Supplementary Material

Bicyclic imidazole-4-one derivatives: a new class of antagonists for the orphan G proteincoupled receptors GPR18 and GPR55

Viktor Rempel,[#] Kerstin Atzler,[#] Andrea Behrenswerth,[#] Tadeusz Karcz,^{#,§} Clara Schoeder,[#] Sonja Hinz,[#] Maria Kaleta,[§] Dominik Thimm,[#] Katarzyna Kiec-Kononowicz,[§] and Christa E. Müller^{#,}*

[#]PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, An der Immenburg 4, D-53121 Bonn, Germany; [§]Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Faculty of Pharmacy, Kraków, Poland

Table of Contents

Page	
S2	Table S1. Affinities of annelated imidazolone derivatives at human and rat CB ₁ receptors
S5	Table S2. Potencies of selected compounds at the human GPR35
S6	Table S3. Affinities of annelated imidazolone derivatives at rat GABA-channels
S7	Table S4. Agonistic potencies of investigated compounds at human GPR18 and GPR55
S12	Table S5. Results from GTPγS binding studies of selected compounds at native rat
	cannabinoid CB ₁ receptors and numan cannabinoid CB ₁ receptors or CB ₂ receptors expressed in human embryonic kidney (HEK) cells
C12	Figure S1 Compound according in a AMD accumulation account at human CD, reconstant
513	Figure S1. Compound screening in CAMP accumulation assays at numan CB_1 receptors
S13	Figure S2. Compound screening in cAMP accumulation assays at human CB ₂ receptors

R—				CH ₃ N N S		
1	A 10-38	B 39	C 40-49	D 50	Е 51 52 55 57	F 53 56 58
	10-50	57	40-42	radioligand bind	ding assavs vs. [³ HICP55.940
comp	od	R		human CB ₁	<u> </u>	rat CB ₁
•			I	$K_i \pm SEM (\mu M)$	Ki	\pm SEM (μ M)
			(% ir	hibition at 10 µM) ^b	(% inh	bition at 10 µM) ^b
Imida	azo[2,1- <i>b</i>]	[[1,3]thiazin-3-0	ones (A)	10 (100 ()		
10		-\$-		>10 (40%)		>10 (1%)
11	-	ξ-√_−Cι		>10 (25%)	>	10 (15%)
12		-È-		>10 (30%)	>	>10 (6%)
13		Cl 		>10 (0%)	>	>10 (5%)
14				>10 (12%)	>	>10 (6%)
20	−ξ-⟨ → −Br			>10 (29%)	>	10 (21%)
21	-5			>10 (0%)	>	10 (23%)
22				>10 (19%)	>	>10 (8%)
23	-È-OMe			>10 (39%)	>	>10 (5%)
24		MeO 		>10 (4%)	>	>10 (4%)
25	-\$	OMe OMe		>10 (7%)	>	>10 (3%)

Table S1. Affinities of annelated imidazolone derivatives at human and rat CB1 receptors^a

27	MeO	>10 (42%)	>10 (12%)
	-§-OMe		
28	ξ / /	>10 (12%)	>10 (6%)
	-8-		
29	_{_{	>10 (29%)	>10 (6%)
	-5-10		
30	i i i i i i i i i i i i i i i i i i i	>10 (29%)	6.58 ± 1.77
31	hin	>10 (25%)	4.22 ± 1.36
32	ring CI	> 10 (0%)	8.24 ± 4.11
	O		
3/		2.00 ± 0.08	0.55 + 0.22
34		2.09 ± 0.08	0.35 ± 0.22
36		>10 (2%)	>10 (13%)
	o		
37	ring O	>10 (12%)	>10 (24%)
38		>10 (16%)	>10 (18%)
	_{/ ``/		
39	s —	>10 (26%)	>10 (-14%)
40	-{-{	>10 (-5%)	>10 (0%)
		1 (0 + 0 42	2.62 + 0.21
41		1.60 ± 0.42	3.63 ± 0.21
42		2.13 ± 0.47	2.01 ± 2.25

- S4 -

43	∼, , , , , , , , , , , , , , , , , , ,	0.25 ± 0.06	0.82 ± 0.09
44		2.16 ± 0.07	2.46 ± 0.21
45		2.29 ± 0.46	>10 (37%)
46		3.18 ± 0.49	2.53 ± 0.89
47	F	0.85 ± 0.03	0.73 ± 0.04
48		4.78 ± 1.70	>10 (27%)
49		>10 (35%)	>10 (4%)
Imida	zo[2,1-b][1,3]thiazepin-3-on	es (D)	
50	see above for structure	>10 (10%)	>10 (3%)
Imida	azo[2,1-b]thiazol-6-ones (E, n	= 1)	
51	-H	>10 (30%)	>10 (13%)
52	-COOC ₂ H ₅	>10 (26%)	>10 (0%)
Imida	azo[2,1-b]thiazol-5-ones (F, n	= 1)	
53	-H	21.1 ± 4.51	>10 (15%)
54	-COOC ₂ H ₅	>10 (2%)	>10 (38%)
Imida	azo[2,1- <i>b</i>][1,3]thiazin-2-ones	(E, n = 2)	
55	-H	>10 (13%)	>10 (4%)

Imida	Imidazo[2,1- <i>b</i>][1,3]thiazin-3-ones (F, $n = 2$)					
56	-H	>10 (25%)	7.68 ± 1.68			
Imida	azo[2,1-b][1,3]thiazepin-2-on	es (E, n= 3)				
57	-H	>10 (34%)	21.3 ± 2.17			
Imida	azo[2,1-b][1,3]thiazepin-3-on	es (F, n=3)				
58	-H	1.34 ± 0.37	3.94 ± 0.10			
a A 11 da	All data regult from three independent experiments, performed in duplicates					

^aAll data result from three independent experiments, performed in duplicates. ^bPercent inhibition of [³H]CP55,940 binding (0.1 nM)

Table S2. Potencies of selected compounds at the human GPR35^a

	human GPR35	human GPR35
compd	$EC_{50} \pm SEM (\mu M)$	$IC_{50} \pm SEM (\mu M)$
	(% of zaprinast activation) ^b	(% of zaprinast inhibition) ^c
10	>10 (-5%)	>10 (12%)
13	>10 (-22%)	≥10 (49%)
18	>10 (-4%)	>10 (17%)
27	>10 (-7%)	>10 (20%)
32	>10 (-1%)	>10 (3%)
43	>10 (6%)	>10 (1%)
44	>10 (-3%)	>10 (25%)

^aData represent means from three independent experiments, performed in duplicates. ^bZaprinast was used at a concentration of 30 µM (corresponding to a maximal effect). The measured effect was set as 100%.

^cZaprinast was used at a concentration of 5 µM (~EC₈₀).

Table S3. Affinities of annelated imidazolone derivatives at GABAa receptors of rat brain cortex^a

^aAll data result from three independent experiments, performed in duplicates.

^bPercent inhibition of [³H]diazepam binding (2 nM) by test compounds at a concentration of 10 μ M.

	$\begin{array}{c} H \\ R \\ H \\ R \\ N \\ S \\ S$	$\begin{array}{c} & & \\$	$(CH_{2})_{n} \rightarrow S$
Α	B C	D	E F
		β-arrest	in recruitment assay
compd	R	human GPR1	8 human GPR55
		$EC_{50} \pm SEM (\mu I)$ (% of Δ^9 -THC	M) $EC_{50} \pm SEM (\mu M)$ C (% of LPI activation) ^c
T 11 FA 1 17F1 A1		activation) ⁶	
Imidazo[2,1-b][1,3](thiazin-3-ones (A)	> 10	> 10
10	-ۇ-	(7%)	(32%)
11	\$	>10	>10
	-§-(CI	(13%)	(0%)
12	CI	>10	>10
	-5-	(0%)	(9%)
13	CI	>10	>10
	-ۇ	(20%)	(27%)
14	ା ପ୍ରା	>10	>10
	-8-	(17%)	(3%)
15	Cl	>10	>10
	-ۇ	(0%)	(0%)
16	Cl	>10	>10
	-\$-\$-\$-	(12%)	(15%)
17	E	>10	>10
1,	-{-}	(6%)	(0%)
18	F, F	>10	>10
		(4%)	(0%)
19		>10	>10
	-{-{-}}F	(11%)	(0%)

Table S4. Agonistic potencies of investigated compounds at human GPR18 and GPR55^a

20	-ξ-{-Br	>10 (0%)	>10 (26%)
21	-{-{-}	>10 (0%)	>10 (39%)
22	-§-(NO2	>10 (2%)	>10 (21%)
23	-ξ-OMe	>10 (0%)	>10 (37%)
24	OMe 	>10 (0%)	>10 (12%)
25	OMe −ξ-√OMe	>10 (0%)	>10 (6%)
26	OMe OMe	>10 (10%)	>10 (0%)
27	OMe −ξ−∕DMe	>10 (0%)	>10 (0%)
28	-{-	>10 (0%)	>10 (13%)
29	N	>10 (17%)	>10 (20%)
30	22 C C C C C C C C C C C C C C C C C C	>10 (5%)	>10 (13%)
31		>10 (0%)	>10 (37%)
32	CI	>10 (0%)	>10 (21%)
33		>10 (8%)	>10 (10%)

- S9 -	
--------	--

34		>10 (0%)	>10 (12%)
35		>10 (0%)	>10 (4%)
36		>10 (0%)	≥10 (49%)
37	, , , , , , , , , , , , , , , , , , ,	>10 (0%)	>10 (31%)
38	_ş	>10 (7%)	>10 (29%)
	Imidazo[2,1-b][1,3	thiazin-2-ones (B)	· · · · · · · · · · · · · · · · · · ·
39		>10	~10
	ş/	(9%)	(59%)
	Imidazo[2,1-b][1,3]t	hiazepin-3-ones (C)	
40	-\$-{>-	>10 (6%)	>10 (30%)
41		>10 (1%)	>10 (5%)
42		>10 (7%)	>10 (4%)
43	CI	>10 (0%)	10.7 ± 0.3 (70%)
44		>10 (0%)	≥10 (52%)
45		>10 (0%)	>10 (7%)

- S10 ·	-
---------	---

46		>10	>10		
		(0%)	(16%)		
	Ċ,				
47		>10	>10		
	F	(0%)	(19%)		
48	ju O	>10	>10		
		(19%)	(0%)		
	«o				
49		>10	>10		
		(0%)	(25%)		
	✓ y→o	((,,,))	()		
		hiazenin-3-ones (D)			
50		>10	>10		
	see above for structure	(14%)	(1%)		
		(1.7.5)	(1,0)		
	Imidazo[2 1_h]thia	rol_6_ones (F n - 1			
51	-H	>10	>10		
51		(21%)	(50%)		
		(2170)	(5070)		
		>10	10		
52		<10 (7%)	~ 10 (58%)		
		(770)	(3870)		
	1-5-ones (F, H = 1)	>10	>10		
55	-11	(129/)	≥ 10 (50%)		
		(1270)	(3070)		
		. 10	. 10		
54	-COOC ₂ H ₅	>10	>10		
		(11%)	(39%)		
Imidazo[2,1-b][1,3]th	$\mathbf{niazin-2-ones} \ (\mathbf{E}, \mathbf{n}=2)$				
55	-H	>10	~10		
		(11%)	(53%)		
Imidazo[2,1- <i>b</i>][1,3]thiazin-3-ones (F, n = 2)					
56	H-H	>10	>10		
		(14%)	(19%)		
Imidazo[2,1- <i>b</i>][1,3]thiazepin-2-ones (E, n = 3)					
57	-H	>10	>10		
		(11%)	(10%)		
Imidazo[2,1- b][1,3]thiazepin-3-ones (F, n = 3)					

- S11 -

58	-H	>10	>10
		(15%)	(54%)

^aAll data result from three independent experiments, performed in duplicates. ^bTHC was used in a concentration of 10 μ M. The measured effect was set as 100%. ^cLPI was used at a concentration of 1 μ M. The measured effect was set as 100%.

Table S5. GTP γ S binding studies of selected compounds at native rat cannabinoid CB₁ receptors (rat cortex) and human cannabinoid CB₁ or CB₂ receptors expressed in human embryonic kidney (HEK) (n=3)

	intrinsic activity of selected compounds at rat CB ₁ receptors normalized with respect to the full agonist 7 set at 100 % (% ± SEM)	intrinsic activity of selected compounds at human CB ₁ receptors normalized with respect to the full agonist 7 set at 100 % (% ± SEM)	intrinsic activity of selected compounds at human CB_2 receptors normalized with respect to the full agonist 7 set at 100 % (% ± SEM)
7	100 ^a	100 ^a	100 ^a
6	-42 ± 14^{b}	$-80 \pm 12^{\circ}$	n.d. ^d
30	-15 ± 5	- 49 ± 15	n.d. ^d
31	-9 ± 3	-33 ± 16	n.d. ^d
32	-7 ± 3	- 16 ± 9	n.d. ^d
34	-10 ± 3	- 51 ± 15	n.d. ^d
41	- 21 ± 2	- 37 ± 10	n.d. ^d
42	-26 ± 7	-35 ± 11	n.d. ^d
43	-15 ± 4	-40 ± 12	-59 ± 7
44	-12 ± 29	- 14 ± 12	n.d. ^d
46	-21 ± 3	- 44 ± 18	n.d. ^d
47	-16 ± 32	- 16 ± 3	n.d. ^d
56	-21 ± 3	- 31 ± 4	n.d. ^d
57	-19 ± 4	-48 ± 20	n.d. ^d
58	-15 ± 5	-16 ± 6	n.d. ^d

^athe full agonist **7** led to a maximal stimulation of 132 ± 3 % at rat CB₁, 161 ± 11 % at human CB₁ and 156 ± 14 % (n=2) at human CB₂ receptors over basal (= 100 %)

^bthe full inverse agonist **6** reduced [35 S]GTP γ S binding in rat cortical membranes from basal (= 100 %) to 88 ± 4 %

^cthe full inverse agonist **6** reduced [³⁵S]GTP γ S binding in human CB₁-transfected human embryonic kidney (HEK293) cells from basal (= 100 %) to 53 ± 7 % ^dnot determined

Compound screening in cAMP accumulation assays at human CB1 receptors

Figure S1. Effects on forskolin (10 μ M)-induced cAMP accumulation in CHO cells stably expressing the human CB₁ receptor by test compounds at a concentration of 1 μ M. AM281 (6) was used at a concentration of 250 nM and CP55,940 (7) at a concentration of 1 μ M. Data are expressed as means ± SEM of at least three separate experiments performed in duplicates. While the agonist 7 inhibited cAMP accumulation, neither antagonist 6, nor any of the test compounds led to an inhibition of cAMP accumulation at CB₁ receptors.

Compound screening in cAMP accumulation assays at human CB₂ receptors

Figure S2. Effects on forskolin (10 μ M)-induced cAMP accumulation in CHO cells stably expressing the human CB₂ receptor by test compounds at a concentration of 1 μ M. AM281 (6) was used at a concentration of 10 μ M and CP55,940 (7) at a concentration of 1 μ M. Data are expressed as means ± SEM of at least three separate experiments performed in duplicates. While the agonist 7 strongly inhibited cAMP accumulation, none of the test compounds led to an inhibition of cAMP accumulation at CB₂ receptors.