Supporting Info

Cite this: DOI: 10.1039/x0xx00000x

Synthesis and evaluation of linear CuAAColigomerized antifreeze neo-glycopeptides

S. van der Wal ${ }^{\text {a }}$ C.J. Capicciotti ${ }^{\text {b, }}$ S. Rontogianni ${ }^{\text {a }}$, R.N. Ben ${ }^{\text {b }}$, R.M.J. Liskamp*a

Received 00th January 2012,
Accepted 00th January 2012
DOI: 10.1039/x0xx00000x
www.rsc.org/

Abstract

Materials and methods General: All reactions were carried out at ambient temperatures unless stated otherwise. Solvents used in these synthesis procedures were supplied by BioSolve BV, (Valkenswaard, The Netherlands) and stored over molecular sieves $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ and THF on $4 \AA$ and MeCN on $3 \AA \AA$). Routine analysis of reaction progression and product identity was checked by thin layer chromatography (TLC) on Merck precoated silicagel $60 \mathrm{~F}_{254}$ glass plates. Spots were visualized by UV light and stained by ninhydrin or sulphuric acid charring for (protected) amine- and carbohydrate moieties respectively. Column chromatography was performed using Silicycle Siliflash P60 (40-63 $\mu \mathrm{m})$ silicagel obtained from Screening Devices (Amersfoort, The Netherlands) ${ }^{1} \mathrm{H}$ NMR spectra, ${ }^{13} \mathrm{C}$ and Attached proton test (APT) spectra were recorded on a Varian Gemini 300 spectrometer at 300 MHz and 75 MHz respectively. High pressure liquid chromatography was performed analytically on a Shimadzu automated HPLC system with a dual wavelength detector at 220 and 254 nm operating at a flowrate of $1 \mathrm{ml} / \mathrm{min}$. An Alltech Allima C8 column ($100 \AA, 5 \mu \mathrm{~m}, 250$ x 4.6 mm) column was used together with acetonitrile TFA buffers for elution (buffer A: 5:95 MeCN: $\mathrm{H}_{2} \mathrm{O} \mathrm{v} / \mathrm{v}+0.1 \%$ TFA and buffer B: 95:5 MeCN: $\mathrm{H}_{2} \mathrm{O} \mathrm{v} / \mathrm{v}+0.1 \% \mathrm{TFA}$) in a 20 - or 48 minute gradient. Preparative HPLC was performed on an Applied Biosystems system using identical buffers and an Alltech Alltima C8 column ($100 \AA, 10$ $\mu \mathrm{m}, 250 \times 22 \mathrm{~mm})$ and a gradient of 100 minutes. Electron spray mass spectrometry was performed on a Shimadzu LCMS-QP8000 single quadrupole spectrometer operating in positive mode. MALDI-TOF analysis was performed on a Kratos Axima CFR spectrometer using α-cyano-4-hydroxycinnamic acid as matrix.

(S)-2-azido-5-((tert-butoxycarbonyl)amino)pentanoic acid

(2)

To a solution of $\mathrm{H}-\mathrm{Orn}(\mathrm{Boc})-\mathrm{OH}(4.73 \mathrm{~g}, 20 \mathrm{mmol})$ in MeOH (100 ml), copper sulfate solution ($42 \mathrm{mg}, 0.2 \mathrm{mmol}$) in water (100 ml) was added, followed by $\mathrm{K}_{2} \mathrm{CO}_{3}(6.14 \mathrm{~g}, 44 \mathrm{mmol})$. Subsequently solid imidazole-1-sulfonyl-azide hydrochloride ${ }^{1}(5.13 \mathrm{~g}, 24 \mathrm{mmol})$ was added and the reaction mixture was stirred for 4 hours. The reaction mixture was concentrated to about 100 ml , acidified with 1 $\mathrm{M} \mathrm{KHSO}_{4}$ and extracted with EtOAc. The organic layer was washed with saturated sodium chloride and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After
filtration and concentration in vacuo, the residual oil was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and dicyclohexylamine ($4 \mathrm{ml}, 20 \mathrm{mmol}$) was added dropwise while stirring. After cooling at $-20^{\circ} \mathrm{C}$ overnight the white precipitate was collected by filtration and dried in vacuo to obtain the dicyclohexylamine salt of (S)-2-azido-5-((tertbutoxycarbonyl)amino) pentanoic acid ($8.28 \mathrm{~g}, 18.8 \mathrm{mmol}, 94 \%$) as a fine white powder.
The free acid for subsequent reactions and analysis was obtained by suspending the salt in EtOAc in an extraction funnel and washing with $1 \mathrm{M} \mathrm{KHSO}_{4}$. After drying the organic layer with saturated NaCl and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ the free acid was obtained as an oil in near quantitative yield.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=10.40(\mathrm{bs}, 1 \mathrm{H}, \mathrm{COOH}), 6.46+4.72$ (two bs. $1 \mathrm{H}, \mathrm{NH}$), 3.93 (bs, $1 \mathrm{H}, \alpha-\mathrm{CH}$), 3.15 (bs, $2 \mathrm{H}, \delta-\mathrm{CH}_{2}$), 1.89-1.77 (m, $2 \mathrm{H}, \beta-\mathrm{CH}_{2}$), $1.63\left(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{CH}_{2}\right), 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}-\mathrm{CH}_{3}\right)$
${ }^{1} \mathrm{H}$ NMR (CD $\left.{ }_{3} \mathrm{OD}\right): \delta=3.98(\mathrm{~m}, 1 \mathrm{H}, \alpha-\mathrm{CH}), 3.07(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\delta-\mathrm{CH}_{2}\right), 1.91-1.68\left(\mathrm{~m}, 2 \mathrm{H}, \beta-\mathrm{CH}_{2}\right), 1.59\left(\mathrm{~m}, 2 \mathrm{H}, \gamma-\mathrm{CH}_{2}\right), 1.43(\mathrm{~s}, 9 \mathrm{H}$, Boc- CH_{3})
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta=172.4,157.1,78.5,61.5,39.2,28.3,27.4$, 25.9

((N-tert-butoxycarbonyl)glycyl)-propargylamine (3a)

Propargylamine hydrochloride ($4.25 \mathrm{~g}, 40 \mathrm{mmol}$) and Boc-Gly-OH ($6.90 \mathrm{~g}, 40 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{ml})$. The stirred mixture was cooled on ice, and diisopropylethylamine (DiPEA, 21 $\mathrm{ml}, 120 \mathrm{mmol})$ was added, followed by BOP $(17.60 \mathrm{~g}, 40 \mathrm{mmol})$. After stirring for 2 h at room temperature, the mixture was concentrated, redissolved in EtOAc and subsequently washed with 1 M $\mathrm{KHSO}_{4}, 5 \% \mathrm{NaHCO}_{3}$ and saturated NaCl . After drying with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the product was crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes to yield colourless crystals of ((N-tert-butoxycarbonyl)glycyl)propargylamine ($6.6 \mathrm{~g}, 31 \mathrm{mmol}, 79 \%$ overall yield).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=6.46$ (bs, 1 H , amide-NH), 5.16 (bs, 1 H , BocNH), 4.06 (dd, $J_{1}=2.5 \mathrm{~Hz}, J_{2}=5.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$-propargyl), 3.81 (d, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}$, glycine- CH_{2}), $2.23(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$, alkyne- H), 1.45 (s, $9 \mathrm{H}, \mathrm{Boc}-\mathrm{CH}_{3}$)
${ }^{13} \mathrm{C}^{2}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=169.3,156.1,80.4,79.2,71.6,44.3,29.0$, 28.3

Triisopropylsilyl-((N-tert-butoxycarbonyl)glycyl)-

 propargylamine (3b)3-Triisopropylsilyl-propargylamine ${ }^{2}(5.0 \mathrm{~g}, 23 \mathrm{mmol})$, Boc-Gly-OH
$(3.83 \mathrm{~g}, 21.9 \mathrm{mmol})$ and DiPEA ($11.6 \mathrm{ml}, 21.9 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{ml})$ and cooled on ice. While stirring, BOP ($9.68 \mathrm{~g}, 21.9 \mathrm{mmol}$) was added. After 3 hours at room temperature the reaction mixture was concentrated in vacuo and redissolved in EtOAc. This was washed with $1 \mathrm{M}_{\mathrm{KHSO}}^{4}$, 5% NaHCO_{3} and saturated NaCl . After drying with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentration in vacuo, Triisopropylsilyl-((N-tert-butoxycarbonyl)glycyl)-propargylamine was obtained as a yellowish oil that solidified upon standing (8.61 gram, $23 \mathrm{mmol}, 99 \%$) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=6.19(\mathrm{bs}, 1 \mathrm{H}$, amide-NH), $5.08(\mathrm{~m}, 1 \mathrm{H}$, BocNH), 4.11 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$-propargyl), $3.80(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}$, glycine$\mathrm{CH}_{2}$), 1.46 ($\mathrm{s}, 9 \mathrm{H} \mathrm{Boc-CH} 3$), 1.06 ($\mathrm{s}, 21 \mathrm{H}$, TIPS)
${ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta=169.0,156.2,102.4,84.8,80.3,44.3,30.2$, 28.3, 18.5, 11.1

(S)-2-azido-5-((tert-butoxycarbonyl)amino)pentanoyl-glycylpropargylamine (4a)

The Boc-group in $3 \mathrm{a}(2.0 \mathrm{~g}, 9.4 \mathrm{mmol})$ was removed by 1:1 TFA/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 2 hours. After concentration in vacuo the oil was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$ and $\mathbf{2}(4.2 \mathrm{~g}$ as the dicyclohexylamine salt of 2, workup as stated at 2, 9.4 mmol), BOP $(4.2 \mathrm{~g}, 9.4 \mathrm{mmol})$ and DiPEA $(5.2 \mathrm{ml}, 30 \mathrm{mmol})$ were added. After 2 hours the reaction mixture was concentrated in vacuo, redissolved in EtOAc, washed with $1 \mathrm{M} \mathrm{KHSO}_{4}, 5 \% \mathrm{NaHCO}_{3}$ and brine. After drying of the organic layer over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtration the product was crystallized from EtOAc/ hexanes and obtained as a white solid ($1.8 \mathrm{~g}, 5.1 \mathrm{mmol}, 55 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) 6.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.73(\mathrm{~s}$, 1 H, Boc-NH), $4.06\left(\mathrm{~m}, 3 \mathrm{H}\right.$, propargyl- $\mathrm{CH}_{2}+$ Orn- $\alpha-\mathrm{CH}$), $3.96(\mathrm{~d}$, 2 H , gly- $\mathrm{CH}_{2} J=4.7 \mathrm{~Hz}$), $3.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Orn}-\delta-\mathrm{CH}_{2}\right), 2.26(\mathrm{~s}, 1 \mathrm{H}$, alkyne-H), $1.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Orn}-\beta-\mathrm{CH}_{2}\right), 1.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Orn}-\gamma-\mathrm{CH}_{2}\right), 1.44$ ($\mathrm{s}, 9 \mathrm{H}, \mathrm{Boc}-\mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=170.5,168.4,156.2,79.32,79.26,71.6,62.8$, 42.9, 39.7, 29.11, 29.08, 28.4, 25.9

Triisopropylsilyl-((S)-2-azido-5-((tert-butoxycarbonyl)-

amino)pentanoyl-glycyl)-propargylamine (4b)

This procedure was analogous to the preparation of $\mathbf{4 a}$, using the following amounts: 3b ($4.0 \mathrm{~g}, 10.8 \mathrm{mmol}$), and $2(4.8 \mathrm{~g}$ as the dicyclohexylamine salt of $\mathbf{2}$, workup as stated at $\mathbf{2}, 10.8 \mathrm{mmol}$), BOP $(4.8 \mathrm{~g}, 10.8 \mathrm{mmol})$ and DiPEA ($5.7 \mathrm{ml}, 32.4 \mathrm{mmol}$).
Purification by column chromatography instead of crystallization was performed using 10% acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain $\mathbf{4 b}$ as a colourless oil ($4.1 \mathrm{~g}, 8.1 \mathrm{mmol}, 75 \%$)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 6.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.70(\mathrm{~s}$, 1 H, Boc-NH), 4.11 ($\mathrm{m}, 2 \mathrm{H}$, propargyl- CH_{2}), 4.03 ($\mathrm{m}, 1 \mathrm{H}$, Orn- $\alpha-$ CH), 3.93 (d, 2H, glycine- $\mathrm{CH}_{2}, J=5.3 \mathrm{~Hz}$), $3.15\left(\mathrm{~m}, 2 \mathrm{H}\right.$, Orn- $\delta-\mathrm{CH}_{2}$), $1.89\left(\mathrm{~m}, 2 \mathrm{H}\right.$, Orn- $\left.\beta-\mathrm{CH}_{2}\right), 1.63\left(\mathrm{~m}, 2 \mathrm{H}\right.$, Orn- $\left.\gamma-\mathrm{CH}_{2}\right), 1.42(\mathrm{~s}, 9 \mathrm{H}$, Boc- CH_{3}), 1.04 (s, 21H, TIPS)
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right): \delta=170.3,167.7,156.2,102.1,85.1,79.4,63.0$, $43.0,39.5,30.4,29.2,28.4,26.0,18.5,11.1$

Tetraacetylated carboxymethyl galactoside-OSu ester (6)

Carboxymethyl tetraacetyl galactoside ${ }^{3,4,5}(1.0 \mathrm{~g}, 2.5 \mathrm{mmol})$ and $\mathrm{N}-$ hydroxysuccinimide ($0.3 \mathrm{~g}, 2.7 \mathrm{mmol}$) were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 ml) and cooled on ice. DCC ($0.6 \mathrm{~g}, 2.7 \mathrm{mmol}$) was subsequently added and the reaction mixture was stirred for 16 hours at room temperature. Precipitated DCU was removed by filtration and after concentration in vacuo to near dryness, more precipitation occurred. After another filtration step the product was crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / i \mathrm{PrOH}$ to yield $\mathbf{6}$ as white fluffy needles ($1.0 \mathrm{~g}, 2 \mathrm{mmol}$, 82\%)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=5.44(\mathrm{bs}, 1 \mathrm{H}, 4-\mathrm{H}), 5.37(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 5.20$ $(\mathrm{m}, 1 \mathrm{H}, 3-\mathrm{H}), 4.79\left(\mathrm{dt}, 1 \mathrm{H} 1-\mathrm{H}, J_{1}=J_{2}=6.3 \mathrm{~Hz}\right.$,), $4.30-4.10(\mathrm{~m}, 3 \mathrm{H}, 5-$ $\left.\mathrm{H}+6-\mathrm{CH}_{2}\right), 3.00\left(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{CH}_{2}\right), 2.84\left(\mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{xCH}_{2}-\mathrm{Osu}\right), 2.13(\mathrm{~s}$,

3 H , acetyl- CH_{3}), 2.08 (s, 3 H , acetyl- CH_{3}), 2.043 (s, 3 H , acetyl- CH_{3}), $2.037\left(\mathrm{~s}, 3 \mathrm{H}\right.$, acetyl- $\left.\mathrm{CH}_{3}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=170.5,170.0,169.8,169.6,168.7,165.6$, $69.5,68.6,67.9,67.2,67.0,60.9,30.4,25.5,20.6$

Triisopropylsilyl-((S)-2-azido-5-((peracetyl-1-carboxymethyl

 galactopyranoside)-amino)pentanoyl-glycyl)-propargylamine (5b)4b ($280 \mathrm{mg}, 0.55 \mathrm{mmol}$) was Boc-deprotected in $1: 1 \mathrm{TFA} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ for two hours. After concentration in vacuo the oil was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ and DiPEA $(0.26 \mathrm{ml}, 1.5 \mathrm{mmol})$ and $6(195 \mathrm{mg}$, 0.5 mmol) were added. The reaction mixture was allowed to stir for 2 hours after which it was concentrated in vacuo and redissolved in EtOAc and subsequently washed with 1 M KHSO and saturated NaCl . The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and after evaporation crude $\mathbf{5 b}$ was obtained.
Column chromatography using $4 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded $\mathbf{5 b}$ as a colourless oil. ($327 \mathrm{mg}, 0.42 \mathrm{mmol}, 84 \%$)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.37(\mathrm{t}, 1 \mathrm{H}, \mathrm{NH}, J=5.1 \mathrm{~Hz}), 6.65(\mathrm{~m}, 2 \mathrm{x} 1 \mathrm{H}$, NH), 5.41 (bs, 1H 4-H glycoside), 5.28 (m, 1H, 2-H glycoside), 5.18 ($\mathrm{m}, 1 \mathrm{H}, 3-\mathrm{H}$ glycoside), $4.70(\mathrm{~m}, 1 \mathrm{H}, 1-\mathrm{H}$ glycoside), 4.3-4.1 (m, $5 \mathrm{H}, 5-\mathrm{H}, 6-\mathrm{CH}_{2}$ glycoside, propargyl- CH_{2}), 4.06 (m, 1 H , Orn- $\alpha-$ $\mathrm{CH}), 3.96\left(\mathrm{~m}, 2 \mathrm{H}\right.$, glycine- CH_{2}), $3.30\left(\mathrm{~m}, 2 \mathrm{H}\right.$, Orn- $\delta-\mathrm{CH}_{2}$), 2.69$2.42\left(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{CH}_{2}\right.$ glycoside), $2.13\left(\mathrm{~s}, 3 \mathrm{H}\right.$, acetyl- CH_{3}), 2.08 (s, 3 H , acetyl- CH_{3}), $2.06\left(\mathrm{~s}, 3 \mathrm{H}\right.$, acetyl- CH_{3}), $2.05\left(\mathrm{~s}, 3 \mathrm{H}\right.$, acetyl- CH_{3}), $1.88\left(\mathrm{~m}, 2 \mathrm{H}\right.$, Orn- $\beta-\mathrm{CH}_{2}$), $1.66\left(\mathrm{~m}, 2 \mathrm{H}\right.$, Orn- $\gamma-\mathrm{CH}_{2}$), $1.06(\mathrm{~s}, 21 \mathrm{H}$, TIPS)
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=170.6,170.2,170.0,169.9,169.7,169.6$, $167.8,102.2,84.9,69.2,69.0,67.9,67.8,67.0,62.9,61.2,42.7$, $38.5,34.3,30.4,29.1,25.3,20.7,18.5,11.0$
((S)-2-azido-5-((peracetyl-1-carboxymethyl galactopyranoside)-amino)pentanoyl-glycyl)-propargylamine (5a)
5b ($160 \mathrm{mg}, 0.2 \mathrm{mmol}$) was dissolved in anhydrous THF (25 ml). Phenol ($96 \mathrm{mg}, 1.0 \mathrm{mmol}$) and TBAF. $3 \mathrm{H}_{2} \mathrm{O}(323 \mathrm{mg}, 1.0 \mathrm{mmol})$ were added and the reaction mixture was stirred for 2 h . The reaction mixture was diluted with EtOAc and washed with $\mathrm{H}_{2} \mathrm{O}$. After drying the organic layer with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentration in vacuo, the compound was purified through a small plug of silica using 4% MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield $\mathbf{5 a}$ as a white foam ($113 \mathrm{mg}, 0.18 \mathrm{mmol}$, 90\%)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.35(\mathrm{bt}, 1 \mathrm{H}, \mathrm{NH}, J=\sim 5 \mathrm{~Hz}), 6.87(\mathrm{bt}, 1 \mathrm{H}, \mathrm{NH}$, $J=\sim 5 \mathrm{~Hz}$), 6.62 (bt, 1H, NH, $J=\sim 5 \mathrm{~Hz}$), 5.42 (bs, 1H, 4-H glycoside), 5.27 (m, 1H, 2-H glycoside), 5.19 (m, 1H 3-H glycoside), 4.70 (m, $1 \mathrm{H}, 1-\mathrm{H}$ glycoside), 4.3-4.0 (m, $6 \mathrm{H}, 5-\mathrm{H}, 6-\mathrm{CH}_{2}$ glycoside, propargyl- CH_{2}, Orn- $\alpha-\mathrm{CH}$), 3.97 (d, 2 H , glycine- $\mathrm{CH}_{2}, J=5.1 \mathrm{~Hz}$), 3.31 (m, 2H, Orn- $\delta-\mathrm{CH}_{2}$), 2.7-2.4 (m, 2H, 1- CH_{2} glycoside), 2.29 (s, 1 H , alkyne-CH), $2.13\left(\mathrm{~s}, 3 \mathrm{H}\right.$, acetyl- $\left.\mathrm{CH}_{3}\right), 2.08\left(\mathrm{~s}, 3 \mathrm{H}\right.$, acetyl- CH_{3}), $2.06\left(\mathrm{~s}, 2 \times 3 \mathrm{H}\right.$, acetyl $\left.-\mathrm{CH}_{3}\right), 1.91\left(\mathrm{~m}, 2 \mathrm{H}\right.$, Orn- $\left.\beta-\mathrm{CH}_{2}\right), 1.66(\mathrm{~m}, 2 \mathrm{H}$, Orn- $\gamma-\mathrm{CH}_{2}$)
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=170.7,170.3,170.01,169.96,169.8,169.7$, $168.2,79.2,71.8,69.3,69.0,67.9,67.8,67.0,62.8,61.2,42.8,38.5$, 34.3, 29.2, 29.1, 25.1, 20.7, 20.6,

Conditions for copper click mediated oligomerization

Azido/alkyne-monomer 5 a ($100 \mathrm{mg}, 160 \mu \mathrm{~mol}$) was dissolved in a DiPEA/DMF solution $(400 \mu \mathrm{l}, 300 \mathrm{mM})$ in a 1.5 ml plastic reaction tube. A freshly prepared aqueous solution of TCEP ($200 \mathrm{mM}, 200$ $\mu \mathrm{l}$), was added to the monomer and shaken for 2 hours after which nitrogen evolution had ceased. Polymerization was then initiated by adding an aqueous copper sulfate solution ($240 \mathrm{mM}, 100 \mu \mathrm{l}$) followed by a freshly prepared aqueous sodium ascorbate solution ($720 \mathrm{mM}, 100 \mu \mathrm{l}$), added while vortexing. After 2 h the reaction mixture was diluted with acetonitrile/ water ($1: 2 \mathrm{v} / \mathrm{v}, 0.1 \%$ TFA added) and preparative HPLC was performed to separate oligomers by size. After lyophilisation the oligomers 7a, 8a and 9a were
obtained as white fluffy solids.

MALDI-TOF:

Trimer 7a (6 mg), calculated M for $\mathrm{C}_{78} \mathrm{H}_{110} \mathrm{~N}_{16} \mathrm{O}_{36}$ 1846.7, found $[M+\mathrm{H}]^{+}$1848.4, $[M+\mathrm{Na}]^{+}$1870.5, $[M+\mathrm{K}]^{+}$1886.7, $[M \text {-acetyl }+\mathrm{Na}]^{+}$ 1828.3.

Tetramer 8a (5.5 mg), calculated M for $\mathrm{C}_{104} \mathrm{H}_{146} \mathrm{~N}_{22} \mathrm{O}_{48}$ 2471.0, found $[M+\mathrm{Na}]^{+}$2494.4, $[M+\mathrm{K}]^{+} 2510.4[M \text {-acetyl }+\mathrm{Na}]^{+} 2452.4$.

Pentamer 9a (4 mg), calculated M for $\mathrm{C}_{130} \mathrm{H}_{182} \mathrm{~N}_{28} \mathrm{O}_{60}$ 3095.2, found $[M+\mathrm{Na}]^{+} 3118.0,[\mathrm{M}+\mathrm{K}]^{+} 3133.9$, $[M \text {-acetyl }+\mathrm{Na}]^{+} 3075.9$.
Higher oligomers ($>7 \mathrm{mer}, 30 \mathrm{mg}$), found $[8 \mathrm{mer}+\mathrm{Na}]^{+}$4990.8, $[9 \mathrm{mer}+\mathrm{Na}]^{+} 5615.8,[10 \mathrm{mer}+\mathrm{Na}]^{+} 6239.2$, higher oligomers did not ionize well enough to be distinguishable from the baseline noise.

Synthesis of reference compound OGG-Gal (1) and the Cterminal carboxamide analog 11
Fmoc-Orn(Boc)-OSu ($5.0 \mathrm{~g}, 9.1 \mathrm{mmol}$) (this N -hydroxysuccinimide ester of the commercially available protected amino acid was synthesized using the methodology described for compound 6 with 88% yield) was dissolved in THF (150 ml). To this solution, a solution of H-Gly-Gly-OH $(1.3 \mathrm{~g}, 10 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(1.68 \mathrm{~g}$, 20 mmol) in water (30 ml) were added. The reaction mixture was stirred for 16 hours, after which the THF was mostly removed in vacuo and the mixture was diluted with EtOAc. Washing with 1 M KHSO_{4} and drying gave the crude Fmoc-Orn(Boc)-Gly-Gly-OH, which was further purified by crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes to give a white solid (4.6 gram, 8.1 mmol) which was used directly for the next reaction.

Removal of the Boc-group from the ornithine residue (3.0 gram, 5.3 mmol) was performed with $1: 1 \mathrm{TFA} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 2 hours after which the reaction mixture was concentrated in vacuo and coevaporated with toluene to remove residual TFA. The residue was suspended in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(1: 1 \mathrm{v} / \mathrm{v}, 100 \mathrm{ml})$ and the pH was adjusted to 8.5 with DiPEA. Carbohydrate derivative $6(2.3 \mathrm{~g}, 4.8 \mathrm{mmol})$, dissolved in THF was added and the pH was kept at 8 for 3 hours. The now homogeneous reaction mixture was acidified with $1 \mathrm{M} \mathrm{KHSO}_{4}$ and extracted with EtOAc. The combined organic layers were dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and the residue was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (with a few drops of MeOH) by addition of $\mathrm{Et}_{2} \mathrm{O}$. Fmoc-Orn(carboxymethyl-Gal)-Gly-Gly-OH was obtained as a white powder (2.8 gram, $3.3 \mathrm{mmol}, 61 \%$ over the combined three steps). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ was comparable to previously published characterization. ${ }^{5}$
Solid phase chemistry was performed as previously described on a preloaded Fmoc-Gly-wang resin (to obtain compound 1) or FmocRink resin (to obtain compound 11) to yield the tetramer, ${ }^{5}$ which after deprotection (see below) was purified by preparative HPLC, using 0.1% TFA in water as buffer A to give retention and subsequently lyophilized to yield compound $\mathbf{1}$ and $\mathbf{1 1}$ as white fluffy solids.

CuAAC coupling of ethyl azidoacetate

Tetramer 8a ($6.5 \mathrm{mg}, 2.5 \mu \mathrm{~mol}$) and ethyl azidoacetate $(1 \mathrm{mg}, 7.5$ $\mu \mathrm{mol}, 3$ equiv.) were dissolved in THF ($400 \mu \mathrm{l}$). To this solution copper(II)sulfate pentahydrate $(0.2 \mathrm{mg}, 0.8 \mu \mathrm{~mol}, 0.33$ equiv. in 100 $\mu \mathrm{l}$ water) was added followed by sodium ascorbate ($1 \mathrm{mg}, 5 \mu \mathrm{~mol} 2$ equiv. in $100 \mu 1$ water). The reaction mixture was stirred for 6 hours, diluted with EtOAc, and washed with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution. The resulting crude glycopeptide was deacetylated (see below) and purified with preparative HPLC using 0.1% TFA in water as buffer A.

Typical Procedure for deacetylation

Acetylated glycopeptide oligomer was dissolved in dry MeOH (500

Thermal Hysteresis (TH) assay

Nanoliter osmometry was performed using a Clifton nanoliter osmometer (Clifton Technical Physics, Hartford, NY). ${ }^{9}$ All measurements were performed in a phosphate buffered saline (PBS) solution. Ice crystal morphology was observed through a Leitz compound microscope equipped with an Olympus $20 \times$ (infinitycorrected) objective, a Leitz Periplan $32 \times$ photo eyepiece, and a Hitachi KPM2U CCD camera connected to a Toshiba MV13K1 TV/VCR system. Still images were captured directly using a Nikon CoolPix digital camera.

Ice Recrystallization Inhibition (IRI) assay

Sample analysis for IRI activity was performed using the "splat cooling" method as previously described ${ }^{10}$ In this method, the analyte was dissolved in a phosphate buffered saline (PBS) solution and a $10 \mu \mathrm{~L}$ droplet of this solution was dropped from a micropipette through a two meter high plastic tube (10 cm in diameter) onto a block of polished aluminum precooled to approximately $-80^{\circ} \mathrm{C}$. The droplet froze instantly on the polished aluminum block and was approximately 1 cm in diameter and $20 \mu \mathrm{~m}$ thick. This wafer was then carefully removed from the surface of the block and transferred to a cryostage held at $-6.4^{\circ} \mathrm{C}$ for annealing. After a period of 30 min , the wafer was photographed between crossed polarizing filters using a digital camera (Nikon CoolPix 5000) fitted to the microscope. A total of three images were taken from each wafer. During flash freezing, ice crystals spontaneously nucleated from the supercooled solution. These initial crystals were relatively homogeneous in size and quite small. During the annealing cycle, recrystallization occurred, resulting in a dramatic increase in ice crystal size. A quantitative measure of the difference in recrystallization inhibition of two compounds is the difference in the ice crystal size distribution. Image analysis of the ice wafers was performed using a novel domain recognition software (DRS) program. ${ }^{11}$ This processing employed the Microsoft Windows Graphical User Interface to allow a user to visually demarcate and store the vertices of ice domains in a digital micrograph. The data was then used to calculate the domain areas. All data was plotted and analyzed using Microsoft Excel. The mean grain (or ice crystal) size (MGS) of the sample was compared to the MGS of the control PBS solution for that same day of testing. IRI activity is reported as the percentage of the MGS (\% MGS) relative to the PBS control, and the \% MGS for each sample was plotted along with its standard error of the mean. Small percentages represent a small MGS, which is indicative of more potent IRI activity.

1. E. D. Goddard-Borger and R. V Stick, Org. Lett., 2007, 9, 3797-3800.
2. I. E. Valverde, A. F. Delmas, and V. Aucagne, Tetrahedron, 2009, 65, 7597-7602.
3. J. R. Kramer and T. J. Deming, J. Am. Chem. Soc., 2010, 132, 15068-15071.
4. A. Giannis and K. Sandhoff, Tetrahedron Lett., 1985, 26, 1479-1482.
5. R. N. Ben, A. A. Eniade, and L. Hauer, Org. Lett., 1999, 1, 1759-1762.
6. V. R. Bouvet, G. R. Lorello, and R. N. Ben, Biomacromolecules, 2006, 7, 565-571.
7. R. Y. Tam, C. N. Rowley, I. Petrov, T. Zhang, N. A. Afagh, T. K. Woo, and R. N. Ben, J. Am. Chem. Soc., 2009, 131, 15745-15753.
8. N. Sreerama, S. Y. Venyaminov, and R. W. Woody, Anal. Biochem., 2000, 287, 243-251.
9. A. Chakrabartty and C. L. Hew, Eur. J. Biochem., 1991, 202, 1057-1063.
10. C. A. Knight, J. Hallett, and A. L. DeVries, Cryobiology, 1988, 25, 55-60.
11. J. Jackman, M. Noestheden, D. Moffat, J. P. Pezacki, S.

Findlay, and R. N. Ben, Biochem. Biophys. Res. Commun., 2007, 354, 340-344.

