Supporting Information

Ugi 4-CR Synthesis of γ- and δ-Lactams

André Boltjes,^a George P. Liao,^a Ting Zhao,^a Eberhardt Herdtweck,^b and Alexander Dömling^{**a,c}

^[a]Department of Drug Design, University of Groningen, The Netherlands ^[b]Technische Universität München ^[c] University of Pittsburgh

Email: A.S.S.Domling@rug.nl

Table of Contents

General	2
Synthetic Procedures and characterization data for compounds 5a-j and 6a-j	3
¹ H NMR and ¹³ C NMR spectra of compounds 5a-j and 6a-j	8
Single Crystal X-Ray Structure Determination of Compounds 6b, 6e, 6f, and 6j	28
SFC-MS Chromatograms of compounds 6a-j	
PDB Analysis – Interaction distances of gamma lactams found in the PDB database	47

General

All isonitriles were made in house by either performing the Hoffman or Ugi procedure. Other reagents were purchased from Sigma Aldrich, ABCR, Acros and AK Scientific and were used without further purification. All microwave irradiation reactions were carried out in a Biotage InitiatorTM Microwave Synthesizer. The Ugi tetrazoles were purified by flash chromatography, on a Teledyne ISCO Rf 200, using RediSep Rf Normal-phase Silica Flash Columns (Silica Gel 60 Å, 230 - 400 mesh) unless otherwise noted. Column chromatography was performed with MP Ecochrom Silica Gel 32–63, 60 Å. ¹H (500 MHz) and ¹³C (125 MHz) NMR spectra were recorded on a Bruker Avance DRX 500. Chemical shift values are reported as part per million (δ) relative to residual solvent peaks (CDCl₃, ¹H δ = 7.26, ¹³C δ = 77.16 or TMS ¹H δ = 0.00 ppm). The coupling constants (J) are reported in Hertz (Hz). Electrospray ionization mass spectra were measured on an API 3000 triple-quadrupole mass spectrometer (Applied Biosystems/MDS Sciex) via a TurboIonSpray source. Data collected and analyzed by the Analyst 1.5 data acquisition software (Applied Biosystems/MDS Sciex).

Crystallographic data were collected on an X-ray single crystal diffractometer equipped with a CCD detector (Bruker APEX II, κ -CCD), a fine focus sealed tube (Bruker AXS, D8) with MoK_{α} radiation ($\lambda = 0.71073$ Å), and a graphite monochromator by using the SMART software package. [1] The measurements were performed on single crystals coated with perfluorinated ether. The crystals were fixed on the top of a cactus prickle (Opuntia ficus-india) with perfluorinated ether and transferred to the diffractometer. The crystals were frozen under a stream of cold nitrogen. A matrix scan was used to determine the initial lattice parameters. Reflections were merged and corrected for Lorenz and polarization effects, scan speed, and background using SAINT. [2] Absorption corrections, including odd and even ordered spherical harmonics were performed using SADABS. [2] Space group assignments were based upon systematic absences, E statistics, and successful refinement of the structures. Structures were solved by direct methods with the aid of successive difference Fourier maps, and were refined against all data using WinGX [7] based on SIR-92. [3] If not mentioned otherwise, non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms could be located in the difference Fourier maps and were allowed to refine freely. Full-matrix least-squares refinements were carried out by minimizing $\Sigma w (F_o^2 - F_c^2)^2$ with SHELXL-97 [5] weighting scheme. Neutral atom scattering factors for all atoms and anomalous dispersion corrections for the non-hydrogen atoms were taken from International Tables for Crystallography. [4] Images of the crystal structures were generated by PLATON. [6] CCDC 961190 (6b), CCDC 961191 (6e), CCDC 961188 (6f), and CCDC 961189 (6j) contains the supplementary crystallographic data for this compound. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre www.ccdc.cam.ac.uk/data request/cif via or via https://www.ccdc.cam.ac.uk/services/structure_deposit/

Synthetic Procedures and characterization data for compounds 5a-j and 6a-j

Synthetic procedure 1

Aldehyde (1 mmol), tritylamine (1 mmol) were mixed in methanol (1 mL) and subjected to microwave irradiation for 15 minutes. Subsequently azidotrimethylsilane (1 mmol) and isonitrile (1mmol) were added and the mixture was again subjected to microwave irradiation for 15 minutes at 100°C. The solvent was evaporated under reduced pressure and the residue was purified using flash chromatography to obtain the product.

Synthetic procedure 2

To a solution of Ugi tetrazole (0.5-1.0 mmol) in 3 mL CH₂Cl₂ was added TFA (150 μ L, 2 mmol). After 1 minute the mixture was filtered through a silica bed washing with 50 mL Heptane:EtOAc 1:1 (v/v) to remove the trityl cation impurity. The amine was collected by washing the silica bed with 50 mL CH₂Cl₂:MeOH 1:1 (v/v). The mixture was concentrated under reduced pressure and redissolved in dry THF (3 mL). Sodium hydride (5 mmol) was washed with heptanes prior to addition. After 4 hours of stirring, EtOH was added to quench the reaction. The solvents were removed under reduced pressure, and the residue was purified by column chromatography using CH₂Cl₂:MeOH 20:1 (v/v) to afford the lactam.

Methyl 4-(1-(tert-butyl)-1H-tetrazol-5-yl)-4-(tritylamino)butanoate (5a): The product was obtained using procedure 1 starting from *t*-butylisocyanide and **3a** as a white solid (354 mg, 73%): R_f 0.50 (EtOAc:Hept 1:1). ¹H NMR (500MHz, CDCl₃): δ 7.40 (d, J = 7.5, 6H), 7.19 (t, J = 7.5, 9H), 7.13 (t, J = 7.2, 3H), 4.41 (s, 1H), 3.63 (s, 3H), 3.49 (s, 1H), 2.80 – 2.67 (m, 1H), 2.49 – 2.34 (m, 1H), 2.28 – 2.22 (m, 1H), 1.87 – 1.80 (m, 1H), 1.42 (s, 9H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 173.7, 156.8, 145.6, 128.9, 127.9, 126.7, 71.7, 61.8, 51.8, 48.4, 32.3, 29.9, 28.3 ppm. HRMS (ESI): *m/z*, calcd. for C₂₆H₃₇O₂N₅Na [M + Na⁺]: 506.2527, found 506.2529.

Methyl 4-(1-(2,4,4-trimethylpentan-2-yl)-1H-tetrazol-5-yl)-4-(tritylamino)butanoate (5b): The product was obtained using procedure starting from *t*-octylisocyanide and **3a** as a white solid (269 mg, 50%): R_f 0.50 (EtOAc:Hept 1:1). ¹H NMR (500 MHz, CDCl₃) δ 7.39 (d, J = 7.5, 6H), 7.19 (t, J = 7.5, 6H), 7.14 (t, J = 7.2, 3H), 4.50 – 4.40 (m, 1H), 3.62 (s, 3H), 3.54 (d, J = 9.0, 1H), 2.74 – 2.60 (m, 1H), 2.35 – 2.25 (m, 1H), 2.20 – 2.13 (m, 1H), 1.90 – 1.83 (m, 1H), 1.73 (q, J = 14.8, 2H), 1.52 (s, 3H), 1.43 (s, 3H), 0.81 (s, 9H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 173.6, 157.0, 145.7, 129.0, 127.9, 126.8, 71.7, 66.1, 55.2, 51.7, 48.6, 32.2, 31.6, 31.1, 29.9, 28.5, 28.4 ppm. HRMS (ESI): *m/z*, calcd. for C₃₃H₄₁O₂N₅Na [M + Na⁺]: 562.3153, found 562.3154.

Methyl 4-(1-phenethyl-1H-tetrazol-5-yl)-4-(tritylamino)butanoate (5c): The product was obtained using procedure 1 starting from phenethylisocyanide and **3a** as a white solid (398 mg, 75%): R_f 0.31 (EtOAc:Hept 1:2).). ¹H NMR (500 MHz, CDCl₃) δ 7.35 (d, J = 7.5, 6H), 7.27 – 7.09 (m, 13H), 7.00 (d, J = 7.2, 2H), 4.02 – 3.84 (m, 2H), 3.81 – 3.71 (m, 1H), 3.64 (s, 3H), 3.15 – 2.96 (m, 3H), 2.56 – 2.40 (m, 1H), 2.18 – 2.02 (m, 1H), 1.93 – 1.87 (m, 1H), 1.43 – 1.37 (m, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 173.33, 157.14, 145.15, 136.69, 128.96, 128.81, 128.62, 127.98, 127.32, 126.84, 71.59, 51.76, 48.56, 47.01, 35.43, 31.76, 29.01 ppm. HRMS (ESI): *m/z*, calcd. for C₃₃H₃₃O₂N₅Na [M + Na⁺]: 554.2527, found 554.2528.

Methyl 4-(1-benzyl-1H-tetrazol-5-yl)-4-(tritylamino)butanoate (5d): The product was obtained using procedure 1 starting from benzylisocyanide and **3a** as a white solid (290 mg, 56%): R_f 0.50 (EtOAc:Hept 1:1). ¹H NMR (500 MHz, CDCl₃) δ 7.32 (d, J = 8.1, 6H), 7.24 – 7.27 (m, 3H), 7.20 – 7.11 (m, 9H), 7.05 (d, J = 6.7, 2H), 5.21 (d, J = 15.3, 1H), 4.76 (d, J = 15.3, 1H), 4.14 – 4.10 (m, 1H), 3.58 (s, 3H), 3.00 (d, J = 9.2, 1H), 2.47 – 2.41 (m, 1H), 2.20 – 2.07 (m, 1H), 1.96 – 1.89 (m, 1H), 1.59 – 1.53 (m, 1H), 1.33 – 1.24 (m, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 173.31, 157.08, 145.21, 133.28, 129.14, 128.92, 128.58, 128.03, 128.00, 126.83, 71.49, 51.73, 50.82, 47.06, 31.50, 28.86 ppm. HRMS (ESI): *m/z*, calcd. for C₃₂H₃₁O₂N₅Na [M + Na⁺]: 540.2372, found 540.2372.

Methyl 4-(1-cyclohexyl-1H-tetrazol-5-yl)-4-(tritylamino)butanoate (5e): The product was obtained using procedure 1 starting from cyclohexylisocyanide and **3a** as a white solid (203 mg, 40%): R_f 0.50 (EtOAc:Hept 1:1). ¹H NMR (500 MHz, CDCl₃) δ 7.40 (d, J = 8.1, 6H), 7.20 (t, J = 7.5, 6H), 7.15 (t, J = 6.8, 3H), 4.16 – 4.02 (m, 1H), 3.78 – 3.68 (m, 1H), 3.61 (s, 3H), 3.12 (d, J = 8.3, 1H), 2.68 – 2.49 (m, 1H), 2.34 – 2.13 (m, 2H), 1.96 – 1.76 (m, 4H), 1.76 – 1.57 (m, 4H), 1.37 – 1.18 (m, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 173.33, 156.11, 145.39, 128.74, 127.97, 126.85, 71.80, 57.45, 51.77, 47.09, 33.59, 32.02, 31.99, 28.88, 25.34, 25.29, 24.80 ppm. HRMS (ESI): *m/z*, calcd. for C₃₁H₃₅O₂N₅Na [M + Na⁺]: 532.2683, found 532.2685.

Methyl 5-(1-(tert-butyl)-1H-tetrazol-5-yl)-5-(tritylamino)pentanoate (5f): The product was obtained using procedure 1 starting from *t*-butylisocyanide and **3b** as a white solid (389 mg, 78%): R_f 0.50 (EtOAc:Hept 1:1). ¹H NMR (500 MHz, CDCl₃) δ 7.43 (d, J = 8.0, 6H), 7.20 (t, J = 7.5, 6H), 7.13 (t, J = 7.0, 3H), 4.34 – 4.25 (m, 1H), 3.62 (s, 3H), 3.40 (d, J = 9.3, 1H), 2.25 (t, J = 6.9, 2H), 1.94 – 1.70 (m, 2H), 1.64 – 1.48 (m, 2H), 1.41 (s, 9H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 173.47, 157.18, 145.78, 128.95, 127.91, 126.69, 71.75, 61.64, 51.57, 49.33, 37.13, 33.91, 30.02, 19.88 ppm. HRMS (ESI): *m/z*, calcd. for C₃₀H₃₅O₂N₅Na [M + Na⁺]: 520.2683, found 520.2686.

Methyl 5-(1-(2,4,4-trimethylpentan-2-yl)-1H-tetrazol-5-yl)-5-(tritylamino)pentanoate (5g): The product was obtained using procedure 1 starting from *t*-octylisocyanide and **3b** as a white solid (343 mg, 62%): R_f 0.50 (EtOAc:Hept 1:1). ¹H NMR (500 MHz, CDCl₃) δ 7.43 (d, J = 7.5, 6H), 7.21 (t, J = 7.5, 6H), 7.14 (t, J = 7.2, 3H), 4.42 - 4.25 (m, 1H), 3.61 (s, 2H), 3.39 (d, J = 8.9, 1H), 2.29 - 2.08 (m, 2H), 1.82 - 1.65 (m, 4H), 1.64 - 1.53 (m, 1H), 1.52 - 1.41 (m, 7H), 0.81 (s, 9H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 173.4, 157.2, 145.9, 129.0,

127.9, 126.7, 71.7, 66.0, 55.2, 51.6, 49.6, 36.6, 33.9, 31.6, 31.1, 30.0, 28.5, 19.9 ppm. HRMS (ESI): *m/z*, calcd. for C₃₄H₄₃O₂N₅Na [M + Na⁺]: 576.3309, found 576.3310.

Methyl 5-(1-phenethyl-1H-tetrazol-5-yl)-5-(tritylamino)pentanoate (5h): The product was obtained using procedure 1 starting from phenethylisocyanide and **3b** as a white solid (235 mg, 43%): R_f 0.50 (EtOAc:Hept 1:1). ¹H NMR (500 MHz, CDCl₃) δ 7.35 (d, J = 7.6, 6H), 7.29 – 7.21 (m, 3H), 7.19 (t, J = 7.4, 6H), 7.16 – 7.10 (m, 3H), 7.00 (d, J = 6.5, 2H), 4.04 – 3.92 (m, 1H), 3.85 – 3.69 (m, 2H), 3.65 (s, 3H), 3.13 – 2.99 (m, 2H), 2.93 (d, J = 8.3, 1H), 2.19 – 2.01 (m, 2H), 1.62 – 1.48 (m, 1H), 1.42 – 1.30 (m, 2H), 1.25 – 1.14 (m, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 173.3, 157.4, 145.2, 136.8, 129.0, 128.8, 128.6, 128.0, 127.3, 126.8, 71.7, 51.6, 48.7, 48.0, 36.4, 35.5, 33.6, 20.3 ppm. HRMS (ESI): *m/z*, calcd. for C₃₄H₃₅O₂N₅Na [M + Na⁺]: 568.2683, found 568.2685.

Methyl 5-(1-benzyl-1H-tetrazol-5-yl)-5-(tritylamino)pentanoate (5i): The product was obtained using procedure 1 starting from benzylisocyanide and **3b** as a white solid (364 mg, 68%): R_f 0.50 (EtOAc:Hept 1:1). ¹H NMR (500 MHz, CDCl₃) δ 7.36 (d, J = 7.4, 6H), 7.31 – 7.24 (m, 3H), 7.21 (t, J = 7.3, 6H), 7.19 – 7.13 (m, 3H), 7.01 (d, J = 5.5, 2H), 5.29 (d, J = 15.4, 1H), 4.68 (d, J = 15.4, 1H), 4.02 – 3.91 (m, 1H), 3.58 (s, 3H), 2.87 (d, J = 8.3, 1H), 1.96 (t, J = 6.9, 2H), 1.54 – 1.43 (m, 1H), 1.32 – 1.16 (m, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 173.1, 157.3, 145.3, 133.6, 129.1, 128.9, 128.6, 128.0, 127.7, 126.9, 71.6, 51.5, 50.9, 48.0, 36.1, 33.6, 20.2 ppm. HRMS (ESI): *m/z*, calcd. for C₃₃H₃₃O₂N₅Na [M + Na⁺]: 554.2527, found 554.2527.

Methyl 5-(1-cyclohexyl-1H-tetrazol-5-yl)-5-(tritylamino)pentanoate (5j): The product was obtained using procedure 1 starting from cyclohexylisocyanide and **3b** as a white solid (214 mg, 41%): R_f 0.50 (EtOAc:Hept 1:1). ¹H NMR (500 MHz, CDCl₃) δ 7.41 (d, J = 7.5, 6H), 7.21 (t, J = 7.5, 6H), 7.15 (t, J = 7.2, 3H), 4.07 – 3.95 (m, 1H), 3.89 – 3.75 (m, 1H), 3.60 (s, 3H), 2.90 (d, J = 7.3, 1H), 2.22 – 2.06 (m, 2H), 1.96 – 1.62 (m, 8H), 1.58 – 1.45 (m, 1H), 1.43 – 1.19 (m, 5H)ppm. ¹³C NMR (125 MHz, CDCl₃) δ 173.3, 156.3, 145.5, 128.8, 128.0, 126.9, 72.0, 57.6, 51.6, 48.1 36.4, 33.6, 33.6, 32.3, 25.4, 24.9, 20.3 ppm. HRMS (ESI): *m/z*, calcd. for C₃₂H₃₇O₂N₅Na [M + Na⁺]: 546.2840, found 546.2841.

5-(1-(tert-butyl)-1H-tetrazol-5-yl)pyrrolidin-2-one (6a): The product was obtained using procedure 2 starting

from **5a** as a white solid (74 mg, 55%): ¹H NMR (500 MHz, CDCl₃) δ 7.69 (s, 1H), 5.40 – 5.13 (m, 1H), 2.75 – 2.57 (m, 2H), 2.43 – 2.31 (m, 2H), 1.80 – 1.75 (m, 9H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 178.7, 155.8, 61.6, 49.1, 30.3, 29.3, 28.1 ppm. HRMS (ESI): *m/z*, calcd. for C₉H₁₆O₁N₅ [M + H⁺]: 210.1349, found 210.1350.

5-(1-(2,4,4-trimethylpentan-2-yl)-1H-tetrazol-5-yl)pyrrolidin-2-one (6b): The product was obtained using procedure 2 starting from **5b** as a white solid (154 mg, 89%): ¹H NMR (500 MHz, CDCl₃) δ 7.75 (s, 1H), 5.35 – 5.20 (m, 1H), 2.78 – 2.56 (m, 2H), 2.46 – 2.31 (m, 2H), 1.97 (q, *J* = 15.3, 2H), 1.86 (d, *J* = 3.4, 6H), 0.79 (s, 9H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 178.7, 156.3, 65.0, 54.3, 49.3, 31.8, 30.8, 30.5, 29.4, 28.2 ppm. HRMS (ESI): *m/z*, calcd. for C₁₃H₂₄O₁N₅ [M + H⁺]: 266.1975, found 266.1977.

5-(1-phenethyl-1H-tetrazol-5-yl)pyrrolidin-2-one (6c): The product was obtained using procedure 2 starting from **5c** as a white solid (60 mg, 32%): ¹H NMR (500 MHz, CDCl₃) δ 7.28 (d, *J* = 4.2, 3H), 7.06 – 6.91 (m, 2H), 6.82 (s, 1H), 4.71 – 4.46 (m, 2H), 4.44 – 4.25 (m, 1H), 3.37 – 3.11 (m, 2H), 2.54 – 2.37 (m, 1H), 2.33 – 2.08 (m, 2H), 2.08 – 1.87 (m, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃) δ 178.3, 155.8, 136.6, 129.3, 129.0, 127.8, 49.3, 47.2, 36.4, 29.3, 26.5 ppm. MS (ESI) (m/z) 258.1 [M+H]⁺. HRMS (ESI): *m/z*, calcd. for C₁₃H₁₆O₁N₅ [M + H⁺]: 258.1349, found 258.1348.

5-(1-benzyl-1H-tetrazol-5-yl)pyrrolidin-2-one (6d): The product was obtained using procedure 2 starting from **5d** as a white solid (98 mg, 72%): ¹H NMR (500 MHz, CDCl₃) δ 7.83 (s, 1H), 7.37 (d, J = 6.3, 3H), 7.28 – 7.17 (m, 2H), 5.67 (dd, J = 47.8, 15.6, 2H), 5.02 – 4.88 (m, 1H), 2.44 – 2.33 (m, 1H), 2.33 – 2.18 (m, 2H), 2.05 – 1.90 (m, 1H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 178.7, 155.5, 133.3, 129.4, 129.2, 127.7, 51.3, 47.9, 29.2, 26.3 ppm. HRMS (ESI): *m/z*, calcd. for C₁₂H₁₄O₁N₅ [M + H⁺]: 244.1193, found 244.1192.

5-(1-cyclohexyl-1H-tetrazol-5-yl)pyrrolidin-2-one (6e): The product was obtained using procedure 2 starting from **5e** as a white solid (110 mg, 95%): ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, J = 26.2, 1H), 5.18 – 4.93 (m, 1H), 4.37 – 4.14 (m, 1H), 2.74 – 2.55 (m, 2H), 2.53 – 2.33 (m, 2H), 2.13 – 1.91 (m, 6H), 1.78 (d, J = 12.7, 1H), 1.53 – 1.40 (m, 3H), 1.39 – 1.26 (m, 1H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 178.7, 154.5, 58.2, 47.7, 33.5, 32.7, 29.5, 26.8, 25.2, 25.1, 24.8 ppm. HRMS (ESI): *m/z*, calcd. for C₁₁H₁₈O₁N₅ [M + H⁺]: 236.1506, found 236.1506.

6-(1-(tert-butyl)-1H-tetrazol-5-yl)piperidin-2-one (6f): The product was obtained using procedure 2 starting

from **5f** as a white solid (120 mg, 76%): ¹H NMR (500 MHz, CDCl₃) δ 7.48 (s, 1H), 5.22 – 5.09 (m, 1H), 2.46 – 2.37 (m, 1H), 2.36 – 2.27 (m, 1H), 2.20 – 2.08 (m, 2H), 2.07 – 1.98 (m, 1H), 1.77 (s, 10H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 172.1, 155.4, 61.6, 47.9, 30.9, 30.2, 28.0, 18.6 ppm. [M+H]⁺. HRMS (ESI): *m/z*, calcd. for C₁₀H₁₈O₁N₅ [M + H⁺]: 224.1506, found 224.1507.

6-(1-(2,4,4-trimethylpentan-2-yl)-1H-tetrazol-5-yl)piperidin-2-one (6g): The product was obtained using procedure 2 starting from **5g** as a white solid (50 mg, 42%): ¹H NMR (500 MHz, CDCl₃) δ 6.58 (d, J = 25.2, 1H), 5.15 (t, J = 6.1, 1H), 2.59 – 2.39 (m, 2H), 2.28 – 2.10 (m, 3H), 1.94 (q, J = 15.3, 2H), 1.86 (d, J = 12.9, 7H), 1.83 – 1.71 (m, 1H), 0.79 (s, 9H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 171.8, 155.6, 65.2, 54.5, 48.6, 31.9, 31.1, 30.8, 30.7, 30.7, 28.4, 19.0 ppm. HRMS (ESI): *m/z*, calcd. for C₁₄H₂₆O₁N₅ [M + H⁺]: 280.2132, found 280.2131.

6-(1-phenethyl-1H-tetrazol-5-yl)piperidin-2-one (6h): The product was obtained using procedure 2 starting from **5h** as a white solid (43 mg, 40%): ¹H NMR (500 MHz, CDCl₃) δ 7.27 (d, J = 6.7, 3H), 7.06 – 6.91 (m, 3H), 4.65 – 4.46 (m, 2H), 4.28 (t, J = 5.8, 1H), 3.31 – 3.16 (m, 2H), 2.28 – 2.19 (m, 2H), 1.94 – 1.81 (m, 1H), 1.67 – 1.44 (m, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 172.1, 155.4, 136.6, 129.2, 128.9, 127.7, 49.4, 46.7, 36.3, 31.0, 26.9, 18.8 ppm. HRMS (ESI): *m/z*, calcd. for C₁₄H₁₈O₁N₅ [M + H⁺]: 272.1506, found 272.1506.

6-(1-benzyl-1H-tetrazol-5-yl)piperidin-2-one (6i): The product was obtained using procedure 2 starting from **5i** as a white solid (78 mg, 99%): ¹H NMR (500 MHz, CDCl₃) δ 7.44 – 7.33 (m, 3H), 7.24 (s, 1H), 7.23 – 7.17 (m, 2H), 5.66 (s, 2H), 4.91 – 4.81 (m, 1H), 2.37 – 2.21 (m, 2H), 1.98 – 1.82 (m, 2H), 1.77 – 1.59 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 172.5, 155.1, 133.6, 129.5, 129.2, 127.7, 51.6, 47.4, 31.1, 25.0, 18.8 ppm. HRMS (ESI): *m/z*, calcd. for C₁₃H₁₆O₁N₅ [M + H⁺]: 258.1349, found 258.1349.

6-(1-cyclohexyl-1H-tetrazol-5-yl)piperidin-2-one (6j): The product was obtained using procedure 2 starting from **5j** as a white solid (75 mg, 79%): ¹H NMR (500 MHz, CDCl₃) δ 7.50 (s, 1H), 4.95 (t, *J* = 5.6, 1H), 4.38 – 4.19 (m, 1H), 2.48 – 2.32 (m, 2H), 2.23 – 1.91 (m, 10H), 1.91 – 1.82 (m, 1H), 1.82 – 1.70 (m, 1H), 1.51 – 1.39 (m, 2H), 1.39 – 1.31 (m, 1H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 172.4, 154.1, 58.3, 46.9, 33.6, 32.9, 31.1, 27.5, 25.3, 25.3, 24.8, 18.9 ppm. HRMS (ESI): *m/z*, calcd. for C₁₂H₂₀O₁N₅ [M + H⁺]: 250.1662, found 250.1662.

¹H NMR and ¹³C NMR spectra of compounds 5a-j and 6a-j

- 8000

- 7500 -- 7000

-6500

- 6000 -- 5500

- 5000

- 4500 - 4000 - 3500 - 3000 - 2500

- 2000 - 1500 - 1000 - 500

-0

- -500

Compound 5a ¹H NMR

Compound 5a ¹³C NMR

Compound **5b** ¹H NMR

Compound 5b ¹³C NMR

Compound 5c ¹³C NMR

Compound 5d ¹H NMR

Compound 5d ¹³C NMR

Compound 5e ¹³C NMR

Compound 5g ¹H NMR

Compound 5g ¹³C NMR

Compound 5i ¹H NMR

Compound 5i 13C NMR

Compound 5j ¹H NMR

Compound 6a ¹H NMR

Compound 6b ¹H NMR

 210
 200
 190
 180
 170
 160
 150
 140
 130
 120

- 1500 - 1000 - 500 - 0 - - - 500

0

S20

110 100 f1 (ppm) 90 80

60

70

40

30 20 10

50

Compound 6h ¹³C NMR

Single Crystal X-Ray Structure Determination of Compounds 6b, 6e, 6f, and 6j

Colorless fragment						
Crystal Size	Operator: *** Herdtweck ***					
Molecular Formula:	C ₁₃ H ₂₃ N ₅ O					
Crystal Color / Shape	Approximate size of crystal fragment used for data collection:					
	$0.20 \times 0.25 \times 0.43 \text{ mm}$					
Molecular Weight:	265.36 a.m.u.					
F ₀₀₀ :	576					
Systematic Absences:	h0l: $l\neq 2n$; 0k0: $k\neq 2n$					
Space Group:	Monoclinic $P 2_1/c$ (I.TNo.: 14)					
Cell Constants:	Least-squares refinement of 9399 reflections with the programs "APEX suite"					
	and "SAINT" [1,2]; theta range $2.28^{\circ} < \theta < 25.46^{\circ}$; Mo(K α); $\lambda = 71.073$ pm					
	a = 907.24(2) pm					
	$b = 1147.13(3) \text{ pm}$ $\beta = 100.6508(13)^{\circ}$					
	c = 1399.04(3) pm					
	$V = 1430.93(6) \cdot 10^6 \text{ pm}^3$; $Z = 4$; $D_{\text{calc}} = 1.232 \text{ g cm}^{-3}$; Mos. = 0.65					
Diffractometer:	Kappa APEX II (Area Diffraction System; BRUKER AXS); sealed tube; graphite					
	monochromator; 50 kV; 30 mA; $\lambda = 71.073$ pm; Mo(K α)					
Temperature:	(-173±1) °C; (100±1) K					
Measurement Range:	$2.28^{\circ} \le \theta \le 25.46^{\circ}$; h: -10/10, k: -13/13, l: -16/16					

Measurement Tin	me:	2×15 s per film				
Measurement Mo	ode:	measured: 11 runs; 4743 films / scaled: 11 runs; 4743 films				
		φ - and ω -movement; Increment: $\Delta \varphi / \Delta \omega = 0.50^{\circ}$; dx = 40.0 mm				
LP - Correction:		Yes [2]				
Intensity Correct	ion	No/Yes; during	scaling [2]			
Absorption Corre	ection:	Multi-scan; during scaling; $\mu = 0.082 \text{ mm}^{-1}$ [2]				
		Correction Fact	ors: $T_{min} = 0.7079$ T_{max}	= 0.7452		
Reflection Data:		48744	reflections were integrated and scaled			
		1510	reflections systematic absent and rejected			
		47234	reflections to be merged			
		2636	independent reflections			
		0.020	R_{int} : (basis F_o^2)			
		2636	independent reflections (all) were used in			
			refinements			
		2468	independent reflections with $I_o > 2\sigma(I_o)$			
		100.0 %	completeness of the data set			
		265	parameter full-matrix refinement			
		9.9	reflections per parameter			
Solution:		Direct Methods	[3, 7]; Difference Fourier syntheses			
Refinement Para	meters:	In the asymmetric unit:				
		19	Non-hydrogen atoms with anisotropic displace	ement		
			parameters			
		23	Hydrogen atoms with isotropic displacement			
			parameters			
Hydrogen Atoms	5:	All hydrogen a	tom positions were found in the difference ma	ap calculated from		
		the model containing all non-hydrogen atoms. The hydrogen positions were				
		refined with inc	lividual isotropic displacement parameters.			
Atomic Form Fac	ctors:	For neutral ator	ns and anomalous dispersion [4, 5, 7]			
Extinction Corre	ction:	$F_{\rm c}$ (korr) = k $F_{\rm c}$	$(1+0.001 \cdot \varepsilon \cdot F_c^2 \cdot \lambda^3/\sin(2\Theta))^{-1/4}$			
		SHELXL-97 [5, 7] ε refined to $\varepsilon = 0.0054(9)$			
Weighting Schen	ne:	$w^{-1} = \sigma^2(F_0^2) + (a^2)^2$	a*P) ² +b*P			
0 0		with a: 0.0362.	b: 0 5542: P: [Maximum(0 or F_{-2})+2* F_{-2}]/3			
Shift/Frr		Less than 0.001	in the last cycle of refinement:			
Besid Electron I	Density:	+0.28 eErrorl/	3 -0.17 e Error $I/^{3}$			
	ouisity.	$\nabla E E \rangle \langle \Sigma E$				
KI.	N-24691.	$\mathcal{L}(\Gamma_0 - \Gamma_c)/\mathcal{L} \Gamma$	o	- 0.0202		
$[F_0 > 4O(F_0);$	N=2408]:			= 0.0302		
[all relictins;	N=2030]:	$[\nabla (E^2 E^2)^2/5$	- (F 2)211/2	= 0.0320		
WR2:	N. 2 4601	$[2W(F_0^2 - F_c^2)^2/2]$	$W(F_0^2)^2$] ^{1/2}	0.0740		
$[F_{o} > 4\sigma(F_{o});$	N=2468]:			= 0.0748		
[all refletns;	N=2636]:			= 0.0764		
Goodness of fit:		$[2w(F_0^2-F_c^2)^2/(1-e^2)^2]$	NO-NV] ^{1/2}	= 1.033		
Remarks:		Refinement exp	pression $\Sigma w (F_o^2 - F_c^2)^2$			

Operator: Molecular Formula: Crystal Color / Shape Crystal Size Molecular Weight:	*** Herdtweck *** C_{11} H ₁₇ N ₅ O Colorless fragment Approximate size of $0.28 \times 0.41 \times 0.51$ m 235.30 a.m.u.	crystal fragment used fo	r data collectio	n:	
F ₀₀₀ : Systematic Absences:	252 none				
Space Group: Cell Constants:	Triclinic Least-squares refine	$P \bar{1}$ (I.TNorment of 9939 reflection	b.: 2) s with the prog	grams "APEX suite"	
	and "SAINT" [1,2];	theta range $2.14^\circ < \theta < 2$	5.38°; Mo(Kα	; $\lambda = 71.073 \text{ pm}$	
	<i>a</i> =	654.62(2) pm	$\alpha =$	65.9412(10)°	
	<i>b</i> =	925.70(2) pm	$\beta =$	81.5752(11)°	
	c =	1055.29(3) pm	$\gamma =$	89.9391(11)°	
	$V = 576.41(3) \cdot 10^{6} \text{ p}$	m^3 ; $Z = 2$; $D_{calc} = 1.356$	$g \text{ cm}^{-3}; \text{ Mos.} =$	0.64	
Diffractometer:	Kappa APEX II (Area Diffraction System; BRUKER AXS); sealed tube; gra				
	monochromator; 50	kV; 30 mA; $\lambda = 71.073$ j	pm; Mo($K\alpha$)		
Temperature:	(-173±1) °C;	(100±	1) K		
Measurement Range:	$2.14 < \theta < 25.38^{\circ}; h$: -7/7, k: -11/11, l: -12	/12		
Measurement Time:	2×15 s per film				
Measurement Mode:	measured: 14 runs; 5	785 films / scaled: 14 ru	ns; 5785 films		
	φ - and ω -movemen	t; Increment: $\Delta \varphi / \Delta \omega = 0$	$.50^{\circ}; dx = 35.0$	mm	
LP - Correction:	Yes [2]				
Intensity Correction	No/Yes; during scaling [2]				
Absorption Correction:	Multi-scan; during so	caling; $\mu = 0.093 \text{ mm}^{-1}$ [2]	2]		
	Correction Factors:	$T_{min} = 0.68$	576 T _{ma}	x = 0.7452	
Reflection Data:	19536 re	eflections were integrated	and scaled		
	19536 reflections to be merged				
	2111 in	dependent reflections			

		0.016	R_{int} : (basis F_o^2)				
		2111	independent reflections (all) were used in refinements				
		2033	independent reflections with $L_2 > 2\sigma(L_2)$				
		99.9 %	completeness of the data set				
		222	parameter full-matrix refinement				
		9.5	reflections per parameter				
Solution:		Direct Met	Direct Methods [3, 7]; Difference Fourier syntheses				
Refinement Para	ameters:	In the asym	In the asymmetric unit:				
		17	17 Non-hydrogen atoms with anisotropic displacement				
			parameters				
		17	Hydrogen atoms with isotropic displacement				
			parameters				
Hydrogen Atom	IS:	All hydrogen atom positions were found in the difference map calculated from					
		the model containing all non-hydrogen atoms. The hydrogen positions were					
		refined wit	i individual isotropic displacement parameters.				
Atomic Form Fa	actors:	For neutral	For neutral atoms and anomalous dispersion [4, 5, 7]				
Extinction Corre	ection:	no					
Weighting Sche	eme:	$w^{-1} = \sigma^2 (F_o^2) + (a * P)^2 + b * P$					
		with a: 0.04	.00; b: 0.2260; P: [Maximum(0 or F_0^2)+2* F_c^2]/3				
Shift/Err:		Less than 0.001 in the last cycle of refinement:					
Resid. Electron	Density:	+0.26 eError!/Å ³ ; -0.23 eError!/Å ³					
R1:		$\Sigma(F_{\rm o} - F_{\rm c}))$	$ \Sigma F_{\rm o} $				
$[F_0 > 4\sigma(F_0);$	N=2033]:		= 0.0303				
[all reflctns;	N=2111]:		= 0.0312				
wR2:	_	$[\Sigma w (F_0^2 - F_c)]$	$(2)^{2}/\Sigma w(F_{0}^{2})^{2}]^{1/2}$				
$[F_0 > 4\sigma(F_0);$	N=2033]:		= 0.0765				
[all reflctns;	N=2111]:		= 0.0774				
Goodness of fit:	-	$[\Sigma w (F_o^2 - F_c)]$	$(1)^{2}/(\text{NO-NV})^{1/2} = 1.050$				
Remarks:		Refinement expression $\sum (F_o^2 - F_c^2)^2$					

Compound 6f

Figure F3 – Ortep drawing drawing of compound 6f with 50% ellipsoids. [6]

Operator:	*** Herdtweck ***				
Molecular Formula:	$C_{20} H_{36} N_{10} O_3$				
	2(C ₁₀ H ₁₇ N ₅ O), (H ₂ O)				
Crystal Color / Shape	Colourless fragment				
Crystal Size	Approximate size of crystal fragment used for data collection:				
	$0.10 \times 0.30 \times 0.36$ mm				
Molecular Weight:	464.59 a.m.u.				
F ₀₀₀ :	1000				
Systematic Absences:	hkl: $h+k\neq 2n$; h0l: $l\neq 2n$				
Space Group:	Monoclinic $C 2/c$ (I.TNo.: 15)				
Cell Constants:	Least-squares refinement of 9875 reflections with the programs "APEX suite"				
	and "SAINT" [1,2]; theta range $1.63^\circ < \theta < 25.55^\circ$; Mo(K α); $\lambda = 71.073$ pm				
	$a = 2660.36(6) \mathrm{pm}$				
	$b = 630.28(1) \text{ pm}$ $\beta = 109.7809(9)^{\circ}$				
	c = 1546.66(3) pm				
	$V = 2440.37(8) \cdot 10^6 \text{ pm}^3$; $Z = 4$; $D_{\text{calc}} = 1.265 \text{ g cm}^3$; Mos. = 0.60				
Diffractometer:	Kappa APEX II (Area Diffraction System; BRUKER AXS); sealed tube; graphite				
	monochromator; 50 kV; 30 mA; $\lambda = 71.073$ pm; Mo(K α)				
Temperature:	(-150±1) °C; (123±1) K				
Measurement Range:	$1.63^{\circ} < \theta < 25.55^{\circ};$ h: -32/32, k: -7/7, l: -18/18				
Measurement Time:	2×15 s per film				

Measurement Mode:	measured: 7	measured: 7 runs; 3306 films / scaled: 7 runs; 3306 films				
	φ - and ω -1	φ - and ω -movement; Increment: $\Delta \varphi / \Delta \omega = 0.50^{\circ}$; dx = 40.0 mm				
LP - Correction:	Yes [2]	Yes [2]				
Intensity Correction	No/Yes; du	No/Yes; during scaling [2]				
Absorption Correction:	Multi-scan;	during scaling; $\mu = 0.089 \text{ mm}^{-1} [2]$				
-	Correction	Correction Factors: $T_{min} = 0.6993$ $T_{max} = 0.7452$				
Removing solvent molec	cules Besides the	e solvent molecule, well located in the difference Fourier maps				
	unresolved	solvent molecules remained and had to be removed with the				
	SQUEEZE	procedure. [6]				
Reflection Data:	35663	reflections were integrated and scaled				
	2031	reflections systematic absent and rejected				
	33632	reflections to be merged				
	2264	independent reflections				
	0.026	R_{int} : (basis F_o^2)				
	2264	independent reflections (all) were used in				
		refinements				
	2037	independent reflections with $I_o > 2\sigma(I_o)$				
	98.7 %	completeness of the data set				
	222	parameter full-matrix refinement				
	10.2	reflections per parameter				
Solution:	Direct Metl	nods [3, 7]; Difference Fourier syntheses				
Refinement Parameters:	In the asym	metric unit:				
	17	Non-hydrogen atoms with anisotropic displacement				
		parameters				
	18	Hydrogen atoms with isotropic displacement				
		parameters				
Hydrogen Atoms:	All hydrog	en atom positions were found in the difference map calculated from				
	the model	the model containing all non-nydrogen atoms. The hydrogen positions were				
	refined with	i individual isotropic displacement parameters.				
Atomic Form Factors:	For neutral	atoms and anomalous dispersion [4, 5, 7]				
Extinction Correction:	no					
Weighting Scheme:	$w^{-1} = \sigma^2(F_0)$	*)+(a*P)++b*P				
~	with a: 0.04	$_{66}$; b: 1./210; P: [Maximum(0 or F_0^2)+2* F_c^2]/3				
Shift/Err:	Less than 0	.001 in the last cycle of refinement:				
Resid. Electron Density:	+0.19 eErro	$r!/A^3$; -0.18 eError!/A ³				
R1:	$\mathcal{I}(F_{\rm o} - F_{\rm c})$	$\Sigma F_{o} $				
$[F_{o} > 4\sigma(F_{o});$ N=203	57]:	= 0.0348				
[all refletns; N=226	64] :	= 0.0385				
wR2:	$[\Sigma w(F_o^2 - F_c^2)]$	$(2)^{2}/\Sigma w (F_{o}^{2})^{2}]^{1/2}$				
$[F_{o} > 4\sigma(F_{o});$ N=203	57]:	= 0.0887				
[all reflctns; N=226	64]:	= 0.0911				
Goodness of fit:	$[\Sigma w (F_o^2 - F_c^2)]$	$(NO-NV)^{1/2} = 1.049$				
Remarks:	Refinement	expression $\Sigma w (F_o^2 - F_c^2)^2$				

Compound 6j

Figure I	F4 –	Ortep	drawing	drawing	of com	pound 6i	with	50% elli	psoids.	[6]
Bare -		0100p			01 00111				000140.	1 ~ 1

Operator:	*** Herdtweck ***
Molecular Formula:	C ₁₂ H ₁₉ N ₅ O
Crystal Color / Shape	Colorless fragment
Crystal Size	Approximate size of crystal fragment used for data collection:
	$0.25 \times 0.25 \times 0.28 \text{ mm}$
Molecular Weight:	249.32 a.m.u.
F ₀₀₀ :	1072
Systematic Absences:	0kl: k≠2n; h0l: l≠2n; hk0: h≠2n
Space Group:	Orthorhombic <i>P bca</i> (I.TNo.: 61)
Cell Constants:	Least-squares refinement of 9968 reflections with the programs "APEX suite"
	and "SAINT" [1,2]; theta range $2.79^{\circ} < \theta < 25.40^{\circ}$; Mo(K α); $\lambda = 71.073$ pm
	a = 991.62(3) pm
	b = 1193.89(3) pm
	c = 2152.52(7) pm
	$V = 2548.34(13) \cdot 10^6 \text{ pm}^3$; $Z = 8$; $D_{\text{calc}} = 1.300 \text{ g cm}^{-3}$; Mos. = 0.67
Diffractometer:	Kappa APEX II (Area Diffraction System; BRUKER AXS); sealed tube; graphite
	monochromator; 50 kV; 30 mA; $\lambda = 71.073$ pm; Mo(K α)
Temperature:	(-150±1) °C; (123±1) K
Measurement Range:	$2.79^{\circ} < \theta < 25.40^{\circ}$; h: -11/11, k: -14/14, l: -25/25
Measurement Time:	2×10 s per film

Measurement Me	ode:	measured: 6 runs; 3381 films / scaled: 6 runs; 3381 films				
		φ - and ω -movement; Increment: $\Delta \varphi / \Delta \omega = 0.50^{\circ}$; dx = 60.0 mm				
LP - Correction:		Yes [2]				
Intensity Correct	ion	No/Yes; duri	ng scaling [2]			
Absorption Corre	ection:	Multi-scan; during scaling; $\mu = 0.088 \text{ mm}^{-1}$ [2]				
		Correction Fa	actors: $T_{min} = 0.7060$ T_{min}	$_{\rm max} = 0.7452$		
Reflection Data:		34576	reflections were integrated and scaled			
		3008	reflections systematic absent and rejected	ed		
		2	obvious wrong intensity and rejected (or	ne hkl)		
		31566	reflections to be merged			
		2338	independent reflections			
		0.028	R_{int} : (basis F_o^2)			
		2338	independent reflections (all) were used	in		
			refinements			
		2085	independent reflections with $I_o > 2\sigma(I_o)$			
		99.9 %	completeness of the data set			
		239	parameter full-matrix refinement			
		9.8	reflections per parameter			
Solution:		Direct Metho	ds [3, 7]; Difference Fourier syntheses			
Refinement Para	meters:	In the asymmetric unit:				
		18 Non-hydrogen atoms with anisotropic displacement				
			parameters			
		19	Hydrogen atoms with isotropic displaceme	nt		
			parameters			
Hydrogen Atoms	5:	All hydrogen atom positions were found in the difference map calculated from				
		the model c	ontaining all non-hydrogen atoms. The hyd	rogen positions were		
		refined with	individual isotropic displacement parameters.			
Atomic Form Fa	ctors:	For neutral a	toms and anomalous dispersion [4, 5, 7]			
Extinction Corre	ction:	no				
Weighting Scher	ne:	$w^{-1} = \sigma^2(F_0^2)$	$+(a*P)^{2}+b*P$			
		with a: 0.049	1; b: 1.2420; P: [Maximum(0 or F_0^2)+2* F_c^2]/2	3		
Shift/Err:		Less than 0.0	01 in the last cycle of refinement:			
Resid. Electron I	Density:	+0.24 eError	!/Å ³ ; -0.24 eError!/Å ³			
R1:		$\mathcal{I}(F_{\rm o} - F_{\rm c})/2$	$E F_{o} $			
$[F_0 > 4\sigma(F_0);$	N=2085]:			= 0.0359		
[all refletns;	N=2338]:			= 0.0407		
wR2:		$\left[\Sigma w(F_0^2 - F_c^2)\right]$	$2/\Sigma w(F_{0}^{2})^{2}]^{1/2}$			
$[F_{o} > 4\sigma(F_{o})]$	N=20851:			= 0.0959		
[all refletns:	N=23381:			= 0.0994		
Goodness of fit	1.	$[\Sigma w(F_{2}^{2}-F_{2}^{2})^{2}]$	² /(NO-NV)] ^{1/2}	= 1.082		
Remarks:		Refinement	expression $\Sigma w (F_c^2 - F_c^2)^2$			
			r (- 0 - c)			

<u>References:</u>

- APEX suite of crystallographic software. APEX 2 Version 2008.4. Bruker AXS Inc., Madison, Wisconsin, USA (2008).
- [2] SAINT, Version 7.56a and SADABS Version 2008/1. Bruker AXS Inc., Madison, Wisconsin, USA (2008).
- [3] Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli M. "SIR92", J. Appl. Cryst. 1994, 27, 435-436.

- International Tables for Crystallography, Vol. C, Tables 6.1.1.4 (pp. 500-502), 4.2.6.8 (pp. 219-222), and
 4.2.4.2 (pp. 193-199), Wilson, A. J. C., Ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992.
- [5] Sheldrick, G. M. "SHELXL-97", University of Göttingen, Göttingen, Germany, (1998).
- [6] Spek, A. L. "**PLATON**", A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, (2010).
- [7] L. J. Farrugia, "WinGX (Version 1.70.01 January 2005) ", J. Appl. Cryst. 1999, 32, 837-838.

SFC-MS Chromatograms of compounds 6a-j

Compound 6a SFC-MS

Compound 6b SFC-MS

Compound 6c SFC-MS

Compound 6d SFC-MS

Compound 6e SFC-MS

Compound 6f SFC-MS

Compound 6g SFC-MS

Compound 6h SFC-MS

Compound 6i SFC-MS

PDB Analysis – Interaction distances of gamma lactams found in the PDB database

