Supplementary Information for:

Conformational Analysis of Peramivir Reveals Critical Differences Between Free and Enzyme-Bound States

MedChemComm 2014

Michele R. Richards,^b Michael G. Brant,^a Martin J. Boulanger,^c Christopher W. Cairo^b and Jeremy E. Wulff^{*a}

^{*a*} Department of Chemistry, University of Victoria, Victoria British Columbia V8W 3V6, Canada. E-mail: wulff@uvic.ca. ^{*b*} Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta T6G 2G2, Canada.

^c Department of Biochemistry and Microbiology, University of Victoria, Victoria British Columbia V8W 3V6, Canada.

Index

Experimental Methods	S2
Figure S1: Comparison of Structural Properties for Free and Enzyme-Bound Oseltamivir	S4
Figure S2: Comparison of Structural Properties for Free and Enzyme-Bound Zanamivir	S5
Figure S3: Comparison of Structural Properties for Free and Enzyme-Bound Peramivir	S 6
Figure S4: Structural Properties for Peramivir Bound to Influenza B Neuraminidase	S7
Figure S5: Comparison of Simulated and Experimental ¹ H NMR Spectra for Peramivir	S 8
Figure S6: nOe Data for Peramivir	S9
Figure S7: Total Energy of MD Simulation of Peramivir	S10
Figure S8: Histogram of Peramivir Ring Pucker	S11
Table S1: Calculated and Experimental Scalar Couplings of Peramivir	S12
Table S2: Cartesian Coordinates of Average Peramivir Structure from MD Simulations	S13
Table S3: Energy and Cartesian Coordinates for DFT-Optimized Bound Peramivir	S14
Table S4: Energy and Cartesian Coordinates for DFT-Optimized Unbound Peramivir	S15
References for the Supplementary Information:	S16

Experimental Methods

General procedures

Peramivir was purchased from D-L Chiral Chemicals. Sources of X-ray diffraction data were from the Cambridge Structure Database (CSD) under CCDC 641049;^{S1} or the Protein Data Bank (PDB IDs: 2F10, 3K37, 3K39, 1L7F, 1L7G, 1L7H, 2HTU, 4MWV, and 4MX0.^{S2,S3,S4,S5}

NMR Spectroscopy

The 1D solution-state ¹H NMR spectrum for peramivir was obtained in D_2O at 27 °C on a 700 MHz spectrometer equipped with a cryoprobe. A presaturation pulse sequence was used to reduce the intensity of the residual HOD signal (4.78 ppm at 27 °C). The ¹H–¹H coupling constants were determined using a combination of first-order analysis and simulation in SpinWorks^{S6} as described previously.^{S7}

2D NMR spectra, as well as nOe experiments, were performed at 500 MHz. For the nOe experiments, the D1 relaxation delay was set to 2 s, and the D8 mixing time was set to 0.65 s.

Computational methods

Molecular dynamics (MD) simulations on peramivir were run using the Generalized Amber Force Field^{S8} and the PMEMD module of the AMBER 10 software suite.^{S9} Peramivir was solvated in a box of 379 TIP3P^{S10} water molecules with an initial size of 28.9 x 28.1 x 25.5 Å. Partial charges were calculated using the previously reported approach for restrained electrostatic potential (RESP) charge fitting,^{S11,S12,S13} and all aliphatic hydrogens were assigned a charge of zero. The Generalized Amber Force Field did not contain the appropriate dihedral or improper torsion terms for the guanidine group, so these parameters were taken from the ff99SB force field.^{S14}

Prior to the production phase, peramivir was equilibrated in a four-step process. First, the water molecules were minimized while holding peramivir fixed, then the entire system was minimized. For both rounds, 50 steps of steepest decent were followed by 950 step of conjugant gradient minimization. The system was then subjected to simulated annealing, heating from 5 K to 300 K over 50 ps and cooling back to 5 K over 50 ps. Final equilibration was run heating the system from 5 K to 300 K over 100 ps, then running at a constant 300 K for an additional 100 ps. Following equilibration, production dynamics were run for 250 ns at 300 K. The temperature was held constant using the Berendsen thermostat^{S15} and rescaled every 1 ps. Pressure was held constant at 1 atm. All bonds containing hydrogen were fixed using the SHAKE algorithm.^{S16} A 2 fs timestep was used for all dynamics steps, and the cutoff for nonbonding interactions was 8 Å. Nonbonded and electrostatic interactions were unscaled.

For the average coupling constants, 200 conformations were extracted from the MD simulation of peramivir. The Fermi contact term was then calculated for each conformation using B3LYP/6-31G(d,p) $u+1s^{S17,S18,S19}$ in Gaussian03,^{S20} following the procedure of Bally and Rablen.^{S21} The resulting $J_{H,H}$ values were averaged over all 200 conformations.

Figure S1: Comparison of Structural Properties for Free and Enzyme-Bound Oseltamivir

Figure S1. Comparison of structural properties for free and enzyme-bound oseltamivir, revealing a conserved geometry of the central ring. A: Oseltamivir carboxylate bound in the enzyme active site of H1N1 neuraminidase (from PDB 3TI6).^{S22} B: Omit map for the bound ligand of PDB 3TI6, confirming the quality of the data for the bound ligand. C and D: Top- and side-views of the bound ligand from Figure S1A, showing the twist-boat conformation of the central ring. Colored arrows on the structural drawing correspond to the functional groups in Figure 1. Positions of hydrogen atoms are calculated based on the positions of the other atoms. E: Small-molecule X-ray data for oseltamivir (as the ethyl ester prodrug) from reference S23. Exocyclic bonds are rotated somewhat with respect to the enzyme-bound structure, but the geometry of the central core is largely preserved in the absence of binding.

Figure S2: Comparison of Structural Properties for Free and Enzyme-Bound Zanamivir

Figure S2. Comparison of structural properties for free and enzyme-bound zanamivir, revealing a conserved geometry of the central ring. **A:** Zanamivir bound in the enzyme active site of H1N1 neuraminidase (from PDB 3B7E).^{S24} **B:** Omit map for the bound ligand of PDB 3B7E, confirming the quality of the data for the bound ligand. **C** and **D:** Top- and side-views of the bound ligand from Figure S2A, showing the twist-boat conformation of the central ring. Colored arrows on the structural drawing correspond to the functional groups in Figure 1. Positions of hydrogen atoms are calculated based on the positions of the other atoms. **E:** Small-molecule X-ray data for zanamivir (as a dimer) from reference S25. Exocyclic bonds are rotated somewhat with respect to the enzyme-bound structure, but the geometry of the central core is largely preserved in the absence of binding.

Figure S3: Comparison of Structural Properties for Free and Enzyme-Bound Peramivir

Figure S3. Comparison of structural properties for free and enzyme-bound peramivir, highlighting differences in the geometry of the central ring. A: Peramivir bound in the enzyme active site of H1N9 neuraminidase (from PDB 1L7F).^{S3} B: Omit map for the bound ligand of PDB 1L7F, confirming the quality of the data for the bound ligand. C and D: Top- and side-views of the bound ligand from Figure S3A, showing the pronounced pseudo-equatorial projections of the carboxylate and guanidinium substituents. Colored arrows on the structural drawing correspond to the functional groups in Figure 1. Positions of hydrogen atoms are calculated based on the positions of the other atoms. E: Small-molecule X-ray data for peramivir from reference S1, showing a substantially different conformation.

Figure S4: Structural Properties for Peramivir Bound to Influenza B Neuraminidase

Figure S4. Structural properties for peramivir bound to influenza B neuraminidase. **A:** Peramivir bound in the enzyme active site of neuraminidase from influenza B/Perth/211/2001 (from PDB 3K37).^{S5} **B:** Omit map for the bound ligand of PDB 3K37, confirming the quality of the data for the bound ligand. **C** and **D:** Top- and side-views of the bound ligand from Figure S4A, showing a relaxed geometry, relative to that shown in Figure S3C and D. Colored arrows on the structural drawing correspond to the functional groups in Figure 1. Positions of hydrogen atoms are calculated based on the positions of the other atoms. **E:** Overlay of all 18 different bound conformations of peramivir bound to either wild-type B/Perth neuraminidase (from PDB 3K37) or a D197E mutant (from PDB 3K39).^{S5}

Figure S5. Comparison of simulated and measured ¹H NMR spectra for peramivir. A: The ¹H NMR spectrum for peramivir simulated in SpinWorks.^{S6} B: The experimental ¹H NMR spectrum for peramivir in D_2O at 700 MHz. The RMS difference between the two spectra is 0.003 Hz.

Figure S6: nOe Data for Peramivir (D₂O, 500 MHz)

Figure S6. nOe data for peramivir in D_2O at 500 MHz, using a D1 relaxation delay of 2 s, and a D8 mixing time of 0.65 s. Asterisks indicate the signal being irradiated. In each case, the integration of the irradiated signal was set to -100%.

Figure S7. Total energy plotted over the course of the MD simulation of peramivir. The average energy (red line) is -3226 kcal/mol.

Figure S8: Histogram of Peramivir Ring Pucker

Figure S8. Histogram of pseudorotational phase angles, *P*, from the MD simulation of peramivir. The histogram can be fit to a Gaussian function (blue line), centered at $P = -37^{\circ}$.

	Experimental ^{<i>a</i>} (Hz)	Average from MD simulation (Hz)	Average from the X-ray ^b (Hz)	Bound in H1N9 ^c (Hz)
${}^{3}J_{\mathrm{H1,H2}}$	1.3	0.7 ± 0.9	1.1 ± 0.2	2.1
${}^{3}J_{\mathrm{H1,H5}lpha}$	3.9	3.7 ± 2.9	0.9 ± 0.2	11.5
$^{3}J_{\mathrm{H1,H5\beta}}$	8.6	9.5 ± 1.9	7.6 ± 0.7	10.2
$^{3}J_{\mathrm{H2,H3}}$	4.6	5.4 ± 1.5	3.6 ± 0.4	5.9
${}^{4}J_{\mathrm{H2, H5}\alpha}$	0.7	0.5 ± 0.4	-0.3 ± 0.3	-0.6
$^{3}J_{\mathrm{H3,H3'}}$	10.9	10.8 ± 1.7	8.4 ± 0.5	9.9
$^{3}J_{\mathrm{H3,H4}}$	9.1	8.9 ± 2.1	5.1 ± 0.5	8.2
${}^{3}J_{\mathrm{H3'},\mathrm{pentyl}}$	2.2	2.3 ± 1.4	2.4 ± 0.5	2.7
$^{3}J_{\rm H4,H5\alpha}$	5.7	5.6 ± 3.1	1.4 ± 0.3	10.0
$^{3}J_{\mathrm{H4,H5\beta}}$	9.0	11.0 ± 2.1	9.9 ± 0.2	7.3
$^{2}J_{\mathrm{H5}\alpha,\mathrm{H5}\beta}$	-14.1	-14.3 ± 4.4	-14.3 ± 0.2	-14.7

Table S1: Calculated and Experimental Scalar Couplings of Peramivir

^{*a*}From the Spinworks^{S6} simulation (see Figure S5). The error in the experimental values is estimated to be \pm 0.2 Hz.

^bAverage across the four conformations visible in the unit cell.^{S1}

^cBound structure from PDB 1L7F.^{S3}

Table S2: Cartesian Coordinates of Average Peramivir Structure from MD Simulations (PDB format)

REMARK					PDB	file	gen	erated	by ptraj		
ATOM	1	C1	PER	1		-0.39	8	14.673	17.211	0.00	0.00
ATOM	2	С3	PER	1		-1.53	2	13.955	18.002	0.00	0.00
ATOM	3	02	PER	1		-1.22	8	13.293	18.953	0.00	0.00
ATOM	4	03	PER	1		-2.65	5	14.191	17.778	0.00	0.00
ATOM	5	ΗЗ	PER	1		-0.88	4	15.390	16.546	0.00	0.00
ATOM	6	C 4	PER	1		0.60	3	15.359	18.131	0.00	0.00
ATOM	7	Н4	PER	1		0.71	7	16.388	17.784	0.00	0.00
ATOM	8	Н5	PER	1		0.29	4	15.385	19.178	0.00	0.00
ATOM	9	C 5	PER	1		1.94	4	14.627	18.036	0.00	0.00
ATOM	10	N1	PER	1		2.45	6	14.387	19.419	0.00	0.00
ATOM	11	C 6	PER	1		3.43	6	15.099	20.021	0.00	0.00
ATOM	12	N2	PER	1		4.07	7	16.077	19.408	0.00	0.00
ATOM	13	Н6	PER	1		4.63	3	16.761	19.909	0.00	0.00
ATOM	14	Н7	PER	1		3.69	1	16.473	18.558	0.00	0.00
ATOM	15	NЗ	PER	1		3.74	7	14.801	21.231	0.00	0.00
ATOM	16	Н8	PER	1		4.39	8	15.351	21.781	0.00	0.00
ATOM	17	Н9	PER	1		3.37	4	13.976	21.688	0.00	0.00
ATOM	18	H10	PER	1		2.10	1	13.626	19.988	0.00	0.00
ATOM	19	H11	PER	1		2.60	4	15.119	17.317	0.00	0.00
ATOM	20	C2	PER	1		0.38	0	13.579	16.431	0.00	0.00
ATOM	21	01	PER	1		0.83	0	14.116	15.192	0.00	0.00
ATOM	22	Н1	PER	1		0.10	0	14.112	14.548	0.00	0.00
ATOM	23	H2	PER	1		-0.10	2	12.634	16.165	0.00	0.00
ATOM	24	С7	PER	1		1.61	4	13.288	17.359	0.00	0.00
ATOM	25	H12	PER	1		1.26	0	12.530	18.060	0.00	0.00
ATOM	26	C 8	PER	1		2.89	6	12.801	16.537	0.00	0.00
ATOM	27	H17	PER	1		3.13	7	13.661	15.908	0.00	0.00
ATOM	28	C11	PER	1		2.66	1	11.557	15.610	0.00	0.00
ATOM	29	C12	PER	1		2.49	1	10.299	16.463	0.00	0.00
ATOM	30	C13	PER	1		1.75	3	9.123	15.732	0.00	0.00
ATOM	31	H18	PER	1		0.73	8	9.434	15.475	0.00	0.00
ATOM	32	Н19	PER	1		2.27	1	8.839	14.814	0.00	0.00
ATOM	33	Н2О	PER	1		1.94	1	8.295	16.419	0.00	0.00
ATOM	34	H21	PER	1		3.44	9	9.877	16.774	0.00	0.00
ATOM	35	H22	PER	1		1.91	7	10.484	17.373	0.00	0.00
ATOM	36	Н2З	PER	1		1.73	9	11.738	15.053	0.00	0.00
ATOM	37	C14	PER	1		3.84	1	11.432	14.558	0.00	0.00
ATOM	38	C15	PER	1		3.84	8	12.578	13.523	0.00	0.00
ATOM	39	H24	PER	1		4.67	6	12.569	12.811	0.00	0.00
ATOM	40	Н25	PER	1		2.95	8	12.399	12.916	0.00	0.00
ATOM	41	H26	PER	1		3.84	5	13.538	14.043	0.00	0.00
ATOM	42	H27	PER	1		4.77	7	11.473	15.119	0.00	0.00
ATOM	43	H28	PER	1		3.69	8	10.423	14.165	0.00	0.00
ATOM	44	N 4	PER	1		3.97	3	12.511	17.483	0.00	0.00
ATOM	45	H16	PER	1		3.87	4	11.789	18.181	0.00	0.00
ATOM	46	С9	PER	1		5.18	6	13.070	17.484	0.00	0.00
ATOM	47	C10	PER	1		6.09	9	12.510	18.518	0.00	0.00
ATOM	48	Н1З	PER	1		5.92	9	12.950	19.503	0.00	0.00
ATOM	49	H14	PER	1		5.98	7	11.424	18.495	0.00	0.00
ATOM	50	H15	PER	1		7.11	0	12.688	18.144	0.00	0.00
ATOM	51	04	PER	1		5.50	6	13.915	16.686	0.00	0.00

Table S3: Energy and Cartesian Coordinates for DFT-Optimized Bound Peramivir

(Structure extracted from PDB 2HTU, and populated with hydrogens before minimization)

Optimization: DFT/B3LYP/6-31G* SCF total energy: -1108.3621629 hartrees

Coordinates:

		Atom	Х	Y	Z
1	C	C5	2.0526027	1.6516706	0.0511530
2	С	C3	0.5336236	1.3647151	0.1235629
3	С	C15	0.4521766	-0.1478529	-0.2492441
4	С	C16	1.6940191	-0.7576748	0.4901903
5	С	C4	2.7302788	0.4000898	0.6368354
6	С	C6	4.1045634	0.1784927	0.0532626
7	0	08	4.9676177	1.0261775	-0.0134829
8	С	C14	-0.8625688	-0.8967006	0.1564769
9	Ν	N5	-2.0423045	-0.2798106	-0.4316026
10	С	C13	-2.8821856	0.5333791	0.2821560
11	0	014	-2.7483454	0.7776777	1.4744069
12	С	С7	-0.8354788	-2.4190016	-0.1927430
13	Ν	N1	-0.2387753	2.2084839	-0.7546335
14	С	C26	-0.7445892	3.4241837	-0.3123455
15	С	C11	-2.0009680	-3.1719233	0.4785723
16	С	С8	-0.7417682	-2.7139603	-1.7069979
17	Н	H1	0.0895819	-2.7796909	0.2802599
18	Н	H2	-1.7691322	-2.6702086	-2.1062928
19	Н	нЗ	-0.2305683	-1.8889360	-2.2213436
20	С	С9	-0.0455027	-4.0236679	-2.0635129
21	Н	H4	0.9419278	-4.0760409	-1.5990047
22	Н	Н5	0.0313479	-4.1399166	-3.1478599
23	Н	НG	-0.6209306	-4.8881113	-1.7010188
24	Н	Н7	-2.9367430	-2.9699403	-0.0503561
25	Н	H8	-1.7848336	-4.2466864	0.4175023
26	С	C12	-2.1723243	-2.8858156	1.9770234
27	Н	Н9	-2.6408928	-1.9118779	2.1754322
28	Н	H10	-1.2273068	-2.8924856	2.5342278
29	Н	H11	-2.8443521	-3.6252951	2.4363765
30	Η	H12	-0.9063197	-0.7404456	1.2310800
31	С	C10	-3.9787822	1.2100443	-0.5290139
32	Η	H13	-4.0074775	0.9291417	-1.5920469
33	Η	H14	-3.8193790	2.2929962	-0.4907570
34	Η	H15	-4.9617675	0.9958417	-0.0991930
35	Η	H16	-2.1837335	-0.3355761	-1.4283106
36	Η	H17	0.6369662	-0.2444566	-1.3265298
37	Η	H18	2.0793005	-1.6283691	-0.0414194
38	0	01	1.3828786	-1.1256098	1.8434630
39	Η	H19	1.0271277	-2.0266101	1.8453391
40	Η	H20	-0.0944269	2.2197385	-1.7551941
41	Ν	N2	-1.5105793	4.0596580	-1.3299782
42	Η	H21	-2.0883228	3.4062194	-1.8488681
43	Η	H22	-2.1263389	4.7810122	-0.9728898
44	Η	H23	-0.8705069	4.8074755	1.0264611
45	Ν	N3	-0.4657809	3.8908931	0.8432101
46	Η	H24	0.1552740	1.5282411	1.1331448
47	Η	H25	2.8562477	0.4947733	1.7199288
48	Η	H26	2.3312095	1.8054520	-0.9960883
49	Η	H27	2.3183809	2.5478616	0.6190236
50	0	02	4.3200982	-1.0887514	-0.4052049
51	Η	H28	5.2511784	-1.0904986	-0.6962848

Table S4: Energy and Cartesian Coordinates for DFT-Optimized Unbound Peramivir

(Structure extracted from CCDC 641049¹)

Optimization: DFT/B3LYP/6-31G* SCF total energy: -1108.3702293 hartrees

 $(\Delta \Delta H_f = -21.2 \text{ kJ/mol})$

Coordinates:

	Atom		Х	Y	Z
1	С	C10	0.1895236	-0.5782978	0.1182827
2	Ν	N7	-1.3504028	1.3064304	-0.3289997
3	С	C19	1.2626176	0.4654492	0.5486937
4	Ν	Nl	1.7996406	1.1371759	-0.6329727
5	С	C11	2.3413901	-0.3342199	1.3526827
6	С	C13	2.0136037	-1.8214896	1.1632539
7	С	C20	0.4659582	-1.8043086	1.0153794
8	С	С9	-1.2649920	-0.0556078	0.1888325
9	С	C16	-2.3056263	-1.0114005	-0.4471920
10	С	C18	-3.7466475	-0.6158252	-0.0771128
11	С	C17	-2.1371389	-1.1249748	-1.9803169
12	С	C12	-1.6342827	2.3952310	0.4532684
13	С	C14	2.3789956	2.3806552	-0.5613851
14	С	C15	2.6264482	-2.5060035	-0.0453709
15	0	026	-1.8824398	2.3088302	1.6512075
16	0	028	2.4760569	-3.6815113	-0.3017982
17	Η	Н1	-2.1061397	-2.0086717	-0.0326682
18	Η	Н2	-2.2898269	-0.1479410	-2.4581484
19	Η	НЗ	-1.1131566	-1.4496373	-2.2060168
20	Η	Н4	-4.0036654	0.3473779	-0.5414443
21	Η	Н5	-4.4310838	-1.3427255	-0.5353547
22	С	C7	-4.0536174	-0.5517620	1.4249497
23	Η	Нб	-5.1318766	-0.4336249	1.5910112
24	Η	Н7	-3.5598436	0.2955563	1.9104626
25	Η	Н8	-3.7356213	-1.4670430	1.9398704
26	С	C8	-3.0601205	-2.1531131	-2.6450130
27	Η	Н9	-4.0968536	-1.8221373	-2.7617940
28	Η	H10	-3.0761298	-3.0958212	-2.0759446
29	H	H11	-2.6881575	-2.4355134	-3.6415076
30	Н	H12	-1.4917894	0.0479427	1.2512610
31	H	H13	-1.1607757	1.4718349	-1.3067833
32	С	C6	-1.6108562	3./405/91	-0.2645982
33	H	H14	-1.59/5840	3.6430632	-1.3558//3
34	н	HI5	-0.7259975	4.2906102	0.0648059
35	H	H16 H17	-2.5058586	4.2958222	0.0211053
30	н	HL/	0.4098905	-0.9225287	-0.8858020
3/	н	H18 U10	3.3340908	0.0027289	1.0449/89
20	п	н19 1120	2.2/23020	-0.0720410	2.4133033
39	п	HZU 1121	2.3334130	-2.4099555	2.0202973
40	п	ПZ I 112 2	0.0032000	1.2092209	0 5441220
41	П	н <i>22</i> 01	-0.1703713	-2.7202400	2 2710770
42	О Ц	U1 U23	-0.1703713	-2 4245416	2.2/10//0
ч Э Д Д	H	H24	2 0451394	2.724J410 0 5339476	-1 4060807
17 15	н	H25	2 8127840	3 9426111	1.4000007 0 4291405
ч.5 4.6	N	N2	2.012/049	2 9766006	0.7201403
47	N	N3	2.3321203	2 9059239	-1 8123910
4 A	Н	н26	3 7841847	3 2175913	-1 7368582
49	Н	н27	2 7972218	2 2093263	-2 5548412
50	0	02	3.3214924	-1.6848182	-0.8840437
51	H	H28	3.6155000	-2.2689850	-1.6102839

References for the Supplementary Information:

- (S1) Keller, E.; Kraemer, V. Crystal structure of the trihydrate of the neuraminidase inhibitor C15H28N4O4 (Peramivir), a potential influenza A/B and avian-influenza (H5N1) drug. Z. *Naturforsch., B: Chem. Sci.* **2007**, *62*, 983-987.
- (S2) Russell, R. J.; Haire, L. F.; Stevens, D. J.; Collins, P. J.; Lin, Y. P.; Blackburn, G. M.; Hay, A. J.; Gamblin, S. J.; Skehel, J. J. The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. *Nature* 2006, 443, 45-49.
- (S3) Smith, B. J.; McKimm-Breshkin, J. L.; McDonald, M.; Fernley, R. T.; Varghese, J. N.; Colman, P. M. Structural Studies of the Resistance of Influenza Virus Neuramindase to Inhibitors. J. Med. Chem. 2002, 45, 2207-2212.
- (S4) Wu, Y.; Bi, Y.; Vavricka, C. J.; Sun, X.; Zhang, Y.; Gao, F.; Zhao, M.; Xiao, H.; Qin, C.; He, J.; Liu, W.; Yan, J.; Qi, J.; Gao, G. F. Characterization of two distinct neuraminidases from avianorigin human-infecting H7N9 influenza viruses. *Cell Res.* 2013, 23, 1347-1355.
- (S5) Oakley, A. J.; Barrett, S.; Peat, T. S.; Newman, J.; Streltsov, V. A.; Waddington, L.; Saito, T.; Tashiro, M.; McKimm-Breschkin, J. L. Structural and Functional Basis of Resistance to Neuraminidase Inhibitors of Influenza B Viruses. J. Med. Chem. 2010, 53, 6421-6431.
- (S6) Marat, K. SpinWorks 3.1.8.1. University of Manitoba, Manitoba, Canada 2011.
- (S7) Richards, M. R.; Bai, Y.; Lowary, T. L. Comparison between DFT- and NMR-based conformational analysis of methyl galactofuranosides. *Carbohydr. Res.* **2013**, *374*, 103-114.
- (S8) Wang, J. M.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and testing of a general amber force field. *J. Comput. Chem.* **2004**, *25*, 1157–1174.
- (S9) Case, D. A.; Darden, T. A.; T.E. Cheatham, I.; Simmerling, C. L.; Wang, J.; Duke, R. E.; Luo, R.; Crowley, M.; Walker, R. C.; Zhang, W.; Merz, K. M.; Wang, B.; Hayik, S.; Roitberg, A.; Seabra, G.; Kolossváry, I.; Wong, K. F.; Paesani, F.; Vanicek, J.; Wu, X.; Brozell, S. R.; Steinbrecher, T.; Golke, H.; Yang, L.; Tan, C.; Mongan, J.; Hornak, V.; Cui, G.; Mathews, D. H.; Seetin, M. G.; Saugi, C.; Babin, V.; Kollman, P. A. *AMBER 10*, University of California, San Francisco: **2008**.
- (S10) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935.
- (S11) Seo, M.; Castillo, N.; Ganzynkowicz, R.; Daniels, C. R.; Woods, R. J.; Lowary, T. L.; Roy, P. N. Approach for the Simulation and Modeling of Flexible Rings: Application to the α-D-Arabinofuranoside Ring, a Key Constituent of Polysaccharides from Mycobacterium tuberculosis. J. Chem. Theory Comput. 2008, 4, 184–191.
- (S12) Taha, H. A.; Castillo, N.; Roy, P.-N.; Lowary, T. L. Conformational Studies of Methyl β-d-Arabinofuranoside Using the AMBER/GLYCAM Approach. J. Chem. Theory Comput. 2009, 5, 430–438.
- (S13) Bayly, C. I.; Cieplak, P.; Cornell, W.; Kollman, P. A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 1993, 97, 10269–10280.
- (S14) Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. *Proteins* 2006, 65, 712–25.
- (S15) Berendsen, H. J. C.; Postma, J. P. M.; Gunsteren, W. F. v.; DiNola, A.; Haak, J. R. Molecular dynamics with coupling to an external bath. *J. Chem. Phys.* **1984**, *81*, 3684–3690.
- (S16) Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327–341.
- (S17) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.

- (S18) Rassolov, V. A.; Ratner, M. A.; Pople, J. A.; Redfern, P. C.; Curtiss, L. A. 6-31G* basis set for third-row atoms. J. Comput. Chem. 2001, 22, 976–984.
- (S19) Frisch, M. J.; Pople, J. A.; Binkley, J. S. Self Consistent Molecular-Oribital Methods 0.25. Supplementary Functions for Gaussian-Basis Sets. J. Chem. Phys. **1984**, 80, 3265–3269.
- (S20) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. *Gaussian 03* Revision C.02; Gaussian, Inc.: Wallingford, CT, **2004**.
- (S21) Bally, T.; Rablen, P. R. Quantum-Chemical Simulation of 1H NMR Spectra. 2.[†] Comparison of DFT-Based Procedures for Computing Proton–Proton Coupling Constants in Organic Molecules. J. Org. Chem. 2011, 76, 4818-4830.
- (S22) Vavricka, C. J.; Li, Q.; Wu, Y.; Qi, J.; Wang, M.; Liu, Y.; Gao, F.; Liu, J.; Feng, E.; He, J.; Wang, J.; Liu, H.; Jiang, H.; Gao, G. F. Structural and functional analysis of laninamivir and its octanoate prodrug reveals group specific mechanisms for influenza NA inhibition. *Plos Pathog.* 2011, 7, e1002249-e1002249.
- (S23) Naumov, P.; Yasuda, N.; Rabeh, W. M.; Bernstein, J. The elusive crystal structure of the neuraminidase inhibitor Tamiflu (oseltamivir phosphate): molecular details of action. *Chem. Commun.* **2013**, *49*, 1948-1950.
- (S24) Xu, X.; Zhu, X.; Dwek, R. A.; Stevens, J.; Wilson, I. A. Structural characterization of the 1918 influenza virus H1N1 neuraminidase. *J. Virol.* **2008**, *82*, 10493-10501.
- (S25) Macdonald, S. J. F.; Cameron, R.; Demaine, D. A.; Fenton, R. J.; Foster, G.; Gower, D.; Hamblin, J. N.; Hamilton, S.; Hart, G. J.; Hill, A. P.; Inglis, G. G. A.; Jin, B.; Jones, H. T.; McConnell, D. B.; McKimm-Breschkin, J.; Mills, G.; Nguyen, V.; Owens, I. J.; Parry, N.; Shanahan, S. E.; Smith, D.; Watson, K. G.; Wu, W.-Y.; Tucker, S. P. Dimeric Zanamivir Conjugates with Various Linking Groups Are Potent, Long-Lasting Inhibitors of Influenza Neuraminidase Including H5N1 Avian Influenza. J. Med. Chem. 2005, 48, 2964-2971.