Electronic Supplementary Material (ESI) for Medicinal Chemistry Communications. This journal is © The Royal Society of Chemistry 2014

Supporting Information for:

Sulfonium Ions as Inhibitors of the Mycobacterial

Galactofuranosyltransferase GlfT2

Jing Li and Todd L. Lowary*

Alberta Glycomics Centre and Department of Chemistry,

The University of Alberta, Gunning-Lemieux Chemistry Centre,

Edmonton, AB T6G 2G2, Canada.

Email: tlowary@ualberta.ca

Table of Contents

Fig. S1	85
Fig. S2	85
Scheme S1	85
Description of Preparation of Iodides	S6
Characterization Data for New Compounds and Additional Experimental Details	S6–23
References for Supporting Information	S23
¹ H NMR spectrum of 13	S24
¹³ C NMR spectrum (APT) of 13	S25
¹ H NMR spectrum of 14	S26
¹³ C NMR spectrum (APT) of 14	S27
¹ H NMR spectrum of 15	S28
¹³ C NMR spectrum (APT) of 15	S29

¹ H NMR spectrum of 16	S30
¹³ C NMR spectrum (APT) of 16	S31
¹ H NMR spectrum of 17	S32
¹³ C NMR spectrum (APT) of 17	\$33
¹ H NMR spectrum of 18	S34
¹³ C NMR spectrum (APT) of 18	S35
¹ H NMR spectrum of 20	S36
¹³ C NMR spectrum (APT) of 20	\$37
¹ H NMR spectrum of 21	S38
¹³ C NMR spectrum (APT) of 21	S39
¹ H NMR spectrum of 22	S40
¹³ C NMR spectrum (APT) of 22	S41
¹ H NMR spectrum of 25	S42
¹³ C NMR spectrum (APT) of 25	S43
¹ H NMR spectrum of 26	S44
¹³ C NMR spectrum (APT) of 26	S45
¹ H NMR spectrum of 27	S46
¹³ C NMR spectrum (APT) of 27	S47
¹ H NMR spectrum of 28	S48
¹³ C NMR spectrum (APT) of 28	S49
¹ H NMR spectrum of 29	S50
¹³ C NMR spectrum (APT) of 29	S51
¹ H NMR spectrum of S6	S52
¹³ C NMR spectrum (APT) of S6	\$53
¹ H NMR spectrum of 42	S54
¹³ C NMR spectrum (APT) of 42	S55

¹ H NMR spectrum of S7	S56
¹³ C NMR spectrum (APT) of S7	S57
¹ H NMR spectrum of 43	S58
¹³ C NMR spectrum of 43	S59
¹ H NMR spectrum of S8	S60
¹³ C NMR spectrum of S8	S61
¹ H NMR spectrum of 44	S62
¹³ C NMR spectrum of 44	S63
¹ H NMR spectrum of 46	S64
¹³ C NMR spectrum (APT) of 46	S65
¹ H NMR spectrum of 48	S66
¹³ C NMR spectrum (APT) of 48	S67
¹ H NMR spectrum of 50	S68
¹³ C NMR spectrum of 50	S69
¹ H NMR spectrum of 52	S70
¹³ C NMR spectrum of 52	S71
¹ H NMR spectrum of 54	S72
¹³ C NMR spectrum of 54	S73
¹ H NMR spectrum of 56	S74
¹³ C NMR spectrum (APT) of 56	S75
¹ H NMR spectrum of 58	S76
¹³ C NMR spectrum (APT) of 58	S77
¹ H NMR spectrum of 60	S78
¹³ C NMR spectrum of 60	S79
¹ H NMR spectrum of 62	S80
¹³ C NMR spectrum of 62	S81

¹ H NMR spectrum of 64	S82
¹³ C NMR spectrum of 64	S83
¹ H NMR spectrum of 65	S84
¹³ C NMR spectrum (APT) of 65	S85
¹ H NMR spectrum of 66	S86
¹³ C NMR spectrum (APT) of 66	S87
¹ H NMR spectrum of 67	S88
¹³ C NMR spectrum of 67	S89
¹ H NMR spectrum of 69	S90
¹³ C NMR spectrum of 69	S91
¹ H NMR spectrum of 71	S92
¹³ C NMR spectrum of 71	S93

Fig. S1 Crystal structure of 29.

Fig. S2 Sulfoxide byproduct S1.

Scheme S1 Reagents and conditions: (a) S2, NaH, DMF, S6: 36%; S7: 52%; S8: 57%; (b) MsCl, Et₃N, CH₂Cl₂; (c) Nal, Acetone, 42: 65%; 43: 61%; 44: 35%.

Preparation of iodides

Most of these alkyl halides were either commercially available or could be obtained via iodination of the corresponding commercially available alcohol using literature methods.^{S1} However, the uridine-based compounds 42-44 required additional synthetic effort. Their preparation started with, 2',3'-O-isopropylidene-5'-O-tosyl-3-(benzyloxymethyl)uridine (S2).^{S2} As illustrated in Scheme 5, reaction of S1 with 10 equivalents of diol S3, S4 or S5 and 1.2 equivalents of NaH in DMF afforded S6, S7 and S8 in 36%, 52% and 57% yield, respectively. Attempts to improve the yield of this displacement reaction by changing the ratio of the starting materials or the sequence reagent addition were unsuccessful. Compounds S6 and S7 were treated with MsCl to form the corresponding mesylates, which were subsequently heated with NaI at 50 °C to give iodides 42 and 43 in moderate yield (~60%). More vigorous conditions were required to convert S8 into the required iodide, presumably due to steric hindrance arising from the isoprovlidene moiety. After mesylation of S8, the intermediate was combined with freshly fused NaI in a sealed vessel and heated at 80 °C for 4 h, leading to 44 in 37% yield. Unreacted mesylate was also detected after the reaction. However the yield could not be improved by elongation of the reaction time or by raising the reaction temperature.

Experimental

All reagents were purchased from commercial sources and were used without further purification. Solvents used in reactions were pre-dried by PURESOLV-400 System from Innovative Technology Inc. All reactions were monitored by TLC on silica gel G-25 UV254 (0.25 mm, Macherey–Nagel). Spots were detected under UV light and/or by charring with acidified ethanolic anisaldehyde. Solvents were evaporated under reduced pressure and below 50 °C (water bath). Column chromatography was performed on silica gel 60 (40–60 μ m). The

ratio between silica gel and crude product ranged from 100:1 to 20:1 (w/w). Iatrobeads refers to a beaded silica gel 6RS-8060, which was manufactured by Iatron laboratories (Tokyo). ¹H NMR spectra were recorded on VARIAN INOVA-NMR spectrometers at 400, 500 or 600 MHz and chemical shifts are referenced to CDCl₃ (7.26, CDCl₃) or CD₃OD (4.78, CD₃OD). ¹³C NMR APT spectra were recorded at 100 or 125 MHz, and chemical shifts are referenced to CDCl₃ (77.23, CDCl₃) or CD₃OD (48.9, CD₃OD). ¹H NMR data are reported as though they are first order, and the peak assignments are made by 2D-NMR spectroscopy (¹H–¹H COSY and HMQC). HRMS-ESI spectra were recorded on samples suspended in THF or CH₃OH and added NaCl. Optical rotations were measured on Perkin-Elmer 241 Polarimeter with sodium D line (589 nm) and are in units of deg·mL (dm·g)⁻¹.

(*3R*,4*S*)-3-(benzyloxy)-4-((*S*)-1,2-bis(benzyloxy)ethyl)tetrahydrothiophene 1,1-dioxide (25):

To a solution of **21** (0.50 g, 1.15 mmol) in CH₂Cl₂ (15 mL) was added *m*-CPBA, (77%, 0.62 g, 2.76 mmol) at rt and the mixture was stirred for 20 min. The solution was diluted with CH₂Cl₂, and washed with NaOH (1 M). The organic layer was then washed with brine, dried (Na₂SO₄) and concentrated. The resulting residue was purified by chromatography (EtOAc–Hexane 1:4) to give **25** (0.50 g, 94%) as a colorless oil: R_f = 0.29 (EtOAc–Hexane 1:3); [α]_D²⁰ –62.7 (*c* 0.2, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.39–7.22 (m, 15H), 4.66 (d, *J* = 11.7 Hz, 1H), 4.56–4.48 (m, 2H), 4.38–4.32 (m, 2H), 4.26 (d, *J* = 11.7 Hz, 1H), 4.20 (ddd, *J* = 7.8, 7.8, 7.8 Hz, 1H), 3.95 (ddd, *J* = 2.5, 5.0, 5.0 Hz, 1H), 3.56–3.47 (m, 2H), 3.39 (dd, *J* = 7.8, 13.1 Hz, 1H), 3.25 (m, 2H), 2.99 (dd, *J* = 7.8, 13.1 Hz, 1H), 2.70 (dddd, *J* = 2.5, 7.8, 9.4, 9.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 137.9, 137.6, 136.9, 128.6, 128.5, 128.4, 128.3, 128.1, 128.0, 127.9, 127.8, 127.7, 74.4, 73.5, 73.4, 72.6, 72.4, 70.6, 56.1, 51.4, 45.5; HRMS-ESI *m/z* [M+Na]⁺ calcd for C₂₇H₃₀O₅SNa: 489.1706, found: 489.1704.

(3*R*,4*R*)-3-(benzyloxy)-4-((*S*)-1,2-bis(benzyloxy)ethyl)tetrahydrothiophene 1,1-dioxide (26): To a solution of tetrahedrothiophene 22 (25.3 mg, 0.061 mmol) in CH₂Cl₂ (3 mL) was added *m*-CPBA (77%, 34.1 mg, 1.53 mmol) at rt and the mixture was stirred for 20 min. The solution was then diluted with CH₂Cl₂, and washed with NaOH (1 M). The organic layer was washed with brine, dried (Na₂SO₄) and concentrated. The residue was purified by chromatography (EtOAc–Hexane 1:4) to give 26 as a colorless oil (26.6 mg, 94%): R_f = 0.22 (EtOAc–Hexane 1:3); $[\alpha]_D^{20}$ –66.4 (*c* 0.6, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.38–7.24 (m, 15H), 4.66 (d, *J* = 11.4 Hz, 1H), 4.59–4.56 (m, 3H), 4.49 (d, *J* = 12.1 Hz, 1H), 4.38 (d, *J* = 11.4 Hz, 1H), 3.47 (d, *J* = 14.0 Hz, 1H), 3.39 (dd, *J* = 3.7, 3.7, 9.7 Hz, 1H), 3.14–3.04 (m, 3H), 2.87 (dddd, *J* = 2.9, 7.2, 9.7, 13.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 138.1, 137.6, 136.9, 128.6, 128.5, 127.7, 127.6, 127.5, 76.0, 75.2, 73.5, 72.2, 71.1, 69.5, 59.9, 51.6, 44.8; HRMS-ESI *m/z* [M+Na]⁺ calcd for C₂₇H₃₀O₅SNa: 489.1706, found: 489.1702.

(*3R*,4*S*)-3-(hydroxyl)-4-((*S*)-1,2-dihydroxyethyl)tetrahydrothiophene 1,1-dioxide (27): To a solution of 25 (110 mg, 0.2 mmol) in CH₃OH (5 mL) and CH₂Cl₂ (1 mL) was added HOAc (10 μL) and Pd–C (10%, 10 g). The reaction mixture was stirred under a H₂ atmosphere for 48 h at rt. The solution was filtered and the filtrate was concentrated to give 27 as a colorless oil (48 mg, 98%): R_f = 0.22 (CH₂Cl₂–CH₃OH 9:1); [α]_D²⁰–56.9 (*c* = 2.6, CH₃OH); ¹H NMR (500 MHz, CD₃OD) δ 4.42 (ddd, *J* = 7.9, 7.9, 7.9 Hz, 1H), 3.97 (ddd, *J* = 3.2, 6.0, 6.0 Hz, 1H), 3.52–3.31 (m, 3H), 3.26 (dd, *J* = 8.0, 13.3 Hz, 1H), 3.14 (dd, *J* = 11.2, 13.3 Hz, 1H), 2.99 (dd, *J* = 7.9, 13.3 Hz, 1H), 2.47 (dddd, *J* = 3.2, 7.9, 8.0, 11.2 Hz, 1H); ¹³C NMR (125 MHz, CD₃OD) δ 69.7, 69.1, 66.0, 59.3, 52.6, 48.3; HRMS-ESI *m/z* [M+Na]⁺ calcd for C₆H₁₂O₅SNa: 219.0298, found: 219.0298.

(3*R*,4*R*)-3-(hydroxyl)-4-((*S*)-1,2-dihydroxyethyl)tetrahydrothiophene1,1-dioxide (28): To a solution of 26 (0.39 g, 0.8 mmol) in CH₃OH (15 mL) and CH₂Cl₂ (3 mL) was added HOAc

(50 μL) and Pd–C (10%, 40 mg). The solution was stirred under a H₂ atmosphere for 20 h at rt. The solution was filtered and the filtrate was concentrated to give **28** as a colorless oil (0.17 g, 98%): $R_f = 0.20$ (CH₂Cl₂–CH₃OH 9:1); [α]_D²⁰ –31.6 (*c* 1.31 in CH₃OH); ¹H NMR (500 MHz, CD₃OD) δ = 4.77 (dd, J = 3.3, 3.5 Hz, 1H), 3.82 (m, 1H), 3.62 (dd, J = 4.0, 11.5 Hz, 1H), 3.51 (dd, J = 5.1, 11.5 Hz, 1H), 3.39–3.19 (m, 2H), 3.12 (d, J = 10.3 Hz, 2H), 2.53 (dddd, J = 3.3, 10.3, 10.3, 10.3 Hz, 1H); ¹³C NMR (125 MHz, CD₃OD) δ 71.3, 69.3, 66.0, 62.7, 52.1, 46.1; HRMS-ESI m/z [M+Na]⁺ calcd for C₆H₁₂O₅SNa: 219.0298, found: 219.0298.

(3R,4R)-3-(hydroxyl)-4-((2-(2,4-dinitrophenyl)hydrazinylidene)methyl)tetra-hydrothiop

hene 1,1-dioxide (29): To a solution of 28 (0.10 g, 0.51 mmol) in THF (3 mL) and H₂O (0.5 mL) was added NaIO₄ (0.16 g, 0.76 mmol) and NaHCO₃ (0.09 g, 1.0 mmol). The mixture was stirred for 30 min and then the precipitate was filtered. The filtrate was concentrated and the resulting residue was purified by chromatography (CH₂Cl₂–CH₃OH, 20:1). The product (R_f = 0.5 (CH₂Cl₂–CH₃OH, 9:1)) was dissolved in CH₃OH and was added a solution of (2,4-dinitrophenyl)hydrazine (1 M, 1 mL). After stirring for 10 min, the mixture was concentrated and the resulting residue was purified by chromatography (CH₂Cl₂–CH₃OH, 19:1) to give 29 as a yellow solid (51 mg, 30%). This solid was recrystallized from CH₃OH and acetone. R_f = 0.23 (CH₂Cl₂–CH₃OH, 19:1); mp: 89–90 °C; (α] $_D^{20}$ +4.9 (c 0.1, acetone); ¹H NMR (500 MHz, CD₃COCD₃) δ 8.97 (d, J = 2.7 Hz, 1H), 8.39–8.36 (m, 1H), 8.09–8.06 (m, 2H), 4.98 (m, 1H), 3.64–3.59 (m, 2H), 3.44 (dd, J = 5.0, 13.8 Hz, 1H), 3.33 (m, 1H), 3.25 (dd, J = 1.6, 13.8, Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 150.7; 144.5, 136.8, 129.6, 129.0, 122.8, 116.4, 68.7, 60.7, 50.6, 44.9; HRMS-ESI m/z [M+Na]⁺ calcd for C₁₁H₁₂N₄O₇SNa: 367.0319, found: 367.0321.

2',3'-O-isopropylidene-5'-O-(3-hydroxylpropyl)-3-(benzyloxymethyl)uridine (S6): To a solution of **S2** (0.50 g, 0.9 mmol) and 1,3-propanediol (**S3**) (0.69 g, 9.0 mmol) in DMF (4 mL) at 0 °C was added NaH (72 mg, 1.8 mmol, 60% in mineral oil). The solution was stirred at rt

for 20 h and then was added water H₂O (10 mL). The mixture was extracted with Et₂O. The organic layer was washed with brine, dried (MgSO₄) and concentrated. The residue was purified by chromatography (EtOAc–Hexane 2:1) to give **S6** as a colorless oil (0.15 g, 36%): $R_f = 0.14$ (EtOAc–Hexane 2.5:1); $[\alpha]_D^{20} -3.3$ (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.2 Hz, 1H), 7.38–7.23 (m, 5H), 5.77 (d, J = 1.9 Hz, 1H), 5.73 (d, J = 8.2 Hz, 1H), 5.50 (d, J = 9.7 Hz, 1H), 5.47 (d, J = 9.7 Hz, 1H), 4.81–4.77 (m, 2H), 4.70 (s, 2H), 4.37 (ddd, J = 3.0, 3.0, 4.5 Hz, 1H), 3.73–3.69 (m, 3H), 3.67–3.58 (m, 3H), 1.83–1.77 (m, 2H), 1.58 (s, 3H), 1.37 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 162.6; 150.8, 139.9, 137.9, 128.3, 127.6, 114.1, 101.6, 94.4, 85.9, 85.2, 80.9, 72.3, 70.9, 70.3, 69.6, 60.6, 32.2, 27.2, 25.4; HRMS-ESI m/z [M+Na]⁺ calcd for C₂₃H₃₀N₂O₈Na: 485.1894, found: 485.1894.

2'3'-O-isopropylidene-5'-O-(3-iodopropyl)-3-(benzyloxymethyl) uridine (42): To a solution of compound S6 (150 mg, 0.32 mmol) in CH₂Cl₂ (10 mL) was added Et₃N (1 mL) and MsCl (43 mg, 0.38 mmol) at 0 °C. The mixture was stirred for 30 min at rt and then was added H₂O (10 mL). The organic layer was washed with brine, dried over MgSO₄ and concentrated to give the crude mesylate. The mesylate was dissolved in acetone (10 mL) and then reacted with fresh fused NaI (70 mg, 0.47 mmol). The reaction was heated at 50 °C for 4 h, cooled and concentrated. The crude product was purified by chromatography (EtOAc-Hexane 1:2) to give 42 as a colorless oil (121 mg, 65%): $R_f = 0.11$ (EtOAc-Hexane 1:2); $[\alpha]_{D}^{20}$ -6.0 (c 1.6, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.47 (d, J = 8.1 Hz, 1H), 7.40–7.28 (m, 5H), 5.83 (d, J = 2.2 Hz, 1H), 5.76 (d, J = 8.1 Hz, 1H), 5.52 (d, J = 9.7 Hz, 1H), 5.49 (d, J = 9.7 Hz, 1H), 4.82 (dd, J = 3.0, 6.2 Hz, 1H), 4.78 (dd, J = 2.2, 6.2 Hz, 1H), 4.73 (s, 2H), 4.41 (ddd, J = 3.0, 3.1, 4.4 Hz, 1H), 3.76 (dd, J = 3.0, 10.5 Hz, 1H), 3.65 (dd, J = 4.4, 10.5 Hz, 1H), 3.65 (dd, {Hz}, 10.5 Hz, 1H), 3.59-3.56 (m, 2H), 3.22 (dd, J = 6.8, 6.8 Hz, 2H), 2.07-2.02 (m, 2H), 1.62 (s, 3H), 1.39 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 162.6; 150.8, 139.6, 137.9, 128.2, 127.6, 114.1, 101.5, 94.2, 86.0, 85.4, 80.9, 72.3, 71.0, 70.9, 70.3, 32.8, 27.2, 25.4, 2.5; HRMS-ESI $m/z [M+H]^+$ calcd for C₂₃H₃₀N₂O₇I: 595.0912, Found: 595.0912.

2',3'-*O*-isopropylidene-5'-*O*-(4-hydroxylbutyl)-3-(benzyloxymethyl)uridine (S7): To a solution of S1 (0.89 g, 1.6 mmol) and 1,4-butanediol (S4) (1.62 g, 19.4 mmol) in DMF (4 mL) at 0 °C was added NaH (128 mg, 3.2 mmol, 60% in mineral oil). The reaction was stirred at rt for 20 h and then was added H₂O (10 mL). The mixture was extracted with Et₂O and the organic layer was washed with brine, dried (MgSO₄) and concentrated. The resulting residue was purified by chromatography (EtOAc–Hexane 2:1) to give S7 as a colorless oil (0.40 g, 52%): $R_f = 0.16$ (EtOAc–Hexane 2.5:1); $[\alpha]_D^{20}$ –3.7 (c = 2.4, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.53 (d, J = 8.1 Hz, 1H), 7.36–7.23 (m, 5H), 5.83 (s, 1H), 5.71 (d, J = 8.1 Hz, 1H), 5.59 (d, J = 9.8 Hz, 1H), 5.45 (d, J = 9.8 Hz, 1H), 4.78–4.74 (m, 2H), 4.70 (s, 2H), 4.38 (ddd, J = 2.6, 2.6, 3.9 Hz, 1H), 3.69 (dd, J = 2.6, 10.7 Hz, 1H), 3.61–3.57 (m, 3H), 3.59–3.46 (m, 2H), 1.64–1.55 (m, 4H), 1.57 (s, 3H), 1.36 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 162.7; 150.9, 139.7, 137.9, 128.3, 127.6, 114.0, 101.4, 94.0, 85.9, 85.4, 80.9, 72.3, 71.6, 70.7, 70.3, 62.4, 29.5, 27.2, 26.2, 25.4; HRMS-ESI m/z [M+Na]⁺ calcd for C₂₄H₃₂N₂O₈Na: 499.2051, found: 499.2046.

2'3'-O-isopropylidene-5'-O-(4-iodobutyl)-3-(benzyloxymethyl) uridine (43): To a solution of compound **S7** (140 mg, 0.29 mmol) in CH₂Cl₂ (10 mL) was added Et₃N (1 mL) and MsCl (40 mg, 0.35 mmol) at 0 °C. The mixture was stirred for 30 min at rt and then was added H₂O (10 mL). The organic layer was washed with brine, dried over MgSO₄ and concentrated to give the crude mesylate. The mesylate was dissolved in acetone (10 mL) and was reacted with fresh fused NaI (65 mg, 0.44 mmol). The reaction was heated at 50 °C for 4 h, cooled and concentrated. The crude product was purified by chromatography (EtOAc–Hexane 1:2) to give **43** as a colorless oil (105 mg, 61%): R_f = 0.17 (EtOAc–Hexane 1:2); [α] $_D^{20}$ –7.4 (c = 0.6, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.48 (d, J = 8.1 Hz, 1H), 7.36–7.23 (m, 5H), 5.82 (d, J = 1.9 Hz, 1H), 5.72 (d, J = 8.1 Hz, 1H), 5.49 (d, J = 9.8 Hz, 1H), 5.45 (d, J = 9.8 Hz, 1H), 4.77–4.73 (m, 2H), 4.69 (s, 2H), 4.37 (ddd, J = 2.3, 3.1, 3.9 Hz, 1H), 3.68 (dd, J = 2.3, 10.6

Hz, 1H), 3.58 (dd, J = 3.9, 10.6 Hz, 1H), 3.51–3.43 (m, 2H), 3.16 (dd, J = 6.7, 6.7 Hz, 2H), 1.86–1.80 (m, 2H), 1.68–1.62 (m, 2H), 1.58 (s, 3H), 1.36 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 162.6; 150.9, 139.6, 137.9, 128.3, 127.6, 114.0, 101.5, 94.0, 85.9, 85.4, 80.9, 72.3, 70.8, 70.5, 71.4, 30.4, 30.1, 27.2, 25.4, 6.3; HRMS-ESI *m*/*z* [M+H]⁺ calcd for C₂₄H₃₂N₂O₇I: 587.1249, found: 587.1260.

2'3'-O-isopropylidene-5'-O-((2S,3S)-2,3-O-isopropylidene-2,3,4-trihydroxyl-butyl)-3-(be

nzyloxymethyl) uridine (S8): To a solution of **S1** (0.61 g, 1.09 mmol) and **S5** (1.77 g, 10.9 mmol) in DMF (3 mL) was added NaH (66 mg, 1.63 mmol, 60% in mineral oil) at 0 °C. The reaction mixture was then warmed to rt, stirred overnight and was added H₂O (10 mL). The mixture was extracted with Et₂O and the organic layer was washed with brine, dried (MgSO₄) and concentrated. The resulting residue was purified by chromatography (EtOAc–Hexane 2:1) to give **S8** as a colorless oil (0.340 g, 57 %): R_f = 0.29 (EtOAc–Hexane 2.5:1); [*α*] $_D^{20}$ –9.6 (*c* 1.9, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ = 7.45 (d, *J* = 8.2 Hz, 1H), 7.37–7.23 (m, 5H), 5.80 (d, *J* = 2.1 Hz, 1H), 5.74 (d, *J* = 8.2 Hz, 1H), 5.49 (d, *J* = 9.7 Hz, 1H), 5.45 (d, *J* = 9.7 Hz, 1H), 4.82–4.76 (m, 2H), 4.70 (s, 2H), 4.33 (ddd, *J* = 3.2, 3.2, 4.4 Hz, 1H), 4.04 (ddd, *J* = 4.9, 4.9, 8.3 Hz, 1H), 3.87 (ddd, *J* = 4.2, 4.2, 8.3 Hz, 1H), 3.79–3.75 (m, 2H), 3.71 (dd, *J* = 4.5, 10.7 Hz, 1H), 3.66–3.63 (m, 3H), 1.58 (s, 3H), 1.41 (s, 6H), 1.36 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ = 162.6; 150.9, 140.1, 137.9, 128.3, 127.6, 114.0, 109.5, 101.9, 94.0, 85.6, 84.8, 80.7, 78.6, 76.4, 72.3, 71.9, 71.4, 70.3, 62.1, 27.2, 27.1, 27.0, 25.4; HRMS-ESI *m/z* [M+Na]⁺ calcd for C₂₇H₃₆N₂O₁₀Na: 571.2262, found: 571.2265.

2'3'-O-isopropylidene-5'-O-((2S,3R)-4-iodo-2,3-O-isopropylidene-2,3-dihydr-oxyl-butyl)-3-(benzyloxymethyl) uridine (44): To a solution of compound **S8** (340 mg, 0.62 mmol) in CH_2Cl_2 (10 mL) was added Et_3N (1 mL) and MsCl (85 mg, 0.74 mmol) at 0 °C. The mixture was stirred for 30 min at rt and then was added H_2O (10 mL). The solution was extracted with Et_2O and the organic layer was washed with brine, dried over MgSO₄ and concentrated to give the crude mesylate. The mesylate was dissolved in acetone (10 mL) and then reacted with fresh fused NaI (140 mg, 0.93 mmol) in a sealed vessel at 80 °C for 4 h, cooled and concentrated. The iodide was purified by chromatography (EtOAc–Hexane 1:2) to give 44 as a colorless oil (141 mg, 35%): R_f = 0.43 (EtOAc–Hexane 1:1); [α]_D²⁰ –11.6 (c = 2.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.48 (d, J = 8.2 Hz, 1H), 7.38–7.24 (m, 5H), 5.84 (d, J = 2.6 Hz, 1H), 5.75 (d, J = 8.2 Hz, 1H), 5.50 (d, J = 9.7 Hz, 1H), 5.46 (d, J = 9.7 Hz, 1H), 4.82 (dd, J = 3.3, 6.3 Hz, 1H), 4.79 (dd, J = 2.5, 6.3 Hz, 1H), 4.70 (s, 2H), 4.35 (ddd, J = 3.1, 3.3, 4.4 Hz, 1H), 3.93 (ddd, J = 3.9, 5.6, 7.3 Hz, 1H), 3.85 (ddd, J = 5.5, 5.5, 7.3 Hz, 1H), 3.80 (dd, J = 3.1, 10.7 Hz, 1H), 3.75 (dd, J = 3.9, 10.6 Hz, 1H), 3.73 (dd, J = 4.4, 10.7 Hz, 1H), 3.67 (dd, J = 5.6, 10.6 Hz, 1H), 3.29 (d, J = 5.5 Hz, 2H), 1.59 (s, 3H), 1.44 (s, 3H), 1.40 (s, 3H), 1.36 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 162.6; 150.9, 140.0, 137.9, 128.3, 127.6, 114.3, 109.9, 102.0, 93.8, 85.6, 84.8, 80.8, 80.3, 76.9, 72.3, 72.1, 71.5, 70.3, 27.4, 27.3, 27.2, 25.4, 5.8; HRMS-ESI m/z [M+Na]⁺ calcd for C₂₇H₃₅N₂O₉INa: 681.1280, found: 681.1285.

(3*R*,4*S*)-3-(benzyloxy)-4-((*S*)-1,2-bis(benzyloxy)ethyl)-1-propyl-tetrahydro-1*H*-thiopheni um tetrafluoroborate (45): Using the general procedure for preparation of sulfonium ions, compound 21 (69 mg, 0.16 mmol) was treated with 30 (27.2 mg, 0.16 mmol) and AgBF₄ (32 mg, 0.16 mmol) to give 45 as a colorless oil (65 mg, 73%): R_f = 0.69 (CH₂Cl₂–CH₃OH, 9:1); HRMS-ESI *m*/*z* [M–BF₄]⁺ calcd for C₃₀H₃₇O₃S: 477.2458, found: 477.2459. The compound used in the next step without further characterization.

(3R,4S)-3-((S)-1,2-dihydroxyethyl)-4-hydroxy-1-propyl-tetrahydro-1*H*-thiophenium

chloride (46): Using the general procedure for the benzyl deprotection, **45** (44 mg, 0.078 mmol) was treated with BCl₃ (1 M in CH₂Cl₂) and then Amberlyst (Cl⁻ form) to give **46** as a 70:30 mixture of inseparable stereoisomers as a colorless oil (13 mg, 72%): $R_f = 0.06$ (CH₃OH); ¹H NMR (500 MHz, CD₃OD) δ 4.74 (dd, J = 2.0, 2.0 Hz, 0.7H), 4.67 (ddd, J = 5.4, 5.6, 5.6 Hz, 0.3H), 3.89–3.75 (m, 2H), 3.66–3.61 (m, 1H), 3.57–3.34 (m, 6H), 3.05 (dddd, J =

1.6, 2.1, 4.8, 6.6 Hz, 0.7H), 2.66 (dddd, J = 2.6, 6.0, 6.0, 8.6 Hz, 0.3H), 1.90–1.82 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H); ¹³C NMR (125 MHz, CD₃OD) δ 80.0; 77.2, 70.9, 70.0, 66.1, 65.3, 53.8, 52.9, 50.3, 49.4, 48.1, 45.5, 42.9, 40.2, 20.5, 20.2, 13.1, 13.0; HRMS-ESI *m/z* [M–Cl]⁺ calcd for C₉H₁₉O₃S: 207.1049, found: 207.1050.

(3R,4S)-3-(benzyloxy)-4-((S)-1,2-bis(benzyloxy)ethyl)-1-propyl-tetrahydro-1H-thiopheni

um tetrafluoroborate (47): Using the general procedure for the preparation of sulfonium ions, 21 (69 mg, 0.16 mmol) was treated with 31 (38.2 mg, 0.16 mmol) and AgBF₄ (31 mg, 0.16 mmol) to give 47 as a colorless oil (76 mg, 77%): $R_f = 0.70$ (CH₂Cl₂–CH₃OH, 9:1); HRMS-ESI m/z [M–BF₄]⁺ calcd for C₃₅H₄₇O₃S: 547.3240, found: 547.3245. The compound used in the next step without further characterization.

(3R,4S)-3-((S)-1,2-dihydroxyethyl)-4-hydroxy-1-octyl-tetrahydro-1H-thiophenium

chloride (48): Using the general procedure for the benzyl deprotection, **47** (76 mg, 0.12 mmol) was treated with BCl₃ (1 M in CH₂Cl₂) and then Amberlyst (Cl⁻ form) to give **48** as a 70:30 mixture of inseparable stereoisomers as a colorless oil (32 mg, 86%): R_f 0.06 (CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 4.74 (dd, J = 1.9, 1.9 Hz, 0.7H), 4.67 (ddd, J = 5.5, 5.7, 5.7 Hz, 0.3H), 3.89–3.74 (m, 2H), 3.66–3.61 (m, 1H), 3.57–3.30 (m, 6H), 2.97 (dddd, J = 1.7, 3.3, 4.8, 6.6 Hz, 0.7H), 2.66 (m, J = 2.3, 5.9, 5.9, 8.6 Hz, 0.3H), 1.87–1.77 (m, 2H), 1.52–1.45 (m, 2H), 1.49–1.35 (m, 8H), 0.90 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CD₃OD) δ 80.0; 77.2, 70.9, 70.0, 66.1, 65.3, 53.8, 51.6, 50.3, 48.1, 46.9, 43.7, 42.9, 40.2, 32.9, 30.1, 30.0, 29.5, 29.4, 26.8, 26.5, 14.4; HRMS-ESI m/z [M–Cl]⁺ calcd for C₁₄H₂₉O₃S: 277.1832, found: 277.1832.

(3*R*,4*S*)-3-(benzyloxy)-4-((*S*)-1,2-bis(benzyloxy)ethyl)-1-isobutyl-tetrahydro-1*H*-thiophen ium tetrafluoroborate (49): Using the general procedure for the preparation of sulfonium ions, 21 (77 mg, 0.18 mmol) was reacted with 32 (34 mg, 0.18 mmol) and AgBF₄ (35 mg, 0.18 mmol) to give 49 as a colorless oil (24.3 mg, 24%): $R_f = 0.70$ (CH₂Cl₂-CH₃OH, 9:1); HRMS-ESI m/z [M–BF₄]⁺ calcd for C₃₁H₃₉O₃S: 491.2614, found: 491.2617. The compound used in the next step without further characterization.

(3R,4S)-3-((S)-1,2-dihydroxyethyl)-4-hydroxy-1-isobutyl-tetrahydro-1H-thiophenium

chloride (50): Using the general procedure for the benzyl deprotection, **49** (45 mg, 0.078 mmol) was treated with BCl₃ (1 M in CH₂Cl₂) and then Amberlyst (Cl⁻ form) to give **50** as a 70:30 mixture of inseparable stereoisomers as a colorless foam (18 mg, 88%): $R_f = 0.06$ (CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 4.74 (dd, J = 2.0, 2.0 Hz, 0.7H), 4.68 (ddd, J = 5.2, 5.2, 5.2 Hz, 0.3H), 3.92 (dd, J = 1.8, 12.2 Hz, 0.7H,), 3.86–3.78 (m, 1.3H), 3.66–3.33 (m, 7H), 3.06 (dddd, J = 1.7, 3.2, 4.9, 6.6 Hz, 0.7H), 2.69 (dddd, J = 2.4, 5.6, 5.6, 8.4 Hz, 0.3H), 2.20–2.08 (m, 1H), 1.13 (d, J = 6.7 Hz, 6H); ¹³C NMR (125 MHz, CD₃OD) δ 80.0; 77.4, 70.9, 70.0, 66.0, 65.3, 55.3, 53.9, 52.1, 51.6, 50.9, 48.9, 43.5, 40.9, 27.7, 27.6, 21.9, 21.7; HRMS-ESI m/z [M–Cl]⁺ calcd for C₁₀H₂₁O₃S: 221.1206, found: 221.1207.

(3*R*,4*S*)-3-(benzyloxy)-4-((*S*)-1,2-bis(benzyloxy)ethyl)-1-cyclohexylmethyl-tetrahydro-1*H* -thiophenium tetrafluoroborate (51): Using the general procedure for the preparation of sulfonium ions, 21 (86 mg, 0.20 mmol) was reacted with iodide 33 (45 mg, 0.20 mmol) and AgBF₄ (38 mg, 0.20 mmol) to give 51 as a colorless oil (10 mg, 8%): $R_f = 0.34$ (CH₂Cl₂-CH₃OH, 19:1); HRMS-ESI *m*/*z* [M-BF₄]⁺ calcd for C₃₄H₄₃O₃S: 531.2927, found: 531.2925. The compound used in the next step without further characterization.

(*3R*,4*S*)-3-((*S*)-1,2-dihydroxyethyl)-4-hydroxy-1-cyclohexylmethyl-tetra-hydro-1*H*-thiop henium chloride (52): Using the general procedure for the benzyl deprotection, 51 (8 mg, 0.13 mmol) was treated with BCl₃ (1 M in CH₂Cl₂) and then Amberlyst (Cl⁻ form) to give 52 as a colorless foam as a 91:9 ratio of isomers (3.3 mg, 100%): $R_f = 0.06$ (CH₃OH); ¹H NMR (600 MHz, CD₃OD) δ 4.73 (dd, J = 2.0, 2.0 Hz, 1H), 3.90 (dd, J = 1.8, 12.2 Hz, 1H), 3.78 (dd, J = 3.9, 12.5 Hz, 1H), 3.62 (ddd, J = 1.4, 5.6, 6.9 Hz, 1H), 3.46 (dd, J = 6.8, 12.2 Hz, 1H), 3.42 (dd, J = 6.7, 11.2 Hz, 1H,), 3.38 (dd, J = 7.1, 12.6 Hz, 1H), 3.34–3.31 (m, 3H), 3.05 (dddd, J = 1.9, 3.4, 3.4, 6.8 Hz, 1H), 1.91–1.77 (m, 4H), 1.72–1.69 (m, 1H), 1.40–1.32 (m, 2H), 1.28–1.18 (m, 2H), 1.17–1.11 (m, 2H); ¹³C NMR (100 MHz, CD₃OD) δ 80.0; 70.9, 65.3, 54.1, 53.9, 50.9, 43.5, 36.5, 33.2, 33.0, 26.8, 26.7; HRMS-ESI *m/z* [M–Cl]⁺ calcd for C₁₃H₂₅O₃S: 261.1519, found: 261.1517.

(3R,4S)-3-(benzyloxy)-4-((S)-1,2-bis(benzyloxy)ethyl)-1-(2-methoxyethyl)-tetrahydro-1H

-thiophenium tetrafluoroborate (53): Using the general procedure for the preparation of sulfonium ions, 21 (61 mg, 0.14 mmol) was reacted with 34 (28.7 mg, 0.15 mmol) and AgBF₄ (30 mg, 0.15 mmol) to give 53 as a colorless oil (66 mg, 81%): $R_f = 0.70$ (CH₂Cl₂–CH₃OH, 9:1); HRMS-ESI m/z [M–BF₄]⁺ calcd for C₃₀H₃₇O₄S: 493.2407, found: 493.2402. The compound used in the next step without further characterization.

(*3R*,4*S*)-3-((*S*)-1,2-dihydroxyethyl)-4-hydroxy-1-(2-methoxyethyl)-tetrahydro-1*H*-thioph enium chloride (54): Using the general procedure for the benzyl deprotection, 53 (38 mg, 0.065 mmol) was treated with BCl₃ (1 M in CH₂Cl₂) and then Amberlyst (Cl⁻ form) to give 54 as a 70:30 mixture of inseparable stereoisomers as a colorless foam (14 mg, 83%): R_f = 0.06 (CH₃OH); ¹H NMR (600 MHz, CD₃OD) δ = 4.73 (dd, *J* = 2.0, 2.0 Hz, 0.7H), 4.67 (ddd, *J* = 5.0, 5.0, 5.0 Hz, 0.3H), 3.90–3.61 (m, 7H), 3.57–3.47 (m, 3H), 3.44–3.41 (m, 4H), 3.03 (dddd, *J* = 1.7, 3.3, 5.0, 7.0 Hz, 0.7H), 2.68 (dddd, *J* = 2.3, 5.3, 5.3, 8.2 Hz, 0.3H); ¹³C NMR (125 MHz, CD₃OD) δ 80.0; 77.4, 70.8, 70.0, 68.7, 68.4, 66.0, 65.3, 59.4, 53.7, 51.5, 51.2, 49.4, 47.8, 44.7, 43.9, 41.1; HRMS-ESI *m*/*z* [M–Cl]⁺ calcd for C₉H₁₉O₄S: 223.0999, found: 223.0997.

((3*R*,4*S*)-3-(benzyloxy)-4-((*S*)-1,2-bis(benzyloxy)ethyl)-1-(8-methoxyoctyl)-tetraydro-1*H*thiophenium tetrafluoroborate (55): Using the general procedure for the preparation of sulfonium ions, 21 (103 mg, 0.24 mmol) was reacted with 35 (80 mg, 0.29 mmol) and AgBF₄ (46 mg, 0.24 mmol) to give **55** as a colorless oil (152 mg, 97%): $R_f = 0.70$ (CH₂Cl₂–CH₃OH, 9:1); HRMS-ESI m/z [M–BF₄]⁺ calcd for C₃₆H₄₉O₄S: 577.3346, found: 577.3345. The compound used in the next step without further characterization.

(*3R*,4*S*)-3-((*S*)-1,2-dihydroxyethyl)-4-hydroxy-1-(8-methoxyoctyl)-tetrahydro-1*H*-thioph enium chloride (56): Using the general procedure for the benzyl deprotection, 55 (100 mg, 0.15 mmol) was treated with BCl₃ (1 M in CH₂Cl₂) and then Amberlyst (Cl⁻ form) to give product 56 as a 70:30 mixture of inseparable stereoisomers as a colorless foam (32 mg, 55%): $R_f = 0.06$ (CH₃OH); ¹H NMR (500 MHz, CD₃OD) δ 4.74 (dd, J = 2.0, 2.0 Hz, 0.7H), 4.67 (ddd, J = 5.7, 5.7, 5.7 Hz, 0.3H), 3.89–3.75 (m, 2H), 3.66–3.61 (m, 1H), 3.57–3.36 (m, 8H), 3.30 (s, 3H), 2.97 (dddd, J = 1.6, 3.1, 5.6, 6.5 Hz, 0.7H), 2.66 (dddd, J = 2.3, 5.9, 5.9, 8.5 Hz, 0.3H), 1.87–1.78 (m, 2H), 1.58–1.46 (m, 4H), 1.40–1.35 (m, 6H); ¹³C NMR (100 MHz, CD₃OD) δ 80.0; 77.2, 73.8, 70.9, 70.0, 66.1, 65.3, 58.8, 53.8, 51.6, 50.3, 48.1, 46.9, 43.7, 42.9, 40.2, 30.5, 30.0, 29.9, 29.3, 27.0, 26.7, 26.5; HRMS-ESI *m*/*z* [M–Cl]⁺ calcd for C₁₅H₃₁O₄S: 307.1937, found: 307.1934.

(*3R*,4*S*)-3-(benzyloxy)-4-((*S*)-1,2-bis(benzyloxy)ethyl)-1-(3-benzyloxypropyl)-tetrahydro-1*H*-thiophenium tetrafluoroborate (57): Using the general procedure for the preparation of sulfonium ions, compound 21 (70 mg, 0.16 mmol) was reacted with 36 (50 mg, 0.18 mmol) and AgBF₄ (35 mg, 0.18 mmol) to give 57 as a colorless oil (52 mg, 48%): $R_f = 0.67$ (CH₂Cl₂-CH₃OH, 9:1); HRMS-ESI *m*/*z* [M-BF₄]⁺ calcd for C₃₇H₄₃O₄S: 583.2877, found: 583.2881. The compound used in the next step without further characterization.

(3*R*,4*S*)-3-((*S*)-1,2-dihydroxyethyl)-4-hydroxy-1-(3-hydroxpropyl)-tetra-hydro-1*H*-thiop henium chloride (58): Using the general procedure for the benzyl deprotection, 57 (63 mg, 0.09 mmol) was treated with BCl₃ (1 M in CH₂Cl₂) and then Amberlyst (Cl⁻ form) to give 58 as a 70:30 mixture of stereoisomers as a colorless foam (23 mg, 94%): R_f = 0.05 (CH₃OH); ¹H NMR (500 MHz, CD₃OD) δ 4.73 (m, 0.7H), 4.67 (ddd, J = 5.1, 5.1, 5.1 Hz, 0.3H), 3.90–3.38 (m, 11H), 3.06–3.04 (m, 0.7H), 2.66 (dddd, J = 2.2, 6.1, 8.4, 11.4 Hz, 0.3H), 2.08–2.03 (m, 2H); ¹³C NMR (125 MHz, CD₃OD) δ 78.2, 74.5, 70.2, 69.3, 65.1, 64.7, 64.1, 60.2, 52.0, 49.9, 49.1, 45.6, 43.7, 42.8, 41.8, 39.9, 28.6, 28.3; HRMS-ESI m/z [M–Cl]⁺ calcd for C₉H₁₉O₄S: 223.0999, found: 223.0999.

(3R,4S)-3-(benzyloxy)-4-((S)-1,2-bis(benzyloxy)ethyl)-1-(8-benzyloxyoctyl)-tetrahydro-1

H-thiophenium tetrafluoroborate (59): Using the general procedure for the preparation of sulfonium ions, **21** (80 mg, 0.18 mmol) was reacted with **37** (75 mg, 0.22 mmol) and AgBF₄ (42 mg, 0.22 mmol) to give **59** as a colorless oil (123 mg, 90%): $R_f = 0.38$ (CH₂Cl₂–CH₃OH, 9:1); HRMS-ESI m/z [M–BF₄]⁺ calcd for C₄₂H₅₃O₄S: 653.3659, found: 653.3659. The compound used in the next step without further characterization.

(*3R*,4*S*)-3-((*S*)-1,2-dihydroxyethyl)-4-hydroxy-1-(8-hydroxyoctyl)-tetrahydro-1*H*-thiophe nium chloride (60): Using the general procedure for the benzyl deprotection, **59** (123 mg, 0.17 mmol) was treated with BCl₃ (1 M in CH₂Cl₂) and then Amberlyst (Cl⁻ form) to give **60** as a 75:25 mixture of inseparable stereoisomers as a colorless foam (43 mg, 79%): R_f = 0.06 (CH₃OH); ¹H NMR (500 MHz, CD₃OD) δ 4.74 (dd, *J* = 2.0, 2.0 Hz, 0.75H), 4.67 (ddd, *J* = 5.6, 5.6, 5.6 Hz, 0.25H), 3.89–3.84 (m, 1H), 3.81–3.74 (m, 1H), 3.65–3.61 (m, 1H), 3.50–3.35 (m, 8H), 3.05 (dddd, *J* = 1.6, 3.1, 5.6, 6.5 Hz, 0.75H), 2.68 (dddd, *J* = 2.4, 5.9, 5.9, 8.5 Hz, 0.25H), 1.87–1.78 (m, 2H), 1.55–1.47 (m, 4H), 1.43–1.35 (m, 6H); ¹³C NMR (125 MHz, CD₃O) δ 80.0; 77.2, 70.9, 70.0, 66.1, 65.3, 62.9, 53.8, 51.6, 50.3, 48.1, 46.9, 43.8, 42.9, 40.2, 33.7, 30.2, 30.0, 29.9, 29.4, 29.3, 26.8, 26.5; HRMS-ESI *m*/*z* [M–Cl]⁺ calcd for C₁₄H₂₉O₄S: 293.1781, found: 193.1783.

(3*R*,4*S*)-3-(benzyloxy)-4-((*S*)-1,2-bis(benzyloxy)ethyl)-1-(12-benzyloxy-dodecyl)-tetrahyd ro-1*H*-thiophenium tetrafluoroborate (61): Using the general procedure for the preparation

of sulfonium ions, compound **21** (80 mg, 0.18 mmol) was reacted with **38** (89 mg, 0.22 mmol) and AgBF₄ (42 mg, 0.22 mmol) to give **61** as a colorless oil (116 mg, 81%): $R_f = 0.38$ (CH₂Cl₂–CH₃OH, 9:1); HRMS-ESI m/z [M–BF₄]⁺ calcd for C₄₆H₆₁O₄S: 709.4285, found: 709.4288. The compound used in the next step without further characterization.

(*3R*,4*S*)-3-((*S*)-1,2-dihydroxyethyl)-4-hydroxy-1-(12-hydroxydodecyl)-tetrahydro-1*H*-thi ophenium chloride (62): Using the general procedure for the benzyl deprotection, 61 (116 mg, 0.15 mmol) was treated with BCl₃ (1 M in CH₂Cl₂) and then Amberlyst (Cl⁻ form) to give 62 as a 60:40 ratio of inseparable stereoisomers as a colorless foam (39 mg, 70%): $R_f = 0.06$ (CH₃OH); ¹H NMR (500 MHz, CD₃OD) δ 4.74 (dd, J = 2.0, 2.0 Hz, 0.6H), 4.67 (ddd, J = 5.6, 5.6, 5.6, 5.6 Hz, 0.4H), 3.89–3.84 (m, 1H), 3.82–3.74 (m, 1H), 3.66–3.61 (m, 1H), 3.54–3.34 (m, 8H), 3.05 (dddd, J = 1.9, 3.3, 4.7, 6.8 Hz, 0.6H), 2.68 (dddd, J = 2.4, 5.0, 5.0, 8.5 Hz, 0.4H), 1.86–1.77 (m, 2H), 1.55–1.45 (m, 4H), 1.40–1.28 (m, 14H); ¹³C NMR (100 MHz, CD₃OD) δ 80.0; 77.2, 70.9, 70.0, 66.1, 65.3, 63.0, 53.8, 51.6, 50.3, 48.1, 46.9, 43.8, 42.9, 40.2, 33.7, 30.7, 30.6, 30.4, 30.1, 29.5, 29.4, 26.9, 26.8, 26.6; HRMS-ESI *m*/*z* [M–Cl]⁺ calcd for C₁₈H₃₇O₄S: 349.2407, found: 349.2407.

(3*R*,4*S*)-3-(benzyloxy)-4-((*S*)-1,2-bis(benzyloxy)ethyl)-1-(2-phenethyl)-tetrahydro-1*H*-thi ophenium tetrafluoroborate (63): Using the general procedure for the preparation of sulfonium ions, 21 (75 mg, 0.17 mmol) was reacted with 41 (32 mg, 0.18 mmol) and AgBF₄ (34 mg, 0.18 mmol) to give 63 as an colorless oil (34 mg, 32%): $R_f = 0.70$ (CH₂Cl₂–CH₃OH, 9:1); HRMS-ESI m/z [M–BF₄]⁺ calcd for C₃₅H₃₉O₃S: 539.2614, found: 539.2615. The compound used in the next step without further characterization.

(3*R*,4*S*)-3-((*S*)-1,2-dihydroxyethyl)-4-hydroxy-1-(2-phenethyl)-tetrahydro-1*H*-thiopheniu m chloride (64): Using the general procedure for the benzyl deprotection, 63 (34 mg, 0.054 mmol) was treated with BCl₃ (1 M in CH₂Cl₂) and then Amberlyst (Cl⁻ form) to give 64 as a 70:30 mixture of inseparable stereoisomers as a colorless foam (15 mg, 91%): $R_f = 0.06$ (CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 7.39–7.27 (m, 5H), 4.71 (dd, J = 1.9, 1.9 Hz, 0.7H), 4.65 (ddd, J = 5.1, 5.1, 5.2 Hz, 0.3H), 3.84–3.34 (m, 9.6H), 3.18 (dd, J = 7.4, 7.4 Hz, 1.4H), 2.97 (m, 0.7H), 2.66 (dddd, J = 2.0, 5.2, 5.2, 7.5 Hz, 0.3H); ¹³C NMR (125 MHz, CD₃OD) δ 138.3; 130.2, 129.8, 128.6, 80.0, 77.5, 70.8, 70.0, 65.9, 65.3, 53.8, 51.6, 50.5, 48.4, 45.4, 43.7, 43.1, 40.4, 32.8, 32.6; HRMS-ESI m/z [M–Cl]⁺ calcd for C₁₄H₂₁O₃S: 269.1206, found: 269.1202.

(*S*)-1-((*3S*,4*R*)-4-hydroxytetrahydrothiophen-3-yl)ethane-1,2-diol (65): Ammonia (20 mL) was condensed at –78 °C and a solution of **21** (0.16 g, 0.37 mmol) in THF (6 mL) was added. To this mixture was then added sodium metal (0.5 g, 22 mmol) and CH₃OH (30 µL). The reaction was stirred for 1 h at –78 °C and then was added CH₃OH (10 mL). The solution was then warmed to rt, neutralized with HOAc and concentrated. The resulting residue was purified by chromatography (CH₂Cl₂–CH₃OH 9:1) to give **65** as a colorless oil (54.0 mg, 90%): $R_f = 0.27$ (CH₂Cl₂–CH₃OH 9:1); $[\alpha]_D^{20}$ –9.2 (*c* = 1.7, CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 4.22 (ddd, *J* = 6.0, 7.7, 7.7 Hz, 1H), 3.72 (ddd, *J* = 5.0, 5.0, 6.7 Hz, 1H), 3.56 (dd, *J* = 5.0, 11.3 Hz, 1H), 3.51 (dd, *J* = 6.7, 11.3 Hz, 1H), 2.94 (dd, *J* = 6.0, 10.5 Hz, 1H), 2.88 (dd, *J* = 8.8, 10.6 Hz, 1H), 2.82 (dd, *J* = 7.6, 10.6 Hz, 1H), 2.68 (dd, *J* = 7.7, 10.5 Hz, 1H), 2.87 (dddd, *J* = 5.0, 7.6, 7.7, 8.8 Hz, 1H); ¹³C NMR (100 MHz, CD₃OD) δ 76.2, 71.6, 66.4, 52.6, 37.3, 27.9; HRMS-ESI *m*/*z* [M+Na]⁺ calcd for C₆H₁₂O₃SNa: 187.0399, found: 187.0400.

(3*R*,4*S*)-3-((*S*)-1,2-dihydroxyethyl)-4-hydroxy-1-(4-benzyl)-tetrahydro-1*H*-thiophenium bromide (66): To a solution of 65 (11 mg, 0.07 mmol) in 1,1,1,3,3,3-hexafluoroisopropanol (0.5 mL) was added benzyl bromide 39 (14 mg, 0.08 mmol). The mixture was stirred at 50 °C for 5 h, cooled to rt and then concentrated. The residue was purified by chromatography (CH₂Cl₂-CH₃OH 2:1) on Iatrobeads to give 66 as a colorless oil which is 70:30 mixture of

inseparable stereoisomers (12.6 mg, 57%): $R_f = 0.06$ (CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 7.55–7.46 (m, 5H), 4.79 (dd, J = 2.0, 2.0 Hz, 0.7H), 4.77 (s, 1.4H), 4.74 (s, 0.6H), 4.65 (ddd, J = 5.7, 5.7, 5.7 Hz, 0.3H), 3.88 (ddd, J = 2.3, 5.7, 5.7 Hz, 0.3H,), 3.78 (dd, J = 1.9, 12.4 Hz, 0.7H,), 3.72–3.34 (m, 6H), 3.11 (dddd, J = 1.9, 3.4, 3.4, 6.8 Hz, 0.7H), 2.70 (dddd, J = 2.4, 5.9, 5.9, 8.4 Hz, 0.3H); ¹³C NMR (100 MHz, CD₃OD) δ 131.6, 131.4, 131.3, 131.1, 131.0, 130.9, 130.8, 130.4, 80.2, 77.2, 70.8, 70.0, 66.1, 65.3, 53.9, 51.7, 50.9, 49.4, 47.8, 47.4, 42.7, 39.4; HRMS-ESI m/z [M–Br]⁺ calcd for C₁₃H₁₉O₃S: 255.1049, found: 255.1047.

(3R,4S)-3-((S)-1,2-dihydroxyethyl)-4-hydroxy-1-(4-nitrobenzyl)-tetrahydro-1H-thiophen

ium bromide (67): То а solution of 65 (10)mg, 0.061 mmol) in 1,1,1,3,3,3-hexafluoroisopropanol (1 mL) was added 4-nitrobenzyl bromide (40, 18 mg, 0.09 mmol). The mixture was stirred at 50 °C for 18 h, cooled to rt and then concentrated. The resulting residue was purified by chromatography (CH_2Cl_2 - $CH_3OH 2:1$) on latrobeads to give 67 as a yellowish oil which is a 70:30 mixture of inseparable stereoisomers (13.5 mg, 58%): $R_f = 0.06$ (CH₃OH); ¹H NMR (500 MHz, CD₃OD) δ 8.34–8.32 (m, 2H), 7.82–7.79 (m, 2H), 4.93–4.88 (m, 2H), 4.79 (dd, J = 2.0, 2.0 Hz, 0.7H), 4.67 (ddd, J = 5.4, 5.4, 5.4 Hz, 0.3H), 3.91-3.87 (m, 1H), 3.79-3.71 (m, 1.4H), 3.67-3.63 (m, 1.3H), 3.60-3.48 (m, 2H), 3.43-3.39 (m, 1.3H), 3.11 (dddd, J = 1.6, 3.2, 4.8, 6.5 Hz, 0.7H), 2.74 (dddd, J = 2.1, 5.6, 5.6, 7.8 Hz, 0.3H): ¹³C NMR (125 MHz, CD₃OD) δ 138.3, 137.7, 132.8, 125.6, 80.3, 77.5, 70.8, 70.0, 66.2, 65.3, 54.1, 51.8, 50.1, 49.9, 48.8, 46.2, 43.4, 40.0; HRMS-ESI m/z [M-Br]⁺ calcd for C₁₃H₁₈NO₅S: 300.0900, found: 300.0904.

(3*R*,4*S*)-3-(benzyloxy)-4-((*S*)-1,2-bis(benzyloxy)ethyl)-1-(3-(2'3'-*O*-isopropyli-dene-3-(be nzyloxymethyl)uridin-5-yl)propyl)-3-(benzyloxy)-tetrahydro-1*H*-thiophenium tetrafluoroborate (68): Using the general procedure for the preparation of sulfonium ions, 21 (80 mg, 0.18 mmol) was reacted with 42 (105 mg, 0.18 mmol) and AgBF₄ (35 mg, 0.18 mmol) to afford the product 68 as a colorless oil (53 mg, 30%): $R_f = 0.45$ (CH₃OH–CH₂Cl₂, 9:1);

HRMS-ESI m/z [M–BF₄]⁺ calcd for C₅₀H₅₉N₂O₁₀S: 879.3885, found: 879.3883. The compound used in the next step without further characterization.

(*3R*,4*S*)-3-((*S*)-1,2-dihydroxyethyl)-4-hydroxy-1-(3-(uridin-5-yl-)propyl))-tetrahydro-1*H*thiophenium chloride (69): Using the general procedure for benzyl deprotection, 68 (53 mg, 0.05 mmol) was treated with BCl₃ (1 M in CH₂Cl₂) and then Amberlyst (Cl⁻ form) to give 69 as a 80:20 inseparable mixture of stereoisomers as a colorless foam (14 mg, 55%): R_f = 0.05 (CH₃OH); ¹H NMR (500 MHz, CD₃OD) δ 7.87 (d, *J* = 8.1 Hz, 0.8H) 7.76 (d, *J* = 8.1 Hz, 0.2H), 5.83 (d, *J* = 4.1 Hz, 0.8H), 5.82 (d, *J* = 4.1 Hz, 0.2H), 5.76 (d, *J* = 8.1 Hz, 0.8H), 5.74 (d, *J* = 8.1 Hz, 0.2H), 4.73 (dd, *J* = 1.8, 2.0 Hz, 0.8H), 4.66 (dd, *J* = 5.4, 5.4 Hz, 0.2H), 4.20–4.07 (m, 3H), 3.91–3.37 (m, 13H), 3.03 (m, 0.8H), 2.58 (dddd, *J* = 2.4, 5.6, 5.6, 11.1 Hz, 0.2H), 2.20–2.13 (m, 2H); ¹³C NMR (125 MHz, CD₃OD) δ 166.1, 152.3, 142.5, 102.9, 91.5, 84.3, 80.0, 75.3, 71.6, 71.3, 70.9, 70.3, 70.0, 66.1, 65.3, 53.8, 51.6, 50.9, 50.4, 45.2, 43.5, 42.3, 40.8, 27.3, 27.1; HRMS-ESI *m/z* [M–Cl]⁺ calcd for C₁₈H₂₉N₂O₉S: 449.1588, found:449.1588.

(3*R*,4*S*)-3-(benzyloxy)-4-((*S*)-1,2-bis(benzyloxy)ethyl)-1-(3-(2'3'-*O*-isopropyli-dene-3-(be nzyloxymethyl)uridin-5-yl)butyl)-3-(benzyloxy)-tetrahydro-1*H*-thiophenium

tetrafluoroborate (70): Using the general procedure for the preparation of sulfonium ions, **21** (70 mg, 0.16 mmol) was reacted with **43** (95 mg, 0.16 mmol) and AgBF₄ (32 mg, 0.16 mmol to give the **70** as a colorless oil (62 mg, 39%): $R_f = 0.45$ (CH₃OH–CH₂Cl₂ 9:1); HRMS-ESI m/z [M–BF₄]⁺ calcd for C₅₁H₆₁N₂O₁₀S: 893.4041, found: 893.4042. The compound used in the next step without further characterization.

(3R,4S)-3-((S)-1,2-dihydroxyethyl)-4-hydroxy-1-(3-(uridin-5-yl-)butyl))-tetrahydro-1H-t

hiophenium chloride (71): Using the general procedure for the benzyl deprotection, **70** (51 mg, 0.05 mmol) was treated with BCl₃ (1 M in CH₂Cl₂) and then Amberlyst (Cl⁻ form) to give **71** as a colorless foam as 88:12 ratio of isomers (14 mg, 54%): $R_f = 0.05$ (CH₃OH); ¹H

NMR (300 MHz, CD₃OD) δ 7.90 (d, 1H, *J* = 8.1 Hz), 5.86 (d, *J* = 3.6 Hz, 1H), 5.70 (d, *J* = 8.1 Hz, 1H), 4.73 (dd, *J* = 2.0, 2.3 Hz, 1H), 4.17–4.07 (m, 3H, 3.88 (dd, *J* = 1.8, 12.3 Hz, 1H), 3.80–3.73 (m, 2H), 3.66–3.35 (m, 10H), 3.05 (m, 1H), 1.97–1.86 (m, 2H), 1.83–1.75 (m, 2H); ¹³C NMR (100 MHz, CD₃OD) δ 166.2, 152.3, 142.5, 102.6, 91.2, 84.6, 80.1, 75.7, 71.4, 71.3, 71.1, 70.9, 65.3, 53.9, 50.4, 46.7, 42.9, 29.3, 24.0; HRMS-ESI *m*/*z* [M–Cl]⁺ calcd for C₁₉H₃₁N₂O₉S: 463.1745, found: 463.1742.

References

- S1 S. Mohan, L. Sim, D. R. Rose and B. M. Pinto, Carbohydr. Res., 2007, 342, 901-912.
- S2 R. Wang, D. H. Steensma, Y. Takaoka, J. W. Yun, T. Kajimoto and C. H. Wong, *Bioorg. Med. Chem.*, 1997, 5, 661–672.

500 MHz 1D in CDC13 (ref. to CDC13 @ 7.26 ppm), temp 26.1 C -> actual temp = 27.0 C, autoxdb probe

Pulse Sequence: apt

400 MHZ 1D in CDC13 (ref. to CDC13 @ 7.26 ppm), temp 26.5 C -> actual temp = 27.0 C, autoxdb probe

400 MHz 1D in CD3OD (ref. to CD3OD @ 3.30 ppm), temp 26.5 C -> actual temp = 27.0 C, autoxdb probe

Pulse Sequence: s2pul

יוע אאב אדע וה CD3OD (ref. to CD3OD @ 49.0 שמשה), temp 26.5 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of solvent signal

Pulse Sequence: s2pul эчи мни ди ил CDCl3 (ref. to CDCl3 @ 7.26 ppm), temp 26.1 C -> actual temp = 27.0 C, autoxdb probe

7.5 33.07 7.0 BnO-Tro-18 6.5 -OBn -OBn 6.0 ອ -[ີ່ອ 2.03 **წ.** 1.02 **4**.30 0.37 4.5 1.05 -[4.0 1.00 1.01 ω .5 1.03 2.05 1.04 ndđ

125 MHz APP in CDCl3 (ref. to CDCl3 @ 77.0 ppm), temp 26.1 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of solvent signal

Pulse Sequence: apt

500 MHz 1D in CDC13 (ref. to CDC13 @ 7.26 ppm), temp 27.2 C -> actual temp = 27.0 C, sw500 probe

125 MHz APT in CDC13 (ref. to CDC13 @ 77.0 ppm), temp 27.2 C -> actual temp = 27.0 C, sw probe C & CH2 same, CH & CH3 opposite side of solvent signal

500 MHz 1D in CDC13 (ref. to CDC13 @ 7.26 ppm), temp 26.1 C -> actual temp = 27.0 C, sw500u probe

Pulse Sequence: apt

Pulse Sequence: apt

500 MHz 1D in CD30D (ref. to CD30D @ 3.30 ppm), temp 27.2 C -> actual temp = 27.0 C, sw500 probe

399.794 MHz H1 1D in cdc13 (ref. to CDC13 @ 7.26 ppm), temp 26.5 C -> actual temp = 27.0 C, autoxdb probe

399.794 MHz H1 1D in cdc13 (ref. to CDC13 @ 7.26 ppm), temp 26.5 C -> actual temp = 27.0 C, autoxdb probe

biles Semience: ant

498.122 MHz H1 1D in cdc13 (ref. to CDC13 @ 7.26 ppm), temp 27.2 C -> actual temp = 27.0 C, autoxdb probe

498.122 MHz H1 1D in cdc13 (ref. to CDC13 @ 7.26 ppm), temp 27.2 C -> actual temp = 27.0 C, sw probe

499.821 MHz H1 1D in cdc13 (ref. to CDC13 @ 7.26 ppm), temp 26.1 C -> actual temp = 27.0 C, autoxdb probe

125.693 MHz C13[H1] apt in cdc13 (ref. to CDC13 @ 77.06 ppm), temp 26.1 C -> actual temp = 27.0 C, autoxdb probe C & CH2 same, CH & CH3 opposite side of solvent signal

399.796 MHz H1 1D in cd3od (ref. to CD30D @ 3.30 ppm), temp 26.5 C -> actual temp = 27.0 C, autoxdb probe

399.796 MHz H1 1D in cd3od (ref. to CD30D @ 3.30 ppm), temp 26.5 C -> actual temp = 27.0 C, autoxdb probe

Pulse Sequence: s2pul

498.124 MHz H1 1D in cd3od (ref. to CD30D @ 3.30 ppm), temp 27.2 C -> actual temp = 27.0 C, autoxdb probe

498.124 MHz H1 1D in cd3od (ref. to CD30D @ 3.30 ppm), temp 27.2 C -> actual temp = 27.0 C, autoxdb probe

Pulse Sequence: s2pul

399.796 MHz H1 1D in cd3od (ref. to CD3OD @ 3.30 ppm), temp 26.5 C -> actual temp = 27.0 C, autoxdb probe

Pulse Sequence: s2pul

HO

64

399.796 MHz H1 1D in cd3od (ref. to CD30D @ 3.30 ppm), temp 26.5 C -> actual temp = 27.0 C, autoxdb probe

Pulse Sequence: s2pul

399.796 MHz H1 1D in cd3od (ref. to CD30D @ 3.30 ppm), temp 26.5 C -> actual temp = 27.0 C, autoxdb probe

S89

S93