (s, 6H), 0.98 (s, 3H), 0.99 (s, 3H), 0.93 (s, 3H); 13 C NMR (75 MHz, CDCl₃) δ 218.4, 181.9, 150.3, 109.7, 56.3, 54.9, 49.8, 49.1, 47.3, 46.9, 42.5, 40.6, 39.6, 38.5, 37.0, 36.9, 34.1, 33.6, 32.1, 30.5, 29.6, 26.6, 25.5, 21.3, 21.0, 19.6, 19.3, 15.9, 15.8, 14.6; FTIR (v, cm⁻¹): 883, 1692, 2944; MS (ESI+): *m/z* 455.3 [M+1]⁺; Anal. (C₃₀H₄₆O₃) C, H: calcd, 79.25, 10.20; found, 78.32, 10.16. NMR spectral data is consistent with those previously reported.²

Betulinic acid (26)

To a solution of betulonic acid **2** (10.0 g, 22.1 mmol) in 2-propanol (400 mL) was added NaBH₄ (1.76 g, 44.2 mmol) during 10 min, and the reaction mixture was stirred at room temperature for 2.5 h.² 10% Hydrochloric acid (600 mL) was added, and the precipitated product was filtered by suction, washed with water (200 mL) and dried in a vacuum oven. The crude product was crystallized from EtOH to give **26** (8.25 g, 82 %) as white crystals. mp 288-290 °C; R_f 0.3 (1:4 EtOAc/*n*-hexane); ¹H NMR (300 MHz, CDCl₃) δ 0.75 (s, 3H), 0.82 (s, 3H), 0.93 (s, 3H), 0.96 (s, 6H), 0.97 (s, 3H), 1.69 (s, 3H), 1.97 (m, 2H), 2.28 (m, 2H), 3.01 (m, 1H), 3.19 (dd, J = 5.5, 10.7 Hz, 1H), 4.60 (s, 1H), 4.74 (s, 1H); ¹³C NMR (75 MHz, DMSO) δ 14.4, 15.7, 15.8, 16.0, 18.0, 19.0, 20.5, 25.1, 27.2, 28.1, 29.2, 30.1, 31.7, 34.0, 36.4, 36.7, 37.6, 38.3, 38.5, 40.3, 42.0, 46.6, 48.6, 50.0, 54.9, 55.4, 76.8, 109.7, 150.3, 177.3; FTIR (v, cm⁻¹): 884, 1034, 1236, 1689, 2942; MS (direct, EI+): *m/z* 456; Anal. (C₃₀H₄₈O₃) C, H. NMR spectral data is consistent with those previously reported.²

Betulonic aldehyde (22)

Betulin (2.0 g, 4.5 mmol) was stirred with pyridinium chlorochromate (5.8 g, 27 mmol) in CH₂Cl₂ (200 mL) for 1 h at room temperature. The reaction mixture was filtered through alumina pad, the resulting filtrate was concentrated, and purified with SiO₂ column chromatography (15-25% EtOAc/*n*-hexane) to yield a white crystalline product (533 mg, 27%). ¹H NMR (300 MHz, CDCl₃) δ 9.67 (s, 1H), 4.76 (s, 1H), 4.64 (s, 1H), 2.87 (m, 2H), 2.57–2.31 (m, 5H), 2.13–1.99 (m, 4H), 1.97–1.83 (m, 5H), 1.77 (m, 6H), 1.70 (s, 3H), 1.53–1.14 (m, 6H), 1.07 (s, 3H), 1.02 (s, 3H), 0.99 (s, 3H), 0.96 (s, 3H), 0.93 (s, 3H). NMR spectral data is consistent with those previously reported.²

1'H-Lupa-2,20(29)-dieno[3,2-b]indol-28-oic acid (3)

Betulonic acid (0.10 g, 0.22 mmol) and the corresponding phenylhydrazine hydrochloride (0.35 g, 0.24 mmol) were dissolved in acetic acid (10 mL) and refluxed (130 °C) for 3 h. Water was added and the resulting mixture was extracted with Et₂O. The organic phase was washed with water and brine, dried over anhydrous Na₂SO₄, and the solvents were evaporated. The crude product was purified with SiO₂ column chromatography (25-50% EtOAc/*n*-hexane) to give a yellowish solid (49 mg, 42%). ¹H NMR (300 MHz, CDCl₃) δ 7.71 (s, 1H), 7.37 (m, 1H), 7.29 (m, 1H), 7.08 (m, 2H), 4.79 (s, 1H), 4.65 (s, 1H), 3.08 (m, 1H), 2.83 (d, *J* = 15.0 Hz, 1H), 2.38–2.09 (m, 4H), 1.73 (s, 3H), 1.68–1.31 (m, 12H), 1.28 (s, 3H), 1.17 (s, 3H), 1.05 (s, 3H), 1.04 (s, 3H), 0.88 (s, 3H)); ¹³C NMR (75 MHz, CDCl₃) δ 181.7, 150.4, 140.9, 136.2, 128.4, 121.0, 119.0, 117.9, 110.3, 109.8, 107.1, 56.5, 53.3, 49.4, 49.4, 47.0, 42.5, 40.8, 38.7, 38.3, 37.1, 34.1, 33.6, 32.2, 31.6, 30.9, 29.9, 25.7, 23.1, 22.6, 21.5, 19.4, 19.2, 16.3, 15.9, 14.8; FTIR (v, cm⁻¹): 738, 885, 907, 1459, 1693, 2873, 2843; HRMS: *m/z* calcd for C₃₆H₅₀NO₂ 528.3842, found 528.3838 [M+H]⁺. NMR spectral data is consistent with those previously reported.³

5'-Methoxy-1'H-lupa-2,20(29)-dieno[3,2-b]indol-28-oic acid. (4)

Synthesized from 4-methoxyphenylhydrazine hydrochloride (0.47 g, 0.27 mmol) according to the above-mentioned procedure. A yellowish solid (25 mg, 21%) ¹H NMR (300 MHz, CDCl₃) δ 7.56 (s, 1H), 7.17 (d, *J* = 8.7 Hz, 1H), 6.85 (d, *J* = 2.5 Hz, 1H), 6.76 (dd, *J* = 8.7, 2.5 Hz, 1H), 4.77 (s, 1H), 4.63 (s, 1H), 3.84 (s, 3H), 3.07 (m, 1H), 2.79 (d, *J* = 14.8 Hz, 1H), 2.21 (m, 4H), 2.00 (m, 3H), 1.70 (s, 3H), 1.67–1.35 (m, 12H), 1.27 (s, 3H), 1.15 (s, 3H), 1.04 (s, 3H), 1.03 (s, 3H), 0.88 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 181.9, 153.8, 150.4, 141.9, 131.2, 128.7, 111.0, 110.7, 109.8, 107.0, 100.3, 56.4, 55.9, 53.3, 49.4, 49.3, 47.0, 42.5, 40.8, 38.7, 38.3, 37.1, 34.2, 33.6, 32.1, 31.6, 30.9, 29.8, 25.7, 23.2, 22.7, 21.4, 19.3, 19.2, 16.4, 15.8, 14.8; FTIR (v, cm⁻¹): 795, 882, 1173, 1203,1454,1693, 2870, 2941; HRMS: *m/z* calcd for C₃₇H₅₂NO₃ 558.3947, found 558.3947 [M+H]⁺. NMR spectral data is consistent with those previously reported.³

4-Aza-3-oxo-homolup-20(29)-en-28-oic acid (8)

A mixture of betulonic acid (0.20 g, 0.44 mmol), hydroxylamine hydrochloride (290 mg, 4.2 mmol), dry pyridine (5 mL) and methanol (8 mL) was refluxed for 16 h. Water was added, and the precipitated 3-oximinolup-20(29)-en-28-oic acid 7 was filtered and collected (173 mg, 84%). 3-Oximinolup-20(29)-en-28-oic acid 7 (86 mg, 0.18 mmol) was dissolved in CH₂Cl₂ (5 mL), and the resulting solution cooled to the ice-water bath temperature. Trifluoroacetic anhydride (1.0 mL, 7.1 mmol) was added to this solution and the resulting mixture was stirred at room temperature for 20 h. The reaction mixture was washed with water, a saturated aqueous solution of NaHCO₃ and brine, dried over anhydrous Na₂SO₄, and evaporated. The crude product was purified with SiO₂ column chromatography (0-10% MeOH/CH₂Cl₂) to yield a white crystalline solid (28 mg, 33%). ¹H NMR (300 MHz, CDCl₃) δ 6.39 (s, 1H), 4.73 (s, 1H), 4.61 (s, 1H), 2.99 (m, 1H), 2.59–2.41 (m, 1H), 2.42–2.15 (m, 4H), 2.13–1.94 (m, 2H), 1.69 (s, 3H), 1.57–1.33 (m, 15H), 1.31 (s, 3H), 1.23 (s, 3H), 1.03 (s, 3H), 0.98 (s, 3H), 0.97 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 181.1, 177.3, 150.3, 109.7, 56.5, 56.3, 53.0, 51.0, 49.1, 46.9, 42.6, 40.7, 40.3, 39.2, 38.6, 37.1, 33.6, 33.1, 32.1, 31.8, 30.6, 29.6, 27.0, 25.8, 22.5, 22.0, 19.4, 18.3, 15.9, 14.5; FTIR (v, cm⁻¹): 731, 883, 1185, 1374, 1454, 1628, 1691, 2938, 3250; HRMS: *m/z* calcd for C₃₀H₄₈NO₃ 470.3634, found 470.3630 [M+H]⁺.

(3β,18α,19β)-19,28-Epoxyoleanan-3-ol (allobetulin) (19)

Betulin (2.0 g, 4.5 mmol) was refluxed in formic acid (40 mL) for 45 min. The reaction mixture was cooled to room temperature, filtered, washed with ethanol and recrystallized from benzene. The resulting crystals of allobetulin formate were refluxed in a mixture consisting of a 1 M ethanolic solution of KOH (15 mL) and benzene (2.5 mL) for 30 min. Solvents were evaporated, and the residue was washed with ethanol and water. Recrystallization from ethanol gave allobetulin (0.5 g, 25%). ¹H NMR (300 MHz, CDCl₃) δ 3.77 (d, *J* = 7.6 Hz, 1H), 3.52 (s, 1H), 3.43 (d, *J* = 7.8 Hz, 1H), 3.20 (m, 1H), 1.80–1.00 (m, 22H), 0.97 (s, 6H), 0.92 (s, 3H), 0.91 (s, 3H), 0.84 (s, 3H), 0.79 (s, 3H), 0.76 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 99.8, 87.9, 79.0, 71.3, 55.5, 51.1, 46.8, 41.5, 40.7, 40.6, 38.9, 38.9, 37.3, 36.8, 36.3, 34.1, 33.9, 32.7, 28.8, 28.0, 27.4, 26.4, 26.3, 24.6, 21.0, 18.3, 16.5, 15.7, 15.4, 13.5. NMR spectral data is consistent with those previously reported.⁵

(18α,19β)-19,28-Epoxyoleanan-3-one (allobetulone)

To a solution of allobetulin (1.6 g, 3.7 mmol) in acetone (225 mL) was added freshly prepared Jones reagent [Na₂Cr₂O₇, (0.9 g, 3.1 mmol) and H₂SO₄ (0.9 mL) in water (3.7 mL)] dropwise in an ice bath. The reaction mixture was allowed to warm to room temperature and stirring was continued for 21 h. First, MeOH (100 mL) and reaction mixture was poured into ice with HCl. Solids were filtered and dissolved with THF, organic phase was washed with water twice, dried over Na₂SO₄, and evaporated yielding white crystalline solid (1.4 g, 88%). ¹H NMR (300 MHz, CDCl₃) δ 3.78 (d, *J* = 7.8 Hz, 1H) 3.53 (s, 1H), 3.45 (d, *J* = 7.8 Hz, 1H), 2.45 (m, 2H), 1.94.(m, 1H), 1.11–1.71. (m, 15H), 1.08 (s, 3H), 1.03 (s, 3H), 1.01 (s, 3H), 0.94 (s, 3H), 0.93 (s, 3H), 0.92 (s, 3H), 0.80 (s, 3H). NMR spectral data is consistent with those previously reported.⁵

19β,28-Epoxy[3,2-*b*]indole-18*a*-oleanan⁶ (20)

A mixture of allobetulone (0.10 g, 0.23 mmol) and phenylhydrazine hydrochloride (0.034 g, 0.24 mmol) in acetic acid (10 mL) was refluxed (130 °C) for 3 h. Water was added and the resulting mixture was extracted with Et₂O. The organic phase was washed with water and brine, dried over anhydrous Na₂SO₄ and evaporated to dryness. The crude product was purified with SiO₂ column chromatography (5-50% EtOAc/*n*-hexane) to yield 19 β ,28-epoxy[3,2-*b*]indole-18*a*-oleanan as a yellowish crystalline solid (67 mg, 57%). mp 303 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.80 (s, 1H), 7.45 (d, *J* = 7.3 Hz, 1H), 7.30 (m, 1H), 7.21–7.08 (m, 2H), 3.84 (d, *J* = 7.8 Hz, 1H), 3.62 (s, 1H), 3.50 (d, *J* = 7.8 Hz, 1H), 2.89 (d, *J* = 15.0 Hz, 1H), 2.38 (s, 2H), 2.19 (d, *J* = 15.0 Hz, 1H), 1.34-1.79 (m, 15H), 1.31 (s, 3H), 1.22 (s, 3H), 1.08 (s, 3H), (s, 1H) 0.98 (s, 3H), 0.99(s, 3H), 0.92 (s, 3H), 0.85 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 140.9, 136.1, 120.9, 118.9, 117.9, 110.3, 107.0, 87.9, 71.3, 55.0, 53.4, 50.4, 49.9, 46.8, 41.5, 40.8, 39.8, 36.7, 36.3, 34.3, 34.1, 33.1, 32.7, 31.6, 30.9, 28.8, 26.4, 24.5, 23.1, 22.7, 21.5, 19.6, 19.2, 15.5, 14.1, 13.6. FTIR (v, cm⁻¹): 739, 1457, 2912; HRMS: *m/z* calcd for C₃₆H₅₂NO: 514.4049, found 514.4048 [M+H]⁺.

5'-Fluoro-196,28-epoxy[3,2-b]indole-18a-oleanan (21)

Synthesized from allobetulone (0.10 g, 0.26 mmol) and 4-fluorophenylhydrazine hydrochloride (0.042 g, 0.26 mmol) according to the above-mentioned procedure. A light yellow solid (77 mg, 63%). ¹H NMR (300 MHz, CDCl₃) δ 7.71 (s, 1H), 7.18 (dd, J = 8.7, 4.3 Hz, 1H), 7.06 (dd, J = 9.6, 2.4 Hz, 1H), 6.84 (m, 1H), 3.81 (d, J = 7.7 Hz, 1H), 3.59 (s, 1H), 3.47 (d, J = 7.7 Hz, 1H), 2.79 (d, J = 15.0 Hz, 1H), 2.14 (d, J = 15.0 Hz, 1H), 1.81–1.33 (m, 16H), 1.30 (s, 3H), 1.25 (m, 4H) 1.20 (s, 3H), 1.05 (s, 3H), 0.97 (s, 3H), 0.96 (s, 3H), 0.88 (s, 3H), 0.83 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 143.0, 132.6, 110.7, 110.6, 109.0, 108.7, 103.2, 102.9, 88.0, 71.3, 53.5, 49.9, 46.9, 41.6, 40.8, 40.7, 38.4, 37.4, 36.8, 36.3, 34.4, 34.3, 33.2, 32.8, 30.9, 28.8, 26.6, 26.3, 24.6, 23.2, 21.6, 19.2, 16.7, 15.6, 13.6. FTIR (v, cm⁻¹): 791, 1170, 1454, 2918; HRMS: *m*/*z* calcd for C₃₆H₅₁NOF: 532.3955, found 532.3953 [M+H]⁺.

Lupa-2,20(29)-dieno[2,3-b]pyrazin-28-oic acid (5)

A mixture of betulonic acid (0.20 g, 0.44 mmol), 1,2-diaminoethane (130 mg, 2.0 mmol), sulfur (130 mg, 4.1 mmol) and morpholine (4 mL) was refluxed for 21 h. Water was added and the resulting mixture was extracted with CH₂Cl₂. The organic phase was washed with 1 M hydrochloric acid, water, a saturated aqueous solution of NaHCO₃, water and brine, dried over anhydrous Na₂SO₄ and evaporated. The crude product was purified with SiO₂ column chromatography (20-50% EtOAc/*n*-hexane) to give a white crystalline solid (147 mg, 68%).⁷ ¹H NMR (300 MHz, CDCl₃) δ 8.42 (d, *J* = 2.4 Hz, 1H), 8.29 (d, *J* = 2.4 Hz, 1H), 4.76 (s, 1H), 4.64 (s, 1H), 3.05 (m, 2H), 2.46 (d, *J* = 16.5 Hz, 1H), 2.29 (m, 2H), 1.30 (s, 3H), 1.72 (s, 3H), 1.27 (s, 3H), 1.04 (s, 3H), 1.03 (s, 3H), 0.81 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 181.5, 160.0, 151.0, 150.5, 142.6, 141.5, 110.0, 56.6, 53.2, 49.4, 49.0, 48.7, 47.1, 42.7, 40.8, 39.7, 38.7, 37.3, 37.0, 33.6, 32.4, 31.7, 30.8, 30.0, 25.7, 24.2, 21.6, 20.3, 19.7, 16.4, 15.9, 14.9; FTIR (v, cm⁻¹): 878, 1107, 1381, 1408, 1686, 2869, 2943; HRMS: *m/z* calcd for C₃₂H₄₇N₂O₂ 491.3638, found 491.3637 [M+H]⁺. ¹H NMR spectral data is consistent with those previously reported. ⁷

1'H-Lup-20(29)-eno[2,3-b]pyridin-28-oic acid (9)

A mixture of betulonic acid (100 mg, 0.22 mmol), propargylamine (24 mg, 0.44 mmol), Cu(I)Cl (5.0 mg, 0.050 mmol) and ethanol (5 mL) was refluxed for 17 h. The resulting solution was filtered, evaporated, and the crude product was purified with SiO₂ column chromatography (10-20% EtOAc/*n*-hexane) to yield a crystalline solid (12 mg, 11%).⁸ ¹H NMR (300 MHz, CDCl₃) δ 8.47 (m, 1H), 7.27 (m,1H), 7.02 (dd, *J* = 7.6, 4.8 Hz, 1H), 4.75 (s, 1H), 4.62 (s, 1H), 3.10 (m, 1H), 2.74 (d, *J* = 15.9 Hz, 1H), 2.32 (m, 3H), 2.03 (m, 2H), 1.70 (s, 3H), 1.67–1.36 (m, 13H), 1.32 (s, 3H), 1.27 (s, 3H), 1.02 (s, 3H), 0.99 (s, 3H), 0.78 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 180.3, 163.6, 150.8, 146.8, 138.3, 130.1, 121.1, 109.7, 56.6, 53.8, 49.5, 49.0, 47.12 46.1, 42.7, 40.8, 39.6, 38.7, 37.2, 36.4, 33.7, 32.5, 31.6, 30.9, 30.0, 25.8, 24.2, 21.7, 20.4, 19.6, 16.0, 15.9, 14.8; FTIR (v, cm⁻¹): 1012, 1045, 1110, 1132, 1184, 1457, 2856, 2927, 2959; HRMS: *m/z* calcd for C₃₃H₄₈NO₂ 490.3685, found 490.3683 [M+H]⁺.

Benzyl 3-oxolup-20(29)-en-28-oate (benzyl betulonate)

A mixture of betulonic acid (0.50 g, 1.1 mmol), K₂CO₃ (0.76 g, 5.5 mmol) and DMF (7 mL) was warmed to 55 °C, and benzyl bromide (0.28 mg, 1.7 mmol) was added dropwise to the mixture. After stirring the reaction mixture at 55 °C overnight, water was added and the resulting solution was extracted with EtOAc. The organic phase was washed several times with water and subsequently with brine, dried over anhydrous Na₂SO₄ and evaporated. The crude product was purified with SiO₂ column chromatography (20-50% EtOAc/*n*-hexane) to give a white crystalline solid (230 mg, 43%).⁹ ¹H NMR (300 MHz, CDCl₃) δ 7.35 (m, 5H), 5.12 (q, *J* = 12.3 Hz, 2H), 4.72 (s, 1H), 4.60 (s, 1H), 3.16–2.93 (m, 1H), 2.35 (m, 4H), 1.97–1.79 (m, 3H), 1.66 (s, 3H), 1.49–1.19 (m, 15H), 1.06 (s, 3H), 1.01 (s, 3H), 0.95 (s, 3H), 0.90 (s, 3H), 0.79 (s, 3H). NMR spectral data is consistent with those previously reported.⁹

Electronic Supplementary Material (ESI) for Medicinal Chemistry Communications This journal is © The Royal Society of Chemistry 2014

3-Oxolupan-28-oic acid (dihydrobetulonic acid)

To a solution of benzyl 3-oxolup-20(29)-en-28-oate (260 mg, 0.48 mmol) in EtOAc (10 mL), 10% Pd on carbon (30 mg) was added under argon. The argon atmosphere was replaced with H₂, and the reaction mixture was stirred at room temperature for 3 d. The reaction mixture was filtered through a thin layer of Celite, and the resulting filtrate was evaporated to yield a white crystalline solid (170 mg, 77%). ¹H NMR (300 MHz, CDCl₃) δ 2.58–2.34 (m, 2H), 2.33–2.16 (m, 3H), 1.98–1.56 (m, 5H), 1.42 (s, 5H), 1.36–1.12 (m, 7H), 1.07 (s, 3H), 1.01 (s, 3H), 0.96 (s, 6H), 0.93 (s, 3H), 0.85 (d, *J* = 6.8 Hz, 3H), 0.75 (d, *J* = 6.8 Hz, 3H). NMR spectral data is consistent with those previously reported.¹⁰

3-Hydroxy-28-[(tetrahydro-2H-pyran-2-yl)oxy]lup-20(29)-ene (16)

A mixture of betulin (1.0 g, 2.3 mmol), pyridine *p*-toluenesulfonate (3.20 g, 12.7 mmol), 3,4-dihydro-2*H*-pyran (0.26 g, 3.1 mmol) and CH₂Cl₂ (30 mL) was stirred at room temperature for 20 h. The resulting solution was washed with a saturated aqueous solution of NaHCO₃, water, and brine, dried over Na₂SO₄ and evaporated. The crude product was purified with SiO₂ column chromatography (10% EtOAc/*n*-hexane) to yield a white crystalline product (956 mg, 80%).¹⁰ ¹H NMR (300 MHz, CDCl₃) δ 4.73 (s, 1H), 4.67 (s, 1H), 4.57 (m, 3H), 3.88 (m, 3H), 3.62–3.32 (m, 3H), 3.11 (m, 2H), 2.44 (m, 1H), 1.92 (m, 5H), 1.68 (s, 3H), 1.51 (m, 9H), 1.40 (m, 5H), 1.32–1.21 (m, 4H), 1.03 (s, 3H), 1.01 (s, 3H), 0.96 (s, 3H), 0.89 (s, 3H), 0.78 (s, 3H).

28-[(Tetrahydro-2H-pyran-2-yl)oxy]lup-20(29)-en-3-one

A mixture of 3-hydroxy-28-[(tetrahydro-2*H*-pyran-2-yl)oxy]lup-20(29)-ene (0.62 g, 1.2 mmol), PCC (0.76 g, 3.5 mmol) and CH₂Cl₂ (10 mL) was stirred at room temperature overnight. The reaction mixture was poured into a saturated aqueous solution of NaHCO₃, and extracted with CH₂Cl₂, washed with water and brine, dried over Na₂SO₄ and evaporated. The crude product was purified with SiO₂ column chromatography (10-25% EtOAc/*n*-hexane) to yield a crystalline product (0.28 g, 46%).¹¹ ¹H NMR (300 MHz, CDCl₃) δ 4.67 (s, 1H), 4.60–4.49 (m, 2H), 3.85 (m, 1H), 3.52 (d, *J* = 9.8 Hz, 1H), 3.37 (d, *J* = 9.4 Hz, 1H), 2.99 (d, *J* = 9.4 Hz, 1H), 2.57–2.25 (m, 3H), 2.11–1.71 (m, 6H), 1.71–1.64 (m, 6H), 1.57–1.15 (m, 19H), 1.06 (s, 3H), 1.05 (s, 3H), 1.01 (s, 3H), 0.97 (s, 3H), 0.91 (s, 3H).

Electronic Supplementary Material (ESI) for Medicinal Chemistry Communications This journal is © The Royal Society of Chemistry 2014

2-(Hydroxymethylene)-3-oxo-20(29)-dihydrolupen-28-oic acid¹²

A mixture of dihydrobetulonic acid (0.227 g, 0.497 mmol), NaH (60% dispersion in mineral oil, 0.580 g, 14.5 mmol) and dry THF (20 mL) was cooled to the ice-water bath temperature. To this solution ethyl formate (0.845 g, 11.4 mmol) was added, the resulting mixture was warmed to room temperature and stirred overnight. A saturated aqueous solution of NH₄Cl was added, and the resulting mixture was extracted with EtOAc, washed with water and brine, dried over anhydrous Na₂SO₄, and evaporated. The crude product was purified with SiO₂ column chromatography (15% EtOAc/*n*-hexane) to yield a white crystalline solid (136 mg, 56%).¹³ ¹H NMR (300 MHz, CDCl₃) δ 14.85 (s, 1H), 8.61 (d, *J* = 2.9 Hz, 1H), 2.28 (m, 4H), 1.97–1.46 (m, 9H), 1.45–1.21 (m, 12H), 1.18 (s, 3H), 1.10 (s, 3H), 0.98 (s, 6H), 0.87 (d, *J* = 6.8 Hz, 3H), 0.83 (s, 3H), 0.76 (d, *J* = 6.8 Hz, 3H).

2-(Hydroxymethylene)-3-oxolup-20(29)-en-28-oic acid¹² (12)

Synthesized from betulonic acid (0.20 g, 0.44 mmol) according to the above-mentioned procedure. A white crystalline solid (50 mg, 24%). ¹H NMR (300 MHz, CDCl₃) δ 14.85 (d, J = 2.6 Hz, 1H), 9.88 (br s, 1H), 8.58 (d, J = 2.6 Hz, 1H), 4.75 (s, 1H), 4.62 (s, 1H), 3.01 (m, 1H), 2.31 (m, 3H), 2.09–1.80 (m, 3H), 1.70 (s, 3H), 1.46 (m, 16H), 1.18 (s, 3H), 1.08 (s, 3H), 1.00 (s, 3H), 0.99 (s, 3H), 0.83 (s, 3H).

2-(Hydroxymethylene)-3-oxo-28-[(tetrahydro-2H-pyran-2-yl)oxy]lup-20(29)-ene

Synthesized from 28-[(tetrahydro-2*H*-pyran-2-yl)oxy]lup-20(29)-en-3-one (0.28 g, 0.54 mmol) according to the above-mentioned procedure. A white crystalline solid (156 mg, 52%). ¹H NMR (300 MHz, CDCl₃) δ 14.84 (s, 1H), 8.58 (s, 1H), 4.75 (d, *J* = 2.1 Hz, 1H), 4.62 (s, 1H), 3.03 (m, 1H), 2.28 (m, 3H), 1.96 (m, 2H), 1.72 (s, 3H), 1.59–1.32 (m, 11H), 1.18 (s, 3H), 1.08 (s, 3H), 1.00 (s, 3H), 0.99 (s, 3H), 0.83 (s, 3H).

Electronic Supplementary Material (ESI) for Medicinal Chemistry Communications This journal is © The Royal Society of Chemistry 2014

1'H-Lup-20(29)-eno[3,2-c]pyrazol-28-oic acid (11)

A mixture of 2-(hydroxymethylene)-3-oxolup-20(29)-en-28-oic acid (53 mg, 0.11 mmol), hydrazine hydrate (16 mg, 0.31 mmol) and toluene (20 mL) was refluxed at 150 °C under the Dean-Stark conditions overnight. After cooling the reaction mixture to room temperature, solvent was evaporated, and the resulting crude product was purified with SiO₂ column chromatography (1-10% EtOAc/*n*-hexane) to give a white crystalline solid (42 mg, 80%). ¹H NMR (300 MHz, CD₃OD) δ 7.16 (s, 1H), 4.72 (s, 1H), 4.60 (s, 1H), 3.04 (m, 1H), 2.64 (d, *J* = 14.8 Hz, 1H), 2.46–2.18 (m, 2H), 1.91 (m, 2H), 1.70 (s, 3H), 1.65–1.33 (m, 11H), 1.26 (s, 3H), 1.17 (s, 3H), 1.04 (s, 3H), 1.03 (s, 3H), 0.80 (s, 3H); ¹³C NMR (75 MHz, CD₃OD) δ 178.8, 150.8, 149.9, 133.2, 112.4, 109.0, 56.3, 53.8, 49.4, 49.2, 47.3, 42.5, 40.8, 38.6, 36.9, 36.5, 33.6, 33.4, 32.1, 30.6, 30.1, 29.8, 25.8, 22.8, 21.4, 19.1, 18.4, 15.3, 15.2, 14.0; FTIR (v, cm⁻¹): 883, 960, 1086, 1184, 1370, 1452, 1643, 1695, 2869, 2943; *m/z* calcd for C₃₁H₄₇N₂O₂: 479.3638; found 479.3638 [M+H]⁺. NMR spectral data is consistent with those previously reported.¹²

Lupa-2,20(29)-dieno[2,3-d]isoxazol-28-oic acid (10)

A mixture of 2-(hydroxymethylene)-3-oxolup-20(29)-en-28-oic acid (0.091 g, 0.18 mmol), hydroxylamine hydrochloride (0.036 g, 0.52 mmol) and acetic acid (10 mL) was refluxed for 3 h. Water was added, and the resulting mixture was extracted with EtOAc, washed with a saturated aqueous solution of NaHCO₃, water, and brine, dried over anhydrous Na₂SO₄, and evaporated to give a white crystalline (59 mg, 68%).⁴ ¹H NMR (300 MHz, CDCl₃) δ 10.92 (br s, 1H), 7.97 (s, 1H), 4.75 (s, 1H), 4.63 (s, 1H), 3.09–2.92 (m, 1H), 2.47 (d, *J* = 15.1 Hz, 1H), 2.36–2.19 (m, 3H), 2.06–1.88 (m, 3H), 1.70 (s, 3H), 1.60–1.33 (m, 15H), 1.28 (s, 3H), 1.19 (s, 3H), 1.01 (s, 3H), 0.99 (s, 3H), 0.81 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 181.3, 173.0, 150.3, 150.3, 109.8, 108.9, 56.4, 53.6, 49.2, 49.1, 46.9, 42.5, 40.8, 39.0, 38.5, 37.0, 35.9, 34.8, 33.4, 32.1, 30.6, 29.8, 28.7, 25.5, 21.4, 21.2, 19.4, 18.8, 16.1, 15.8, 14.7; FTIR (v, cm⁻¹): 733, 881, 1181, 1375, 1454, 1695, 2875, 2940; HRMS: *m/z* calcd for C₃₁H₄₆NO₃ 480.3478, found 480.3478 [M+H]⁺. NMR spectral data is consistent with those previously reported.¹²

20(29)-Dihydrolup-2-en[2,3-d]isoxazol-28-oic acid¹² (14)

Synthesized from 2-(hydroxymethylene)-3-oxolupan-28-oic acid (0.136 g, 0.281 mmol) according to the above-mentioned procedure. A white crystalline solid (121 mg, 90%). ¹H NMR (300 MHz, CDCl₃) δ 7.98 (s, 1H), 2.50 (d, *J* = 15.1 Hz, 1H), 2.28 (m, 3H), 1.99–1.65 (m, 5H), 1.64–1.34 (m, 13H), 1.28 (s, 3H), 1.19 (s, 3H), 0.98 (s, 6H), 0.87 (d, *J* = 6.8 Hz, 3H), 0.81 (s, 3H), 0.77 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 181.7, 173.2, 150.5, 109.1, 57.0, 53.8, 49.1, 48.9, 44.4, 42.9, 41.0, 39.1, 38.5, 37.6, 36.1, 35.0, 33.6, 32.2, 30.0, 30.0, 28.9, 27.1, 23.2, 23.0, 21.6, 21.4, 19.0, 16.2, 16.0, 14.9, 14.8; FTIR (v, cm⁻¹): 791, 1170, 1454, 1484, 2866, 2924; HRMS: *m/z* calcd for C₃₁H₄₈NO₃ 482.3634, found 482.3635 [M+H]⁺. NMR spectral data is consistent with those previously reported.¹²

28-Acetoxylupa-2,20(29)-dieno[2,3-d]isoxazole (17)

Synthesized from 2-(hydroxymethylene)-3-oxo-28-[(tetrahydro-2*H*-pyran-2-yl)oxy]lup-20(29)-ene (0.68 g, 0.12 mmol) according to the above-mentioned procedure. A white crystalline solid (66 mg, quant.). ¹H NMR (300 MHz, CDCl₃) δ 7.97 (s,1H), 4.71 (s, 1H), 4.61 (s, 1H), 4.28 (d, *J* = 10.9 Hz, 1H), 3.83 (d, *J* = 10.9, 1H), 2.57–2.37 (m, 3H), 2.07 (s, 3H), 2.03–1.76 (m, 6H), 1.68 (s, 3H), 1.61–1.38 (m, 14H), 1.30 (s, 3H), 1.20 (s, 3H), 1.10 (s, 3H), 0.99 (s, 3H), 0.81 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 173.0, 171.6, 150.3, 150.1, 109.9, 108.9, 62.8, 53.5, 49.0, 48.7, 47.7, 46.3, 42.8, 40.9, 38.9, 37.7, 35.8, 34.6, 33.2, 29.7, 29.6, 28.7, 27.2, 25.2, 21.3, 21.3, 21.1, 18.8, 16.1, 15.8, 14.7; FTIR (v, cm⁻¹): 731, 1034, 1233, 1367, 1457, 1738, 2866, 2946. HRMS: *m/z* calcd for C₃₃H₅₀NO₃ 508.3791, found 508.3794 [M+H].

28-Hydroxylupa-2,20(29)-dieno[2,3-d]isoxazole (15)

A mixture of lupa-2,20(29)-dieno-28-[(tetrahydro-2*H*-pyran-2-yl)oxy][2,3-*d*]isoxazole (0.066 g, 0.12 mmol), *p*-toluenesulfonic acid (0.009 mg, 0.048 mmol) and MeOH (5 mL) was stirred at 60 °C overnight. Solvent was evaporated, and the crude product was purified with SiO₂ column chromatography (10% EtOAc/*n*-hexane) to yield a white crystalline solid (56 mg, quant.).^{10 1}H NMR (300 MHz, CDCl₃) δ 7.96 (s, 1H), 4.70 (d, *J* = 2.2 Hz, 1H), 4.60 (d, *J* = 2.2, 1H), 3.80 (d, 9.6 Hz, 1H), 3.36 (d, *J* = 9.6 Hz, 1H), 2.43 (m, 2H), 2.02–1.79 (m, 5H), 1.70 (s, 3H), 1.47 (m, 9H), 1.30 (s, 3H), 1.27 (m, 5H), 1.20 (s, 3H), 1.02 (s, 3H), 1.02 (s, 3H), 0.81 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 173.0, 150.4, 150.2, 109.7, 108.9, 60.5, 53.5, 49.0, 48.7, 47.8, 47.8, 42.8, 41.0, 38.9, 37.4, 35.8, 34.8, 34.0, 33.2, 29.8, 29.1, 28.7, 27.2, 25.2, 21.4, 21.2, 19.1, 18.8, 16.0, 15.7, 14.7; FTIR (v, cm⁻¹): 878, 1028, 1457, 2943; HRMS: *m/z* calcd for C₃₁H₄₈NO₂ 466.3685, found 466.3688 [M+H]⁺. NMR spectral data is consistent with those previously reported.¹⁴

28-Oxolupa-2,20(29)-dieno[2,3-d]isoxazole (18)

28-Hydroxylupa-2,20(29)-dieno[2,3-*d*]isoxazole (0.056 g, 0.12 mmol) was dissolved with THF (2 mL), DMSO (2 mL) was added following with IBX (0.047 g, 0.17 mmol) in DMSO (5 mL) and mixture was stirred at room temperature for 3.5 h. Solvent was evaporated, and the crude product was purified with SiO₂ column chromatography (10% EtOAc/*n*-hexane) to yield a crystalline product (31 mg, 51%). ¹H NMR (300 MHz, CDCl₃) δ 9.66 (d, *J* = 9.6 Hz, 1H), 7.96 (m, 1H), 4.77 (m, 1H), 4.65 (m, 1H), 2.88 (td, *J* = 11.1, 5.7 Hz, 1H), 2.47 (m, 1H), 2.59–2.36 (m, 1H), 2.18–1.73 (m, 8H), 1.70 (s, 3H), 1.60–1.39 (m, 12H), 1.28 (s, 3H), 1.18 (s, 3H), 0.99 (s, 3H), 0.96 (s, 3H), 0.80 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 206.4, 150.3, 149.7, 110.2, 59.4, 53.6, 49.1, 48.0, 47.5, 46.8, 42.6, 40.9, 39.0, 38.9, 38.7, 35.9, 34.8, 33.4, 33.2, 29.9, 29.2, 29.0, 28.7, 25.6, 21.3, 21.2, 19.1, 18.8, 16.1, 15.7, 14.2; FTIR (v, cm⁻¹): 731, 908, 1069, 1178, 1271, 1378, 1457, 1719, 2937; HRMS: *m/z* calcd for C₃₁H₄₆NO₂: 464.3529, found 464.3527 [M+H]⁺.

Lupa-2,20(29)-dieno[2,3-d]pyrazin-28-amide (6)

A mixture of lupa-2,20(29)-dieno[2,3-*d*]pyrazin-28-oic acid (141 mg, 0.28 mmol), oxalyl chloride (44 mg, 0.34 mmol), and a drop of DMF in dry THF (10 mL) was stirred at room temperature for 2 h. The solvent was evaporated, and the residue was dissolved in EtOAc. The organic phase was washed with a saturated aqueous solution of NaHCO₃, water and brine, dried over anhydrous Na₂SO₄ and evaporated. The resulting crude lupa-2,20(29)-dieno[2,3-*b*]pyrazin-28-oyl chloride was dissolved in chloroform (5 mL), and a water solution of 25% ammonia (2 mL) was added to the mixture. The resulting solution was stirred at room temperature for 30 min and evaporated to dryness to give a white crystalline solid (137 mg, quant).^{15 1}H NMR (300 MHz, CD₃OD) δ 8.44 (d, *J* = 2.5 Hz, 1H), 8.26 (d, *J* = 2.5 Hz, 1H), 4.73 (d, *J* = 2.3 Hz, 1H), 4.61 (dd, *J* = 2.3, 1.4 Hz, 1H), 3.17 – 3.06 (m, 1H), 3.01 (d, *J* = 16.6 Hz, 1H), 2.73 – 2.59 (m, 1H), 2.51 (d, *J* = 16.6 Hz, 1H), 2.20 – 2.05 (m, 1H), 2.04 – 1.74 (m, 4H), 1.71 (s, 3H), 1.70 – 1.33 (m, 16H), 1.31 (s, 3H), 1.29 (s, 3H), 1.07 (s, 3H), 1.07 (s, 3H), 0.83 (s, 3H).; ¹³C NMR (75 MHz, CD₃OD) δ 182.4, 161.4, 152.3, 152.0, 143.8, 142.3, 110.0, 57.1, 54.3, 51.2, 50.1, 48.1, 43.7, 41.9, 40.62, 39.4, 39.1, 37.9, 34.6, 34.3, 31.9, 31.8, 30.7, 27.0, 24.4, 22.8, 21.2, 19.6, 16.6, 16.3, 15.0; FTIR (v, cm⁻¹): 886, 1107, 1184, 1402, 1665, 2869, 2948, 3044, 3129; HRMS: *m/z* calcd for C₃₂H₄₈N₃O 489.3797, found 490.3796 [M+H]⁺.

Lupa-2,20(29)-dieno[2,3-b]isoxazol-28-oic amide (13)

Synthesized from lupa-2,20(29)-dieno[2,3-*b*]isoxazol-28-oic acid (0.029 g, 0.06 mmol) according to the above-mentioned procedure. A white crystalline product (28 mg, quant.) ¹H NMR (300 MHz, CD₃OD) δ 8.10 (s, 1H), 4.70 (m, 1H), 4.62 (m, 1H), 2.55 (d, *J* = 12.2 Hz, 1H), 2.02-1.82 (m, 4H) 1.70 (s, 3H), 1.63–1.33 (m, 15H), 1.29 (s, 3H), 1.20 (s, 3H), 1.4 (s, 6H), 0.83 (s, 3H); ¹³C NMR (75 MHz, (CD₃)₂CO) δ 173.2, 152.2, 154.0, 110.0, 109.7, 54.4, 50.8, 50.1, 47.5, 43.3, 41.6, 39.7, 38.8, 38.3, 36.5, 35.5, 34.3, 34.2, 33.9, 31.6, 30.4, 29.0, 26.6, 22.4, 21.6, 19.7, 19.6, 16.5, 16.4, 15.0; FTIR (v, cm⁻¹): 881, 1066, 1181, 1263, 1370, 1454, 1651, 2869, 2937; HRMS: *m/z* calcd for C₃₁H₄₆N₂O₂: 478.3638, found 479.3631 [M+H]⁺.

28-Oximinolupa-2,20(29)-dien[2,3-b]pyrazine (24)

A mixture of 28-oxolupadi-2,20(29)-en[2,3-*b*]pyrazine (38 mg, 0.080 mmol), hydroxylamine hydrochloride (56 mg, 0.80 mmol), pyridine (1 mL) and ethanol (3 mL) was refluxed for 16 h. Solvents were evaporated, and the crude product was purified with SiO₂ column chromatography (16% EtOAc/*n*-hexane) to yield a white crystalline solid (30 mg, 77%).¹⁰ ¹H NMR (300 MHz, CDCl₃) δ 8.52 (br s, 1H), 8.41 (d, *J* = 2.4 Hz, 1H), 8.26 (d, *J* = 2.4 Hz, 1H), 7.57 (s, 1H), 4.74 (d, *J* = 2.1 Hz, 1H), 4.63 (dd, *J* = 2.1, 1.4 Hz, 1H), 3.04 (d, *J* = 16.6 Hz, 1H), 2.66–2.34 (m, 2H), 2.03–1.74 (m, 7H), 1.71 (s, 3H), 1.48 (m, 12H), 1.31 (s, 3H), 1.27 (s, 3H), 1.05 (s, 3H), 1.03 (s, 3H), 0.81 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 159.9, 155.4, 150.9, 149.8, 142.5, 141.5, 110.3, 53.1, 49.9, 49.4, 48.8, 48.0, 43.1, 40.9, 39.6, 38.8, 36.9, 33.5, 32.5, 31.6, 29.9, 28.1, 25.4, 24.2, 22.8, 21.5, 20.2, 19.4, 16.3, 15.8, 14.9, 14; FTIR (v, cm⁻¹): 885, 1108, 1379, 1404, 1452, 1644, 2871, 2939; HRMS: *m/z* calcd for C₃₂H₄₈N₃O: 490.3797; found 490.3799 [M+H]⁺.

3β-(3-Carboxy-3-methylbutanoyloxy)lup-20(29)-en-28-oic acid (bevirimat) (25)

A mixture of betulinic acid (0.10 g, 0.22 mmol), 2,2-dimethylsuccinic anhydride (36 mg, 0.28 mmol), *N*,*N*-diisopropylethylamine (37 mg, 0.28 mmol) and DMF (5 mL) was stirred at 170 °C for 2 d. Solvent was evaporated, and the crude product was purified with SiO₂ column chromatography (20-100% EtOAc/*n*-hexane) to yield a white crystalline product (7.0 mg, 5%).¹⁷ ¹H NMR (300 MHz, CDCl₃) δ 4.73 (s, 1H), 4.60 (s, 1H), 4.48 (m, 1H), 3.06–2.87 (m, 1H), 2.81 (m, 1H), 2.63 (d, *J* = 3.3 Hz, 1H), 2.49 (m, 1H), 2.33–2.09 (m, 3H), 1.96 (m, 2H), 1.67 (s, 3H), 1.47 (m, 14H), 1.30 (s, 3H), 1.30 (s, 3H), 1.25 (m, 6H), 0.97 (s, 3H), 0.93 (s, 3H), 0.85 (s, 3H), 0.84 (s, 3H); FTIR (v, cm⁻¹): 886, 979, 1135, 1192, 1703, 1733, 2877, 2943; HRMS: *m/z* calcd for C₃₆H₅₆O₆Na: 607.3975; found 607.3999 [M+Na]⁺. NMR spectral data is consistent with those previously reported.¹⁸

¹H- and ¹³C-NMR spectra of the new compounds

Compound 6

Compound 17

Compound 18

Compound 24

REFERENCES

1 C. Eckerman and R. Ekman, Pap. Puu, 1985, 67, 100-106.

2 O. B. Flekhter, L. R. Nigmatullina, L. A. Baltina, L. T. Karachurina, F. Z. Galin, F. S. Zarudii, G. A. Tolstikov, E. I. Boreko, N. I. Pavlova, S. N. Nikolaeva and O. V. Savinova, *Pharm. Chem. J.*, 2002, **36**, 484-487 (DOI:10.1023/A:1021844705853).

3 V. Kumar, N. Rani, P. Aggarwal, V. K. Sanna, A. T. Singh, M. Jaggi, N. Joshi, P. K. Sharma, R. Irchhaiya and A. C. Burman, *Bioorg. Med. Chem. Lett.*, 2008, **18**, 5058-5062 (DOI:<u>http://dx.doi.org/10.1016/j.bmcl.2008.08.003</u>).

4 H. Parra-Delgado, C. M. Compadre, T. Ramírez-Apan, M. J. Muñoz-Fambuena, R. L. Compadre, P. Ostrosky-Wegman and M. Martínez-Vázquez, Bioorg Med Chem, 2006, 14, 1889-1901 (DOI:10.1016/j.bmc.2005.10.038).

5 O. B. Flekhter, E. I. Boreko, L. R. Nigmatullina, E. V. Tret'yakova, N. I. Pavlova, L. A. Baltina, S. N. Nikolaeva, Savinova. O. V., V. F. Eremin, F. Z. Galin and Tolstikov G. A., *Russ. J. Bioorg. Chem.*, 2004, **30**, 80-88.

6 G. A. Tolstikov, H. -. Kim and M. I. Goryaev, Zh. Obsh. Khim., 1967, 37, 1690.

7 M. Urban, J. Sarek, M. Kvasnica, I. Tislerova and M. Hajduch, J. Nat. Prod., 1997, 70, 526-532 (DOI:10.1021/np060436d).

8 G. Abbiati, A. Arcadi, G. Bianchi, S. Di Giuseppe, F. Marinelli and E. Rossi, J. Org. Chem., 2003, 68, 6959-6966 (DOI:10.1021/jo0347260).

9 X. Wen, H. Sun, J. Liu, K. Cheng, P. Zhang, L. Zhang, J. Hao, L. Zhang, P. Ni, S. E. Zographos, D. D. Leonidas, K. Alexacou, T. Gimisis, J. M. Hayes and N. G. Oikonomakos, *J. Med. Chem.*, 2008, **51**, 3540-3554 (DOI:10.1021/jm8000949).

10 L. Pohjala, S. Alakurtti, T. Ahola, J. Yli-Kauhaluoma and P. Tammela, J. Nat. Prod., 2009, 72, 1917-1926 (DOI:10.1021/np9003245).

11 Y. Wei, C. -. Ma and M. Hattori, Eur. J. Med. Chem., 2009, 44, 4112-4120 (DOI:10.1016/j.ejmech.2009.05.002).

12 J. Xu, Z. Li, J. Luo, F. Yang, T. Liu, M. Liu, W. -. Qiu and J. Tang, J. Med. Chem., 2012, 55, 3122-3134 (DOI:10.1021/jm201540h).

13 T. Oguchi, K. Watanabe, K. Ohkubo, H. Abe and T. Katoh, Chem. Eur. J., 2009, 15, 2826-2845 (DOI:10.1002/chem.200802122).

14 A. Koohang, N. D. Majewski, E. L. Szotek, A. A. Mar, D. A. Eiznhamer, M. T. Flavin and Z. Xu, *Bioorg. Med. Chem. Lett.*, 2009, **19**, 2168-2171 (DOI:http://dx.doi.org/10.1016/j.bmcl.2009.02.107).

15 O. B. Flekhter, E. I. Boreko, L. R. Nigmatullina, E. V. Tret'yakova, N. I. Pavlova, L. A. Baltina, S. N. Nikolaeva, O. V. Savinova, V. F. Eremin, F. Z. Galin and G. A. Tolstikov, *Russ. J. Bioorg. Chem.*, 2004, **30**, 80-88.

16 Y. Kashiwada, F. Hashimoto, L. M. Cosentino, C. H. Chen, P. E. Garrett and K. H. Lee, *J. Med. Chem.*, 1996, **39**, 1016-1017 (DOI:10.1021/jm950922q).

17 K. Qian, R. Kuo, C. Chen, L. Huang, S. L. Morris-Natschke and K. Lee, J. Med. Chem., 2010, 53, 3133-3141 (DOI:10.1021/jm901782m).

18 P. Corie, S. Turcaud, F. Souquet, L. Briant, B. Gay, J. Royer, N. Chazal and S. Bouaziz, *Eur. J. Med. Chem.*, 2013, **62**, 453-465 (DOI:http://dx.doi.org/10.1016/j.ejmech.2013.01.013).