# **Supplementary information**

# **Discovery of selective 2,4-diaminopyrimidine-based photoaffinity**

# probes for glyoxalase I

Yiqing Zhou,<sup>a</sup> Tianlin Guo,<sup>a</sup> Xitao Li,<sup>a</sup> Yi Dong,<sup>a</sup> Paul Galatsis,<sup>b</sup> Douglas S. Johnson<sup>b</sup> and Zhengying Pan<sup>\*a</sup>

<sup>a</sup> Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Xili University Town, PKU Campus, Shenzhen, China, 518055. 86-755-26033072; <u>panzy@pkusz.edu.cn</u>.

<sup>b</sup> Neuroscience Medicinal Chemistry and Chemical Biology, Pfizer Worldwide Research and Development, Cambridge, MA 02139, USA.

#### Contents

#### Page No.

#### Chemistry

| General Imformation                                                          | 2 |
|------------------------------------------------------------------------------|---|
| Experimental Procedures and Spectroscopic Data                               | 2 |
| <sup>1</sup> H NMR and <sup>13</sup> C NMR and HRMS spectra of new compounds | 6 |

#### Biology

| Detection and purification of L1-biotin binding protein |    |  |  |
|---------------------------------------------------------|----|--|--|
| In vitro and in situ labelling by L1-Bpyne              | 16 |  |  |
| In cell "click" and imaging                             | 16 |  |  |
| GLO-1 enzyme activity assay                             | 17 |  |  |
| Cell proliferation assay                                | 17 |  |  |
| Cellular MG measurement                                 | 17 |  |  |
| Apoptosis study                                         | 17 |  |  |
| MALDI-TOF-MS Results                                    | 19 |  |  |
|                                                         |    |  |  |

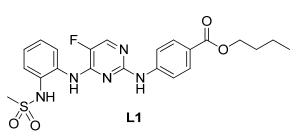
# Chemistry

# **General Information**

All the reagents were purchased commercially and used without further purification. Anhydrous DMF was distilled from calcium hydride. Brine refers to a saturated solution of sodium chloride in distilled water.

Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.2 mm Jiangyou silica gel plates (HSGF<sub>254</sub>) using UV light as visualizing agent . Flash column chromatography was carried out using Puke silica (ZCX-II).

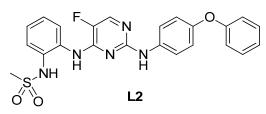
NMR spectra were recorded on a Bruker Advance 400 (<sup>1</sup>H: 400 MHz, <sup>13</sup>C: 100 MHz) with chemical shift values in ppm relative to TMS ( $\delta_H$  0.00 and  $\delta_C$  0.0), residual chloroform ( $\delta_H$  7.26 and  $\delta_C$  77.16), dimethylsulfoxide ( $\delta_H$  2.50 and  $\delta_C$  39.52), or methanol ( $\delta_H$  3.31 and  $\delta_C$  49.00) as standard. HR-MS were obtained using Bruker Apex IV RTMS.


Purity of compounds was determined by HPLC chromatograms acquired on an Agilent 1200 LC. Analysis were conducted by an Agilent PN959990-902 Eclipse Plus C18 250 mm  $\times$  4.6 mm column, using a water–MeCN gradient containing 0.1% formic acid (FA) with MeCN from 30% to 98% in 10min. Detection was at 254 nm, and the average peak area was used to determine purity. All the compounds were determined to be >95% pure.

All the compounds can be synthesized from commercially available compounds para-diaminobenzene, 2,6-chlorol,3-fluorolpyrimidine and diaminobenzophenone.

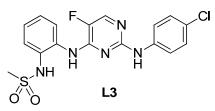
Compound 1 was synthesized by two steps from ortho-diaminobenzene and 2,6-chlorol,3-fluorolpyrimidine. L1 was synthesized by refluxing para-aminobenzoic acid and Compound 1 under acidic condition in n-BuOH. L1-Bpyne was obtained from Buchwald-Hartwig amination under catalysis of  $Pd_3(dba)_2$  and ligand DPBP. L1-BpNH<sub>2</sub> was obtained by  $S_NAr$  of Compound 1 with diaminobenzophenone. L1-biotin was obtained by amide bond formation between L1-BpNH<sub>2</sub> and biotin.

# **Experimental Procedures and Spectroscopic Data**


L1



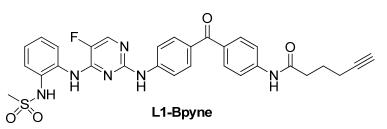
Compound 1 (1.58 g, 5 mmol, 1 eq) and p-aminobenzoic acid (1.37 g, 10 mmol, 2 eq) were suspended in <sup>n</sup>BuOH (47 ml) and 2N HCl (6.25 ml). The mixture was heated at 120 °C for 12 hours, and then cooled to rt. The product was collected by filtration and washed with <sup>n</sup>BuOH(10 ml×2) and Et<sub>2</sub>O (10 ml×2), as a light brown solid (1.59 g, 76%). <sup>1</sup>H-NMR (400 MHz, DMSO- $d_6$ )  $\delta$  H 0.91 (3H, t), 1.40 (2H, tq), 1.65 (2H, tt),


2.92 (3H, s), 4.23 (2H, t), 7.22-7.27 (3H, m), 7.45-7.50 (2H, m), 7.73-7.76 (1H, m), 7.84 (1H, d), 8.04 (1H, s), 8.23(1H, d), 9.24(1H, s), 9.27(1H, s), 9.89(1H, s). <sup>13</sup>C-NMR (100 MHz, DMSO- $d_6$ )  $\delta$  C 166.17, 154.11, 152.15, 152.04, 142.48, 140.59, 140.03, 131.87, 131.68, 130.66, 129.14, 127.21, 126.74, 126.54, 125.60, 123.91, 122.77, 120.34, 64.77, 30.67, 19.16, 14.01. HRMS-ESI calcd. for C<sub>22</sub>H<sub>24</sub>N<sub>5</sub>O<sub>4</sub>FNaSCl [M+H<sup>+</sup>]: 496.1431; Found: 496.1423.

L2:

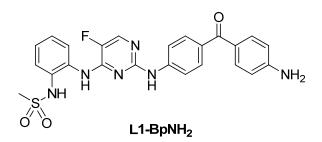


Compound 1 (100 mg, 0.16 mmol, 1 eq) and p-Chlorobenzenamine (119 mg, 0.32 mmol, 2 eq) were suspended in <sup>n</sup>BuOH (2 ml) and 2N HCl (0.2 ml). The mixture was heated at 120 °C for 12 hours, then cooled to rt. The product was collected by filtration and washed with <sup>n</sup>BuOH (2 ml×2) and Et<sub>2</sub>O (2 ml×2), as a light brown solid (130 mg, 87%). <sup>1</sup>H-NMR (400 MHz, DMSO- $d_6$ )  $\delta$  H 2.91 (3H, s), 6.81 (2H, d), 6.91 (2H, d), 7.10 (1H, t), 7.23-7.38 (6H, m), 7.50(2H,t), 8.36 (1H, d), 9.38(1H, s), 10.46(1H, s), 10.64(1H, s). <sup>13</sup>C-NMR (100 MHz, DMSO- $d_6$ )  $\delta$  C 157.56, 154.84, 154.71, 152.77, 150.74, 141.19, 138.73, 133.75, 133.48, 130.43, 129.30, 128.91, 128.44, 125.82, 124.08, 123.59, 122.81, 119.67, 118.31. HRMS-ESI calcd. for C<sub>23</sub>H<sub>21</sub>N<sub>5</sub>O<sub>3</sub>FSCI [M+H<sup>+</sup>]: 466.1349; Found: 466.1341.


L3



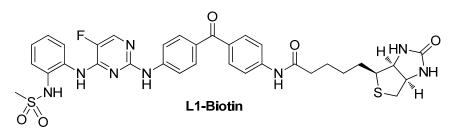
Compound 1 (50 mg, 0.16 mmol, 1 eq) and *p*-Chlorobenzenamine(41 mg, 0.32 mmol, 2 eq) were suspended in <sup>*n*</sup>BuOH (2 ml) and 2 N HCl (0.2 ml). The mixture was heated at 120 °C for 12 h, then cooled to room temperature. The product was collected by filtration and washed with <sup>*n*</sup>BuOH (2 ml×2) and Et<sub>2</sub>O (2 ml×2), as a light brown solid (47 mg, 72%). <sup>1</sup>H-NMR (400MHz, DMSO-*d*<sub>6</sub>)  $\delta$  H 2.92 (3H, s), 7.14 (2H, d), 7.31 (3H, d), 7.42 (1H, t), 7.50 (1H, d), 7.60 (1H, d), 8.40 (1H, d), 9.41 (1H, s). <sup>13</sup>C-NMR (100 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  C 154.88, 154.75, 150.43, 141.27, 138.81, 136.96, 133.82, 129.31, 128.97, 128.82, 128.64, 127.72, 125.92, 124.25, 121.79. HRMS-ESI calcd. for C<sub>17</sub>H<sub>16</sub>N<sub>5</sub>O<sub>2</sub>FSCl [M+H<sup>+</sup>]: 408.0697; Found: 408.0691.


L1-Bpyne

Electronic Supplementary Material (ESI) for Medicinal Chemistry Communications This journal is O The Royal Society of Chemistry 2014



A mixture of Compound 1 (100 mg, 0.32 mmol, 1 eq), Compound 2 (108 mg, 0.35 mmol, 1.1 eq), Pd<sub>2</sub>(dba)<sub>3</sub>(20 mg, 9%), DPBP (32 mg, 9%), K<sub>2</sub>CO<sub>3</sub> (200 mg, 1.28 mmol, 4 eq) were dissolved in 3 ml <sup>*t*</sup>BuOH and degassed. The mixture was refluxed under N<sub>2</sub> at 100 °C for 4 h. Then the reaction was stopped and filtered on celite, washed with MeOH, concentrated and purified by flash column chromatography, providing L1-BpNH<sub>2</sub> as a white solid (56 mg, 29.83%). <sup>1</sup>H-NMR (400 MHz, DMSO- $d_6$ )  $\delta$  H 1.77 (3H, t), 2.24 (2H, dt), 2.46 (2H), 2.82 (1H, t), 2.92 (3H, s), 3.81 (1H, s), 7.25-7.34 (2H, m), 7.46-7.54 (3H, m), 7.64-7.77 (8H, m), 8.18(1H, d), 8.81 (1H, s), 9.22 (1H, s), 9.68 (1H, s), 10.28 (1H, s). <sup>13</sup>C-NMR (100 MHz, DMSO- $d_6$ )  $\delta$  C 193.51, 171,63, 155.37, 155.34, 151.24, 151.13, 145.45, 143.21, 143.12, 141.16, 140.96, 140.66, 132.58, 132.56, 131.83, 131.16, 129.63, 127.57, 126.59, 126.46, 125.76, 118.62, 118.47, 84.42, 72.12, 35.66, 24.24, 17.80. HRMS-ESI calcd. for C<sub>30</sub>H<sub>27</sub>N<sub>6</sub>O<sub>4</sub>FNaSCI [M+H<sup>+</sup>]: 609.1696; Found: 609.1690.

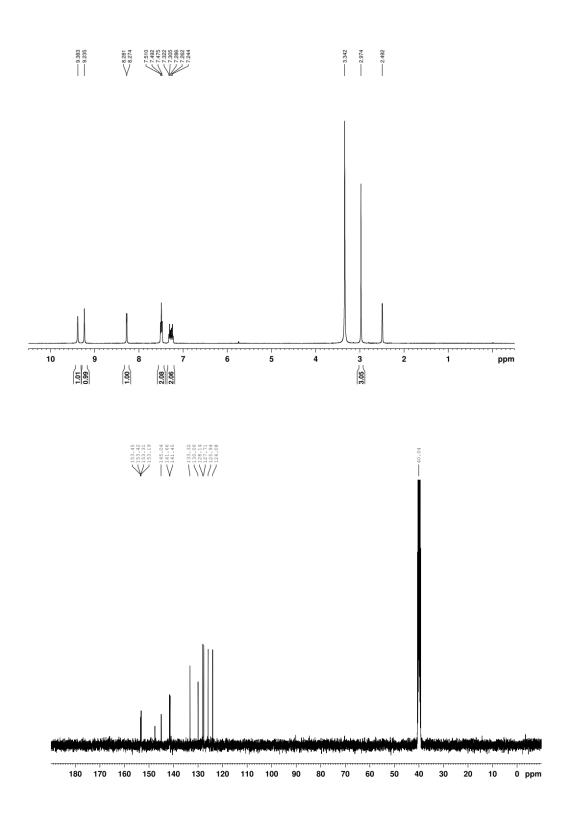

L1-BpNH<sub>2</sub>



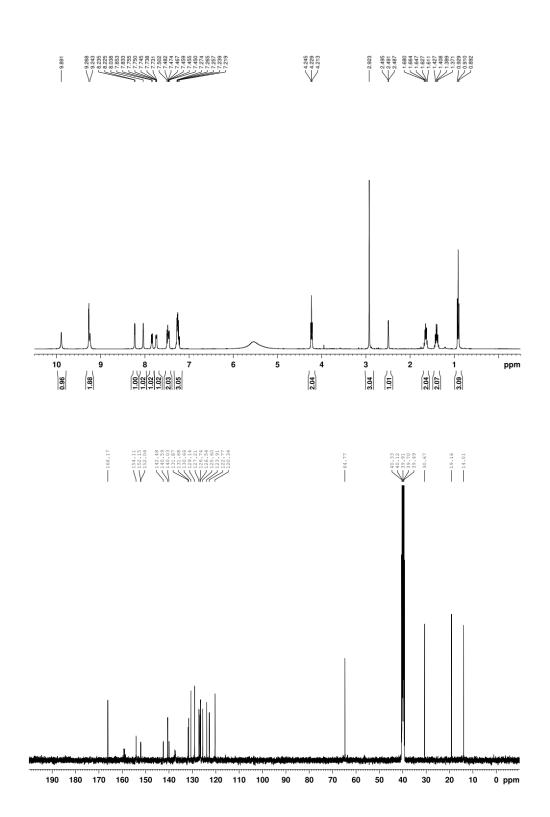
Compound 1 (1.00 g, 3.2 mmol, 1 eq) and 4,4'-diaminobenzopheonone (1.36 g, 6.4 mmol, 2 eq) were suspended in "BuOH (25 ml) and 2 N HCl (3 ml). The mixture was heated at 120 °C for 12 hours, then cooled to rt. The product was collected by filtration and washed with "BuOH (10 ml×2) and Et<sub>2</sub>O (10 ml×2), providing as a yellow solid (800 mg, 50.95%). <sup>1</sup>H-NMR (400 MHz, DMSO- $d_6$ )  $\delta$  H 2.92 (3H, s), 6.65 (2H, d), 7.31 (2H, dd), 7.42-7.51 (4H, m), 7.60-7.70 (3H, m), 8.24(1H, d), 9.26 (1H, s), 9.31(1H, s), 9.95(1H, s). <sup>13</sup>C-NMR (100 MHz, DMSO- $d_6$ )  $\delta$  C 192.76, 159.07,158.69, 153.89, 152.81, 143.38, 142.59, 132.67, 132.54, 131.90, 131.46, 130.48, 128.06, 127.11, 126.32, 125.48, 125.05, 118.12, 113.49. HRMS-ESI calcd. for C<sub>24</sub>H<sub>21</sub>N<sub>6</sub>O<sub>3</sub>FNaSCI [M+H<sup>+</sup>]: 515.1278; Found: 515.1275.

L1-Biotin

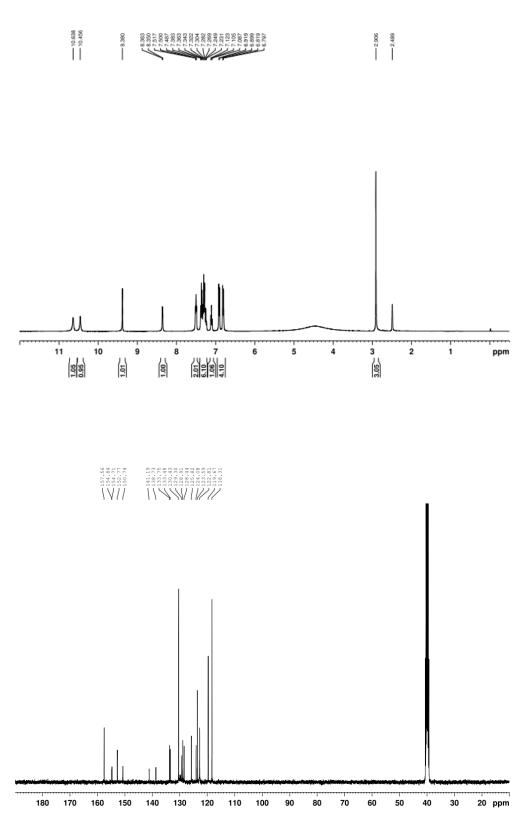
Electronic Supplementary Material (ESI) for Medicinal Chemistry Communications This journal is O The Royal Society of Chemistry 2014



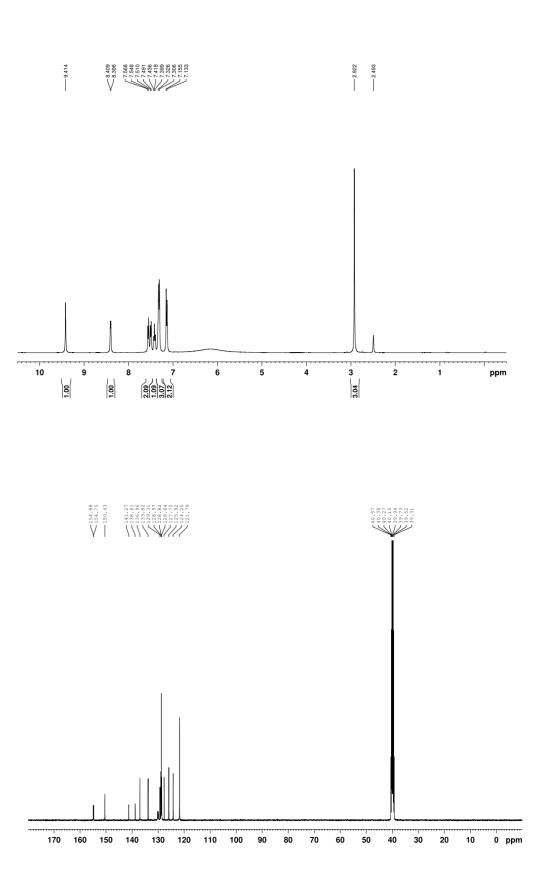

L1-BpNH<sub>2</sub> (98 mg, 0.2 mmol, 1 eq) and biotin (118 mg, 0.24 mmol, 1.2 eq) were dissolved in 2 ml DMF and DIPEA (139 µl, 0.8 mmol, 4 eq) was added. Then HATU was added to the mixture at 0 °C and the mixture was warmed to room temperature and stirred overnight. The reaction was quenched by H<sub>2</sub>O and extracted with ethyl acetate. The organic phase was washed by H<sub>2</sub>O, brine, dried, concentrated, purified by flash column chromatography, providing L1-Biotin as a white solid (64 mg, 33.33%). <sup>1</sup>H-NMR (400 MHz, DMSO- $d_6$ )  $\delta$  H 1.37-1.68 (7H, m), 2.37 (2H, t), 2.58 (1H, d), 2.82 (1H, dd), 2.92 (3H, s), 3.10-3.17 (2H, m), 3.38-3.39 (1H, m), 4.12-4.15 (1H, m), 4.29-4.32 (1H, m), 6.37 (1H, s), 6.45 (1H, s), 7.29 (2H, dt), 7.46 (1H, dd), 7.53 (2H, d), 7.65-7.78 (7H, m), 8.18 (1H, d), 9.24 (1H, s), 9.69(1H, s), 10.24 (1H, s). <sup>13</sup>C-NMR (100 MHz, DMSO- $d_6$ )  $\delta$  C 193.51, 172.23, 163.19, 155.37, 155.34, 151.23, 151.11, 145.45, 143.29, 13.12, 141.14, 140,94, 140.66, 132.52, 131.92, 131.19, 129.62, 127.53, 126.50, 126.45, 125.69, 118.59, 117.46, 67.46, 63.24, 61.51, 59.66, 55.84, 49.05, 36.79, 28.67, 28.55, 25.57, 25.46. HRMS-ESI calcd. for C<sub>34</sub>H<sub>35</sub>N<sub>8</sub>O<sub>5</sub>FNaS<sub>2</sub> [M+Na<sup>+</sup>]: 741.2054; Found: 741.2048.


# <sup>1</sup>H NMR, <sup>13</sup>C NMR and HR-MS Spectra of New Compounds

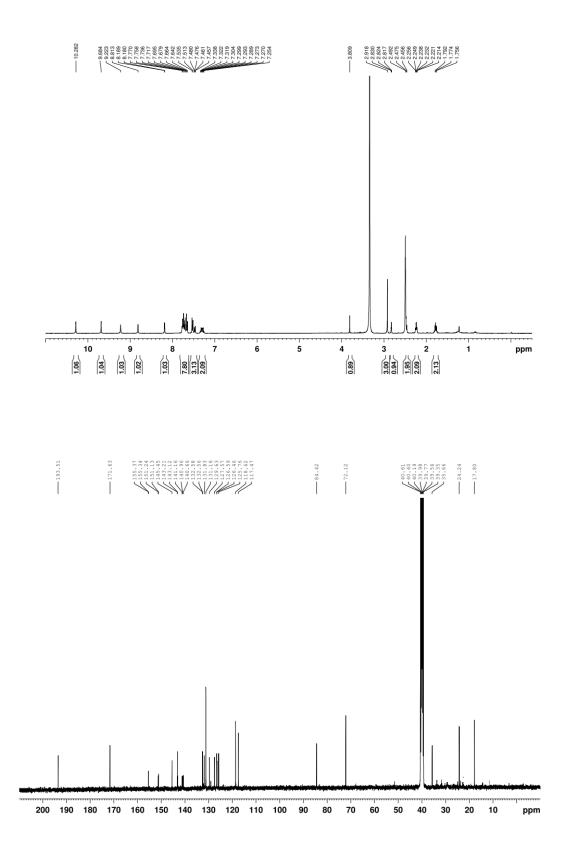
# <sup>1</sup>H NMR and <sup>13</sup>C NMR Spectra


Compound 1

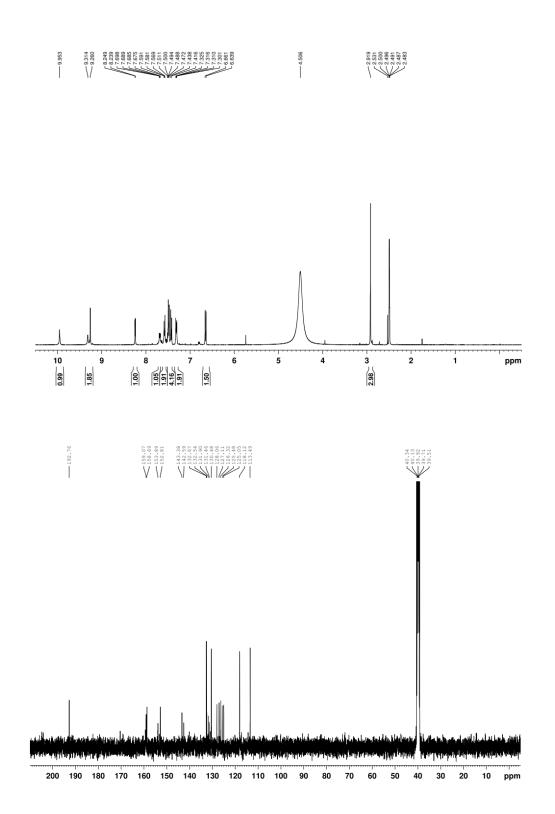



L1

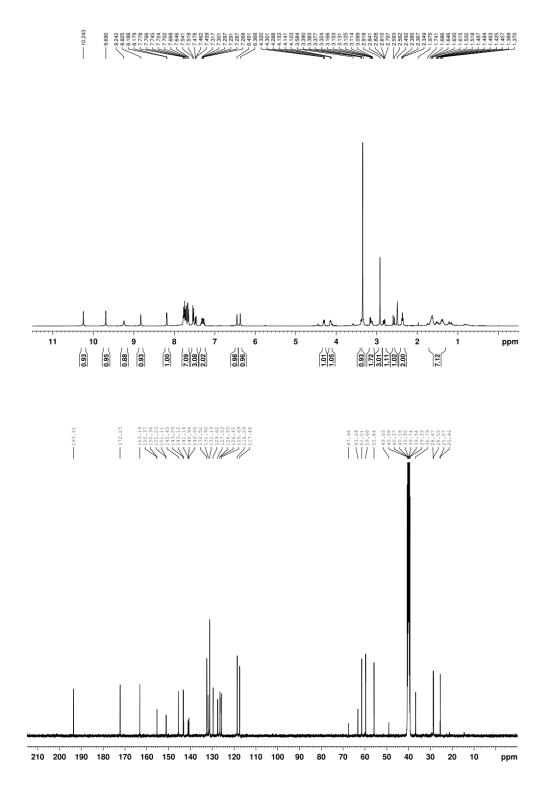






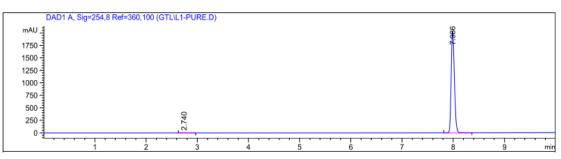


L3




# L1-Bpyne



L1-BpNH<sub>2</sub>

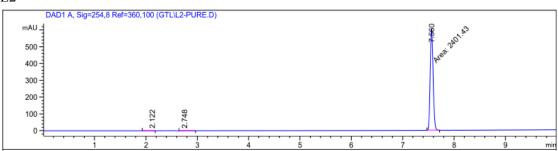



#### L1-Biotin



# **HPLC Spectra**

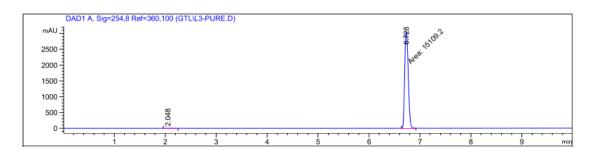





Signal 1: DAD1 A, Sig=254,8 Ref=360,100

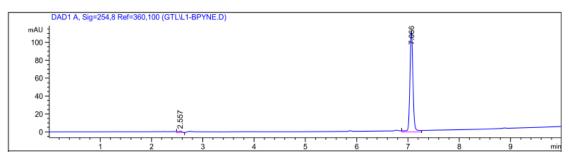
| Peak | RetTime | Туре | Width  | Area       | Height     | Area    |
|------|---------|------|--------|------------|------------|---------|
| #    | [min]   |      | [min]  | [mAU*s]    | [mAU]      | 90      |
|      |         |      |        |            |            |         |
| 1    | 2.740   | VB   | 0.1574 | 12.34653   | 1.16727    | 0.1386  |
| 2    | 7.986   | VB   | 0.0667 | 8894.95410 | 2045.33093 | 99.8614 |
|      |         |      |        |            |            |         |

Totals : 8907.30063 2046.49821


L2



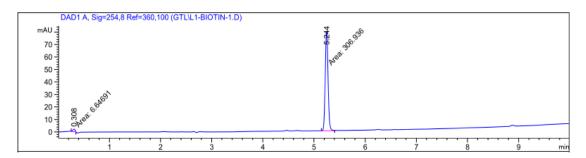
Signal 1: DAD1 A, Sig=254,8 Ref=360,100


| Peak Re | etTime | Type | Width  | Area       | Height     | Area    |
|---------|--------|------|--------|------------|------------|---------|
| #       | [min]  |      | [min]  | [mAU*s]    | [mAU]      | qb      |
|         |        | -    |        |            |            |         |
| 1       | 2.122  | BV   | 0.1294 | 4.15850    | 4.13304e-1 | 0.1721  |
| 2       | 2.748  | VB   | 0.1485 | 10.37378   | 1.03853    | 0.4294  |
| 3       | 7.560  | MM   | 0.0659 | 2401.43286 | 607.38928  | 99.3985 |
|         |        |      |        |            |            |         |
| Totals  | :      |      |        | 2415.96514 | 608.84111  |         |

L3



```
Signal 1: DAD1 A, Sig=254,8 Ref=360,100
Peak RetTime Type Width
                               Height
                       Area
                                        Area
 # [min]
               [min] [mAU*s]
                               [mAU]
                                          임
 ---- | ------ | -
             ----1
  1 2.048 BB 0.2250 5.85457 3.26780e-1 0.0387
     6.728 MM
              0.0814 1.51092e4 3095.43481 99.9613
  2
                     1.51150e4 3095.76159
Totals :
```


L1-Bpyne



Signal 1: DAD1 A, Sig=254,8 Ref=360,100

| Peak RetTime Ty<br># [min] |        |           | -         |         |
|----------------------------|--------|-----------|-----------|---------|
|                            |        |           |           |         |
| 1 2.557 VV                 | 0.0800 | 7.18641   | 1.39813   | 1.4812  |
| 2 7.066 VV                 | 0.0699 | 477.99176 | 111.85812 | 98.5188 |
|                            |        |           |           |         |
| Totals :                   |        | 485.17817 | 113.25624 |         |

#### L1-Biotin



Signal 1: DAD1 A, Sig=254,8 Ref=360,100

| Peak RetTime<br># [min] |    |        |           | Height<br>[mAU] | Area<br>% |
|-------------------------|----|--------|-----------|-----------------|-----------|
|                         |    |        |           |                 |           |
| 1 0.308                 | MM | 0.0532 | 6.64691   | 2.08225         | 2.1197    |
| 2 5.244                 | MM | 0.0638 | 306.93619 | 80.13609        | 97.8803   |
|                         |    |        |           |                 |           |

| Totals : | 313.58310 | 82.21834 |
|----------|-----------|----------|
|----------|-----------|----------|

# Biology

# Detection and purification of L1-biotin binding proteins

HEK293T cell was harvested and washed twice with ice cold PBS, then resuspended in binding buffer [50 mM HEPES pH 7.4, 150 mM NaCl, 5 mM MgCl<sub>2</sub>, 1 mM EDTA, and complete protease inhibitor (Roche)]. After cell lysis the insoluble material was removed by centrifuge at 14000 g at 4 °C for 5 min. The supernatant was collected as cell lysate. 0.5 ml of HEK293T lysate (5 mg/ml) was incubated with 0.1  $\mu$ M or 1  $\mu$ M L1-biotin dissolved in DMSO with or without competitor at 4 °C overnight. The protein samples were transferred to a 24-well plate and irradiated by five 365 nm UV lights (UVP CL-1000L, 8W) for 1 hour on ice. The protein samples were centrifuged at 14000 g at 4 °C for 10 min and passed through 0.45  $\mu$ M filters (Millipore). The samples were collected and left for near western-blot analysis or affinity column purification.

For near western-blot detection, 7.5  $\mu$ l of each protein sample was boiled with 2.5  $\mu$ l 4×SDS-PAGE sample loading buffer (Invitrogen) for 5 min and applied to NUPAGE 4-12% Bis-tris denaturing gels (Invitrogen). After electrophoresis, the proteins were transferred to a nitrocellulose membrane by Trans-Blot Semi-Dry system (Bio-rad). Membranes were blocked using 5% BSA dissolved in tris-buffered saline containing 0.05 % Tween-20 (TBST) overnight in a cold room and incubated with streptavidin-HRP (Invitrogen) in block solution at room temperature for 1 hour. After washing 3 times by TBST the membrane was detected using an enhanced chemiluminescence detection system (GE Healthcare).

For pull-down experiment, streptavidin-sepharose beads (GE Healthcare) dissolved in 25% EtOH was equilibrated 3 times with 150 mM NaCl for 5 min at room temperature. After centrifuge, the beads were incubated with 0.2 M glycine, pH 10.6 at room temperature overnight. Before usage, the beads were equilibrated in ice-cold 50 mM HEPES pH 7.4, 1% Triton X-100. Biotinylated protein samples were incubated with streptavidin-sepharose beads at 4 °C for 2 hours in a rotator with the speed of 60 rpm. The beads were collected by short centrifuge and the supernatant was removed by carefully aspiration without disturbing the beads. The beads were washed 3 times by 50 mM HEPES pH 7.4, 1.5% Triton X-100, followed by 50 mM HEPES pH 7.4, 1.5% Triton X-100 and 0.5 M NaCl for 3 times and 50 mM HEPES pH 7.4 once. Each washing step was performed at 4 °C for 10 min in a rotator with the speed of 60 rpm. After the final wash, the beads were eluted by boiling in SDS-PAGE sample loading buffer for 15 min with frequently shaking. The eluted samples in SDS-PAGE sample loading buffer were applied to 4-12% Bis/Tris gradient denaturing gel and the gel was visualized by silver stain.

# In vitro and in situ labelling by L1-Bpyne

For in vitro labelling, HEK293T cell lysates were prepared as previous described and incubated with 1 µM of L1-Bpyne with or without 20 µM of compound L1 at 4 °C overnight. The protein samples were irradiated by five 365 nm UV lights (UVP CL-1000L, 8W) in 24-well plate for 1 hour on ice. For in situ labelling, HEK293T cells were cultured in 10-cm dishes until ~90% confluence. The cells were washed with PBS and treated with 1 ml of Dulbecco's Modified Eagle Medium (DMEM, Invitrogen) containing 1 µM of L1-Bpyne with or without 20 µM of compound L1. After 6 hours incubation at 37 °C, the cells were irradiated by five 365 nm UV lights (UVP CL-1000L, 8W) at room temperature for 1 hour. The medium containing probe was removed and the cells were washed with PBS gently. The attached cells were harvested by trypsinization and cell lysates were collected same as above. Both the protein samples from in vitro and in situ labelling were subjected to "click" reaction: For each reaction, 96  $\mu$ l of protein samples were added 1  $\mu$ l each of TAMRA-N<sub>3</sub> (10 mM stock in DMSO, Lumiprobe), CuSO<sub>4</sub> (100 mM stock in H<sub>2</sub>O, Sigma), TBTA (10 mM stock in t-butanol:DMSO 4:1, Sigma) and ascorbic sodium (100 mM stock in H<sub>2</sub>O, Sigma). The samples were transferred to 96-well plate and incubated for 2 hours in dark at room temperature with continuously shaking. The mixture was passed through 7-kDa Zeba desalting column (Pierce) to deplete excess TAMRA and salts and then the reaction was quenched by addition of 30 µL 4×SDS loading buffer (Invitrogen) and boiling at 95 °C for 15 min. Samples were applied to NUPAGE 4-12% Bis-tris denaturing gels and in-gel fluorescence scanning was performed with Pharos FX imaging system (Bio-rad).

# In cell "click" reaction and imaging

HeLa cells were cultured in 6-well plates containing glass cover slips and grown until ~90% confluence. Cells were treated with DMSO (positive) or 100  $\mu$ M of compound L1 (competition) at 37 °C for 6 hours. Subsequently, the medium was removed and fresh medium containing 20  $\mu$ M of L1-Bpyne was added. After incubation at 37 °C for 1 hour, cells were irradiated for 30 min with the same condition of *in situ* labelling. The cells were washed with ice-cold PBS buffer twice, and dead cells were aspired and discarded. After fixation with 4% paraformaldehyde in PBS for 15 min, cells were washed with PBS twice and permeabilized by 0.1% Triton X-100 in PBS for 15 min. Then cells were washed with PBS again and blocked with 3% BSA in PBS for 30 min, and washed with PBS twice to remove excess BSA. Subsequently, the cells were treated with freshly prepared cocktail containing 10  $\mu$ M of TAMRA-N<sub>3</sub>, 1 mM of CuSO<sub>4</sub>, 100  $\mu$ M of TBTA and 1 mM of ascorbic sodium dissolved in 200  $\mu$ L PBS for 2 hours at room temperature with gentle shaking. Cells were washed with PBS five times and imaged with Zeiss Imager A1 fluorescence microscope.

# GLO-1 enzyme activity assay

The GLO-1 enzyme activity assay was performed according to a spectrophotometric method monitoring the increase in absorbance at 240 nm due to the formation of S-D-lactoylglutathione at 25 °C with slight changes. In brief, 7.9 mM MG, 1 mM glutathione, 14.6 mM magnesium sulfate, and 182 mM imidazole-HCl, were mixed at pH 7.0 for 10 min to ensure the equilibration of hemithioacetal formation. The reaction was initiated by adding 20 ng of recombinant GLO-1 protein (Sigma) pre-incubated with DMSO or inhibitor for 1 hour. After 9 min the reaction mixture were transferred to a cuvette and absorbance data at 240 nm were read by Smartspec Plus (Bio-rad).

## **Cell proliferation assay**

HeLa cells were cultured in DMEM with glucose concentration of 5 mM (normal) or 25 mM (high glucose) for three passages and diluted in culture medium to 8000 cells/ml. 100  $\mu$ l of cell suspension were seeded to each well of 96-well plate and incubated at 37 °C overnight. Different concentrations of compounds were dissolved in culture medium containing 0.5% DMSO. Cells in 96-well plate were treated with 100  $\mu$ L of different concentrations of compounds and DMSO (negative control) for 48 hours in a 37 °C incubator. Cell viability was assessed by CellTiter-Glo® Luminescent Kit (Promega).

### Cellular MG measurement

Total cellular MG was determined according to literature procedure with slight modification. HeLa cells were cultured in DMEM and treated with DMSO or 5  $\mu$ M of L1-Bpyne for 24 hours. Cells were harvested by trypsinisation and washed twice with PBS and equalized by cell counting (~2×10<sup>7</sup> cells/sample), then resuspended in ddH<sub>2</sub>O. Cells were boiled for 5 min and centrifuged at 14000 g for 3 min. The supernatant was collected as the source of MG. All the conditions were as same as GLO-1 enzyme activity assay mentioned above except that the GLO-1 amount for each sample was 50 ng in order to increase the sensitivity.

### **Apoptosis study**

HeLa cells were treated with 5  $\mu$ M of L1-Bpyne in DMEM (high glucose) for 24 hours in 6-well plates with glass cover slips. Cells were washed twice with PBS and treated with 10  $\mu$ g/ml of 4',6-diamidino-2-phenylindole dihydrochloride (DAPI, Invitrogen) dissolved in PBS for 15 min at room temperature, followed by imaging with Zeiss Imager A1 fluorescence microscope.

For detection of caspase-3 degradation, HeLa cells were treated with different concentrations of L1-Bpyne in DMEM (high glucose) for 24 hours. Cell lysates were

collected, separated by SDS-PAGE and transferred to nitrocellulose membrane as mentioned above. Caspase-3 degradation was detected by anti-caspase-3 antibody (Abcam).

# MALDI-TOF-MS Results of ~28 kD band

| Protein View: gi 15030212   |              |  |  |  |  |  |  |
|-----------------------------|--------------|--|--|--|--|--|--|
| Glyoxalase I [Homo sapiens] |              |  |  |  |  |  |  |
| Database:                   | NCBInr       |  |  |  |  |  |  |
| Score:                      | 99           |  |  |  |  |  |  |
| Expect:                     | 3.10E-05     |  |  |  |  |  |  |
| Nominal mass (Mr):          | 20824        |  |  |  |  |  |  |
| Calculated pI:              | 5.12         |  |  |  |  |  |  |
| Taxonomy:                   | Homo sapiens |  |  |  |  |  |  |

# Protein sequence coverage: **56%** Matched peptides shown in red.

| 1     | MAEPO | QPPSGG    | LTDEAALSYC SDADPSTKDF |           |                                  | LLQQTMLRVK         | DPKKSLDFYT      |                   |
|-------|-------|-----------|-----------------------|-----------|----------------------------------|--------------------|-----------------|-------------------|
| 51    | RVLG  | MTLIQK    | CDFPIMKFSL YFLAYEDKND |           | <b>IPK</b> EKDEK <mark>IA</mark> | <b>WALSRK</b> ATLE |                 |                   |
| 101   | LTHNV | WGTEDD    | ETQSYHNGN             | IS DPR    | GFGHIGIA                         |                    | VPDVYSACK       | RFEELGVKFV        |
| 151   | KKPDI | OGKMKG    | LAFIQDPDG             | Y WIEI    | LNPNKM                           |                    | ATLM            |                   |
|       |       |           |                       |           |                                  |                    |                 |                   |
| Start | End   | Observed  | Mr(expt)              | Mr(calc)  | Delta                            | М                  | Peptide         |                   |
| 29    | 38    | 1264.6986 | 1263.6913             | 1263.6645 | 0.0268                           | 0                  | K.DFLLQQTMLR.   | 7                 |
| 29    | 38    | 1280.7212 | 1279.7139             | 1279.6595 | 0.0545                           | 0                  | K.DFLLQQTMLR.   | V + Oxidation (M) |
| 44    | 51    | 1029.5531 | 1028.5458             | 1028.5291 | 0.0167                           | 1                  | K.KSLDFYTR.V    |                   |
| 45    | 51    | 901.4729  | 900.4656              | 900.4341  | 0.0315                           | 0                  | K.SLDFYTR.V     |                   |
| 52    | 60    | 1002.6265 | 1001.6192             | 1001.5943 | 0.0249                           | 0                  | R.VLGMTLIQK.C   |                   |
| 52    | 60    | 1018.6089 | 1017.6016             | 1017.5892 | 0.0124                           | 0                  | R.VLGMTLIQK.C - | + Oxidation (M)   |
| 68    | 78    | 1395.7605 | 1394.7532             | 1394.6758 | 0.0774                           | 0                  | K.FSLYFLAYEDK.  | N                 |
| 68    | 83    | 1963.0098 | 1962.0025             | 1961.9774 | 0.025                            | 1                  | K.FSLYFLAYEDK   | NDIPK.E           |
| 89    | 95    | 816.5134  | 815.5061              | 815.4653  | 0.0407                           | 0                  | K.IAWALSR.K     |                   |
| 89    | 96    | 944.5788  | 943.5715              | 943.5603  | 0.0112                           | 1                  | K.IAWALSRK.A    |                   |
| 124   | 140   | 1733.9534 | 1732.9461             | 1732.8607 | 0.0854                           | 0                  | R.GFGHIGIAVPDV  | YSACK.R           |
| 141   | 148   | 977.5585  | 976.5513              | 976.5342  | 0.0171                           | 1                  | K.RFEELGVK.F    |                   |
| 142   | 148   | 821.4567  | 820.4494              | 820.4331  | 0.0163                           | 0                  | R.FEELGVK.F     |                   |
| 152   | 159   | 918.5021  | 917.4948              | 917.464   | 0.0308                           | 1                  | K.KPDDGKMK.G    |                   |
| 160   | 179   | 2303.1333 | 2302.126              | 2302.1634 | -0.0373                          | 0                  | K.GLAFIQDPDGY   | WIEILNPNK.M       |

# MALDI-TOF-MS Results of ~55 kD band

Protein View: gi|15030212Glyoxalase I [Homo sapiens]Database:NCBInrScore:47Expect:5.3Nominal mass (Mr):20824Calculated pI:5.12Taxonomy:Homo sapiens

# Protein sequence coverage: **53%** Matched peptides shown in red.

| 1     | MAEPO | QPPSGG               | LTDEAALSYC SDADPSTKDF |           |          | LLQQTMLRVK         | DPKKSLDFYT         |                   |
|-------|-------|----------------------|-----------------------|-----------|----------|--------------------|--------------------|-------------------|
| 51    | RVLGM | MTLIQK               | CDFPIMKFSL YFLAYEDKND |           |          | <b>IPK</b> EKDEKIA | <b>WALSR</b> KATLE |                   |
| 101   | LTHNV | WGTEDD               | ETQSYHNGN             | IS DPR    | GFGHIGIA |                    | VPDVYSACK          | RFEELGVKFV        |
| 151   | KKPDI | )GK <mark>MKG</mark> | LAFIQDPDG             | Y WIE     | ILNPNKM  |                    | ATLM               |                   |
|       |       |                      |                       |           |          |                    |                    |                   |
| Start | End   | Observed             | Mr(expt)              | Mr(calc)  | Delta    | М                  | Peptide            |                   |
| 29    | 38    | 1264.7076            | 1263.7004             | 1263.6645 | 0.0358   | 0                  | K.DFLLQQTMLR.V     | 7                 |
| 29    | 38    | 1280.6959            | 1279.6886             | 1279.6595 | 0.0292   | 0                  | K.DFLLQQTMLR.V     | V + Oxidation (M) |
| 29    | 40    | 1491.8345            | 1490.8272             | 1490.8279 | -0.0007  | 1                  | K.DFLLQQTMLRV      | K.D               |
| 44    | 51    | 1029.5557            | 1028.5484             | 1028.5291 | 0.0193   | 1                  | K.KSLDFYTR.V       |                   |
| 45    | 51    | 901.4688             | 900.4615              | 900.4341  | 0.0274   | 0                  | K.SLDFYTR.V        |                   |
| 52    | 60    | 1002.5782            | 1001.571              | 1001.5943 | -0.0234  | 0                  | R.VLGMTLIQK.C      |                   |
| 52    | 60    | 1018.6083            | 1017.6011             | 1017.5892 | 0.0118   | 0                  | R.VLGMTLIQK.C +    | - Oxidation (M)   |
| 68    | 78    | 1395.7185            | 1394.7112             | 1394.6758 | 0.0354   | 0                  | K.FSLYFLAYEDK.     | N                 |
| 68    | 83    | 1963.0178            | 1962.0105             | 1961.9774 | 0.0331   | 1                  | K.FSLYFLAYEDK      | NDIPK.E           |
| 89    | 95    | 816.4999             | 815.4926              | 815.4653  | 0.0273   | 0                  | K.IAWALSR.K        |                   |
| 124   | 140   | 1733.8934            | 1732.8862             | 1732.8607 | 0.0255   | 0                  | R.GFGHIGIAVPDV     | YSACK.R           |
| 141   | 148   | 977.5669             | 976.5596              | 976.5342  | 0.0255   | 1                  | K.RFEELGVK.F       |                   |
| 142   | 148   | 821.4649             | 820.4576              | 820.4331  | 0.0246   | 0                  | R.FEELGVK.F        |                   |
| 158   | 179   | 2562.3843            | 2561.377              | 2561.2988 | 0.0782   | 1                  | K.MKGLAFIQDPD      | GYWIEILNPNK.M     |
| 160   | 179   | 2303.2117            | 2302.2044             | 2302.1634 | 0.041    | 0                  | K.GLAFIQDPDGY      | WIEILNPNK.M       |