Electronic Supplementary Material (ESI) for MedChemComm. This journal is © The Royal Society of Chemistry 2014

Supplementary Information

Understanding the Structural Requirements of Hybrid (S)-6-((2-(4-Phenylpiperazin-1-yl)ethyl)(propyl)amino)-5,6,7,8-tetrahydronaphthalen-1-ol and its Analogs as D2/D3

Receptor Ligands: A 3D QSAR Investigation

Gyan Modi¹, Horrick Sharma ¹, Prashant S. Kharkar^{2†*} and Aloke K. Dutta^{1‡*}

¹Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmaceutical and Health Sciences (EACPHS), Wayne State University, Detroit, MI 48201. USA.

²Department of Pharmaceutical Chemistry, SPP School of Pharmacy and Technology Management (SPPSPTM), SVKM's NMIMS, Mumbai-400 056. India.

Table of Contents

	Description	Page No.
1.	Additional 3D QSAR Model Statistics for Dopamine Receptor Ligands	2
2.	Additional 3D-QSAR Selectivity (D2/D3) Model Statistics for Dopamine Receptor Ligands	4
3.	Molecular alignments	5

 Table 1.
 Additional 3D QSAR Model Statistics for Dopamine Receptor Ligands

	Ia	II p	III c	IV ^d	V e	VI ^f	VII ^g	VIII h
Test Set	8,9,13,	8,9,13,	8,9,13,	8,9,13,	8,9,13,	8,9,13,	8,9,13,	8,9,13,
	16,927,	16,9,27,	16,927,	16,9,27,	16,9,27,	16,9,27,	16,9,27,	16,9,27,
	40,41	40,41	40,41	40,41	40,41	40,41	40,41	40,41
r ² _{cv}	0.644	0.714	0.665	0.71	0.249	0.498	0.339	0.528
r ² conv	0.864	0.929	0.889	0.898	0.937	0.911	0.935	0.925
SEE	0.3	0.221	0.275	0.26	0.189	0.209	0.196	0.194
Comp	3	4	4	3	5	6	6	6
F value	63.47	94.826	58.28	87.76	80.91	57.09	62.58	55.64
Pr ² =0	0.00	0.00	0. 00	0.00	0.00	0.00	0.00	0.00
Steric	0.640	0.667	0.067	0.083	0.658	0.385	0.059	0.028
Elecst	0.360	0.333	0.165	0.103	0.342	0.615	0.143	0.176
Hydro.	0.00	0.00	0.226	0.215	0.00	0.00	0.186	0.204
Donor	0.00	0.00	0.197	0.241	0.00	0.00	0.328	0.300
Accp.	0.00	0.00	0.345	0.357	0.00	0.00	0.285	0.292
r ² _{pred}	0.807	0.902	0.818	0.881	0.199	0.614	0.371	0.608

^aCoMFA Model based on atom-based alignment and Gasteiger-Hückel charges for D2 receptor binding affinity.

^bCoMFA Model based on flexible alignment and Gasteiger-Hückel charges for D2 receptor binding affinity.

^cCoMSIA Model based on flexible alignment and MOPAC charges for D2 receptor binding affinity.

^dCoMSIA Model based on atom-based alignment and Gasteiger-Hückel charges for D2 receptor binding affinity.

^eCoMFA Model based on atom-based alignment and Gasteiger-Hückel charges for D3 receptor binding affinity.

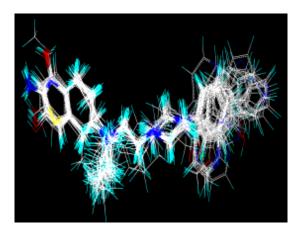
^fCoMFA Model based on flexible alignment and MOPAC charges for D3 receptor binding affinity.

^gCoMSIA Model based on atom-based alignment and Gasteiger-Hückel charges for D3 receptor binding affinity.

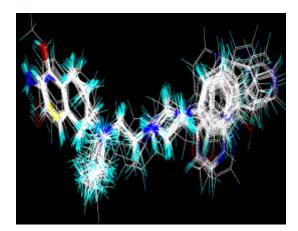
^hCoMSIA Model based on flexible alignment and MOPAC charges for D3 receptor binding affinity.

Table 2. Additional 3D-QSAR selectivity (D2/D3) Model Statistics for Dopamine Receptor Ligands

	<u>I</u> a	II p	III c	IV d
Test Set	6,8,13,18,22,2 4,31,41	6,8,13,18,22, 24,31,41	6,8,13,18,22, 24,31,41	6,8,13,18,22, 24,31,41
r ² cv	0.596	0.601	0.791	0.768
r ² conv	0.980	0.973	0.977	0.898
SEE	0.099	0.116	0.104	0.206
Comp	5	5	5	2
F value	259.44	186.32	209.43	122.88
Pr ² =0	0.00	0.00	0.00	0.00
Steric	0.642	0.660	0.064	0.051
Elecst	0.358	0.340	0.146	0.146
Hydro.	0.00	0.00	0.180	0.143
Donor	0.00	0.00	0.272	0.299
Acep.	0.00	0.00	0.333	0.361
r ² pred	0.809	0.740	0.753	0.628


^a CoMFA Model based on atom-based alignment and Gasteiger-Huckel charges for dopamine D3 selectivity.

^b CoMFA Model based on flexible alignment and Gasteiger-Huckel charges for dopamine D3 selectivity.


^c CoMSIA Model based on atom-based alignment and Gasteiger-Huckel charges for dopamine D3 selectivity.

^d CoMSIA Model based on flexible alignment and MOPAC charges for dopamine D3 selectivity.

a)

b)

Figure 1. a) Flexible alignment for D2/D3 (selectivity) analysis and b) atom-based alignment for D2/D3 binding (selectivity) analysis with compound **42** as a template.