Supporting Information

Gold(I) compounds with lansoprazole-type ligands: synthesis, characterization and anticancer properties *in vitro*

M. Serratice,^{*a*, †} B. Bertrand,^{*b*,*c*, †} E. F. J. Janssen, ^{*b*} E. Hemelt, ^{*b*} A. Zucca,^{*a*} F. Cocco,^{*a*} M. A. Cinellu^{*a*, *} and A. Casini^{*b*, *}

^a Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
^b Department of Pharmacokinetics, Toxicology and Targeting, Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV (The Netherlands)
^c Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302 CNRS Université de Bourgogne, Dijon, France.

[†] These two authors contributed equally to the work

Experimental section

General procedures

All starting materials were used as received from commercial sources; 2-((3-methyl-4-(2,2,2-trifluoroethoxy)pyridin-2-yl)methylthio)-1*H*-benzo[*d*]imidazole (HL¹) and 2-((3-methyl-4-(2,2,2-trifluoroethoxy)pyridin-2-yl)methylsulfinyl)-1*H*-benzo[*d*]imidazole (HL²) were synthesized according to a literature method.¹ The precursors (PPh₃)AuCl, ² (TPA)AuCl,³ (THT)AuCl⁴ and Na[Au(sac)₂]⁵ were prepared according to literature procedures. Elemental analyses were performed with a Perkin-Elmer elemental analyzer 240B by Mr. Antonello Canu (Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Italy). Infrared spectra were recorded with a FT-IR Jasco 480P using nujol mulls. ¹H and ³¹P{¹H} NMR spectra were recorded with a Bruker Avance III 400 and with a Varian VXR 300 spectrometers at 298 K. Chemical shifts are given in ppm relative to internal TMS or to the solvent residual peak(s) for ¹H and external 85% H₃PO₄ for ³¹P{¹H}; *J* values are given in Hz.

Spectroscopic data of HL¹. Selected IR bands (v/cm⁻¹, nujol mull): 3556 (NH), 1660 (C-C, C-N ring stretch.), 1577, 1444, 1410, 1290, 1256 (asym. C-O-C), 1167, 1109, 976, 746. ¹H NMR (CDCl₃): δ 12.6 (s, 1H, NH), 8.41 (d, $J_{\text{H-H}} = 6.0$ Hz, 1H, H⁶), 7.54 (m, $J_{\text{H-H}} = 9.3$, 6.0, 3.3 Hz, 2H, H^{3'}, H^{6'}), 7.19 (m, $J_{\text{H-H}} = 9.3$, 6.0, 3.3 Hz, 2H, H^{4'}, H^{5'}), 6.72 (d, $J_{\text{H-H}} = 6.0$ Hz, 1H, H⁵), 4.43 (q, $J_{\text{H-F}} = 8.0$ Hz, 2H, CH_2CF_3), 4.42 (s, 2H, CH_2S), 2.32 (s, 3H, CH₃); (CD₂Cl₂): δ 12.8 (s, 1H, NH), 8.46 (d, $J_{\text{H-H}} = 5.7$ Hz, 1H, H⁶), 7.55 (m, $J_{\text{H-H}} = 9.3$, 6.0, 3.3 Hz, 2H, H^{3'}, H^{6'}), 7.20 (m, $J_{\text{H-H}} = 9.3$, 6.0, 3.3 Hz, 2H, H^{4'}, H^{5'}), 4.49 (q, $J_{\text{H-F}} = 7.8$ Hz, 2H, CH_2CF_3), 4.46 (s, 2H, CH_2S), 2.34 (s, 3H, CH₃).

Spectroscopic data of HL². Selected IR bands (v/cm⁻¹, nujol mull): 3416 (NH), 1585 (C-C, C-N ring str.), 1267 (asym. C-O-C), 1164, 1113, 1039 (S=O), 973, 746. ¹H NMR (CDCl₃): δ 11.4 (br, 1H, NH), 8.35 (d, $J_{\text{H-H}}$ = 5.6 Hz, 1H, H⁶), 7.81 (m, 1H, H⁶), 7.50 (m, 1H, H³), 7.34 (m, $J_{\text{H-H}}$ = 9.6, 6.4, 3.2 Hz, 2H, H⁴', H⁵'), 6.68 (d, $J_{\text{H-H}}$ = 5.6 Hz, 1H, H⁵), 4.77 (AB quartet, J_{AB} = 13.6 Hz, 2H,

CH₂SO), 4.38 (q, $J_{\text{H-F}} = 8.0$ Hz, 2H, CH₂CF₃), 2.23 (s, 3H, CH₃); (DMSO- d_6): δ 8.29 (d, $J_{\text{H-H}} = 5.6$ Hz, 1H, H⁶), 7.62 (m, AA' part of an AA'BB', $J_{\text{H-H}} = 9.3$, 6.1, 3.2 Hz, 2H, H^{3'}, H^{6'}), 7.25 (m, BB' part, $J_{\text{H-H}} = 9.3$, 6.1, 3.2 Hz, 2H, H^{4'}, H^{5'}), 7.09 (d, $J_{\text{H-H}} = 5.6$ Hz, 1H, H⁵), 4.90 (q, $J_{\text{H-F}} = 8.6$ Hz, 2H, CH₂CF₃), 4.77 (AB quartet, $J_{\text{AB}} = 13.7$ Hz, 2H, CH₂SO), 2.18 (s, 3H, CH₃).

Synthesis

Mononuclear complexes

[Au(HL¹)Cl] (1a) A solution of HL¹ (177.0 mg, 0.5 mmol) in CH₂Cl₂ (20 mL) was added to a solution of (THT)AuCl (160.3 mg, 0.5 mmol) in the same solvent (20 mL). The resulting mixture was stirred for 24 h at room temperature in the dark. Afterward the solution was filtered through Celite and concentrated to a small volume. Addition of diethyl ether afforded a white solid that was filtered off and vacuum-dried. Yield 75.4%. Mp 170 °C. Anal. Calcd. for C₁₆H₁₄AuClF₃N₃OS (585.78): C, 32.81; H, 2.41; N, 7.17. Found: C, 32.80; H, 2.31; N, 7.25. Selected IR bands (v/cm⁻¹, nujol mull): 1587, 1508, 1265, 1176, 1113, 744, 341 (Au-Cl). ¹H NMR (CD₂Cl₂): δ 8.49 (d, *J*_{H-H} = 5.6 Hz, 1H, H⁶), 7.71 (m, *J*_{H-H} = 9.6, 6.6, 3.3 Hz, 1H, H⁶), 7.63 (m, *J*_{H-H} = 9.3, 6.0, 3.3 Hz, 1H, H³), 7.38 (m, *J*_{H-H} = 9.3, 6.6, 3.6 Hz, 2H, H^{4'}, H^{5'}), 6.86 (d, *J*_{H-H} = 6.0 Hz, 1H, H⁵), 4.54 (s, 2H, CH₂-S), 4.53 (q, *J*_{H-F} = 8.0 Hz, 2H, CH₂CF₃), 2.37 (s, 3H, CH₃).

[Au(HL¹)(PPh₃)](BF₄) (2a-BF₄) To a solution of (PPh₃)AuCl (274.4 mg, 0.5 mmol) in dichloromethane (20 mL) was added a solution of AgBF₄ (107.0 mg, 0.55 mmol) in the same solvent (10 mL); the resulting suspension was stirred in the dark until AgCl precipitation was completed; then the filtered solution was added to a solution of HL¹ (177.0 mg, 0.5 mmol) in the same solvent (10 mL) and the reaction mixture was stirred for 3 h at room temperature in the dark. Afterward the solution was filtered through Celite and concentrated to a small volume, addition of diethyl ether afforded a white solid that was filtered off and vacuum-dried to give the analytical sample. Yield 40 %. Mp 155 °C. Anal. Calcd for C₃₄H₂₉AuBF₇N₃OPS (899.42): C, 45.40; H, 3.25; N, 4.67. Found: C, 45.18; H, 3.14; N, 4.69. Selected IR bands (v/cm⁻¹, nujol mull): 1581, 1438, 1291, 1262, 1166, 1103 (PPh₃), 1057 (BF₄⁻), 970, 745, 693. ¹H NMR (CDCl₃): δ 12.6 (br, 1H, NH), 8.09 (d, br, *J*_{H-H} = 5.2 Hz, 1H, H⁶), 7.71 (m, br, 2H, H³', H⁶'), 7.64-7.52 (m, 15H, PPh₃), 7.28 (m, br, 2H, H⁴', H^{5'}), 6.65 (d, *J*_{H-H} = 6.0 Hz, 1H, H⁵), 4.64 (s, 2H, CH₂-S), 4.32 (q, *J*_{H-F} = 8.0 Hz, 2H, CH₂CF₃), 2.00 (s, 3H, CH₃). ³¹P NMR (CDCl₃): δ 31.6 ppm (s, PPh₃).

 $[Au(HL^2)(PPh_3)](BF_4)$ (2b-BF₄) Same procedure as for 2a-BF₄. Yield 65%. Mp 130 °C. Anal. Calcd for C₃₄H₂₉AuBF₇N₃O₂PS (915.42): C, 44.61; H, 3.19; N, 4.59. Found: C, 44.38; H, 3.19; N,

4.67. Selected IR bands (v/cm⁻¹, nujol mull): 3419, 1632, 1579, 1437, 1261, 1165, 1102 (PPh₃), 1060 (BF₄⁻), 748, 712, 693. ¹H NMR (CDCl₃): δ 8.33 (br, 1H, H⁶), 7.74 (br, 2H, H^{3'}, H^{6'}), 7.53 (br, 15H, PPh₃), 7.36 (m, *J*_{H-H} = 9.1, 6.0, 3.0 Hz, 2H, H^{4'}, H⁵), 6.67 (d, *J*_{H-H} 5.6 Hz, 1H, H⁵), 4.76 (AB, *J*_{AB} = 13.6 Hz, 2H, CH₂SO), 4.36 (br, 2H, OCH₂CF₃), 2.18 (br, 3H, CH₃). ³¹P NMR (CDCl₃): δ 31.2 ppm (s, PPh₃).

Na[Au(L¹)(sac)] (Na-3a) A solution of HL¹ (177.0 mg, 0.5 mmol) in MeCN (20 mL) was added to a solution of Na[Au(sac)₂] (292.0 mg, 0.5 mmol) in the same solvent (20 mL). The resulting solution was stirred for 24 h at room temperature in the dark. Afterward the solvent was removed under vacuum, the residue taken up with CHCl₃ and the filtered solution concentrated to a small volume. Addition of diethyl ether afforded a white solid that was filtered off and vacuum-dried to give the analytical sample. Yield 45%. Mp 220 °C. Anal. Calcd for C₂₃H₁₇AuF₃N₄NaO₄S₂ (754.49): C, 36.61; H, 2.27; N, 7.43. Found: C, 36.45, H, 2.37, N, 7.37. Selected IR bands (v/cm⁻¹, nujol mull): 1689 (C=O), 1581, 1290 (asym SO₂), 1261, 1171 (sym SO₂), 1111, 972, 746. ¹H NMR (CD₂Cl₂): δ 8.51 (d, *J*_{H-H} = 5.2 Hz, 1H, H⁶), 7.94 (d, *J*_{H-H} = 6.4 Hz, 1H, H³" sac), 7.87 (d, *J*_{H-H} = 6.8 Hz, 1H, H⁶" sac), 7.76 (m, 3H, H³" + H⁴", H⁵" sac), 7.67 (m. br 1H, H⁶'), 7.40 (m, CD part, *J*_{H-H} = 9.0, 6.0, 2.7 Hz, 2H, H⁴', H⁵'), 6.88 (d, *J*_{H-H} = 5.6 Hz, 1H, H⁵), 4.57 (s, 2H, *CH*₂-S), 4.53 (q, *J*_{H-F} = 7.8 Hz, 2H, CH₂CF₃), 2.36 (s, 3H, CH₃).

[Au(L¹)(PPh₃)] (4a) To a solution of (PPh₃)AuCl (69.3 mg, 0.14 mmol) in acetone (20 mL) was added a solution of AgBF₄ (27.3 mg, 0.14 mmol) in the same solvent (10 mL); the resulting mixture was stirred in the dark until AgCl precipitation was completed. Then, the filtered solution was added to a solution of HL¹ (50.0 mg, 0.14 mmol) and KOH (7.9 mg, 0.14 mmol) in MeCN (5 mL) and H₂O (20 mL) and stirred for 24 h at room temperature in the dark. Afterwards, the solvent was removed under vacuum and the residue taken up with dichloromethane; the filtered solution was concentrated to a small volume and diethyl ether added. The precipitate obtained was filtered, washed with diethyl ether, and vacuum-dried to give the analytical sample as a white solid. Yield 40 %. Mp 155 °C. Anal. Calcd for C₃₄H₂₈AuF₃N₃OPS (811.61): C, 50.32; H, 3.48; N 5.18. Found: C, 50.25; H, 3.31; N, 5.06. Selected IR bands (v/cm⁻¹, nujol mull): 1656, 1294, 1263, 1153, 1113 (PPh₃), 972, 750. ¹H NMR (CDCl₃): δ 8.21 (d, *J*_{H-H} = 5.6 Hz, 1H, H⁶), 7.62-7.48 (m, 17H, H^{3'}+H^{6'} + H-PPh₃), 7.08 (m, 2H, H^{4'}, H^{5'}), 6.59 (d, *J*_{H-H} = 5.6 Hz, 1H, H⁵), 4.84 (s, 2H, *CH*₂-S), 4.34 (q, *J*_{H-F} = 8.0 Hz, 2H, *CH*₂CF₃), 2.29 (s, 3H, CH₃). ³¹P NMR (CDCl₃): δ 32.2 ppm (s, PPh₃).

[Au(L¹)(TPA)] (5a) An aqueous solution of KOH (28.05 mg, 0.5 mmol) (20 mL) was added to a solution of HL¹ (177.0 mg, 0.5 mmol) in MeCN (3 mL); the resulting solution was added to an aqueous suspension of [(TPA)AuCl] (195.0 mg, 0.5 mmol) (20 mL) and the resulting mixture stirred for 24 h at room temperature in the dark. Afterward the white solid was collected by filtration under vacuum and washed with H₂O, EtOH, Et₂O. Recrystallization from acetone/Et₂O gave the analytical sample. Yield 55%. Mp 130 °C. Anal. Calcd for C₂₂H₂₅AuF₃N₆OPS (706.47): C, 37.40; H, 3.57; N, 11.90. Found: C, 37.21; H, 3.48; N, 11.75. Selected IR bands (v/cm⁻¹, nujol mull): 1579, 1392, 1284, 1167, 1109, 1012, 972, 742. ¹H NMR (CDCl₃): δ 8.36 (d, *J*_{H-H} = 6.0 Hz, 1H, H⁶), 7.57 (m, br, 2H, H³', H⁶'), 7.07 (m, br, 2H, H⁴', H⁵'), 6.64 (d, *J*_{H-H} = 5.2 Hz, 1H, H⁵), 4.85 (s, 2H, CH₂S), 4.50 (q, AB, *J*_{AB} = 13.6 Hz, 6H, NCH₂N), 4.39 (q, *J*_{H-F} = 8.0 Hz, 2H, CH₂CF₃), 4.22 (s, 6H, NCH₂P), 2.35 (s, 3H, CH₃). ³¹P NMR (CDCl₃): δ -58.8 ppm (TPA).

[Au(L²)(TPA)] (5b) Same procedure as for 5a. Recrystallization from acetone/Et₂O gave the analytical sample. Yield 68%. Mp 120 °C. Anal. Calcd for C₂₂H₂₅AuF₃N₆O₂PS (722.47): C, 36.57; H, 3.49; N, 11.63. Found C, 36.39; H, 3.43; N, 11.48. Selected IR bands (v/cm⁻¹, nujol mull): 1680, 1583, 1405, 1284, 1265, 1163, 1106, 1038, 1016, 973, 748. ¹H NMR (CDCl₃): δ 8.36 (d, $J_{H-H} = 5.6$ Hz, 1H, H⁶), 7.74 (br, 2H, H^{3°}, H^{6°}), 7.23 (m, $J_{H-H} = 9.2$, 6.0, 3.2 Hz, 2H, H^{4°}, H^{5°}), 6.68 (d, $J_{H-H} = 5.6$ Hz, 1H, H⁵), 4.70 (q, AB, $J_{AB} = 13.5$ Hz, 2H, CH_2 SO), 4.57 (q, AB, $J_{AB} = 13.5$ Hz, 6H, NC H_2 N), 4.41 (q, $J_{H-F} = 8.0$ Hz, 2H, OC H_2 CF₃), 4.36 (s, 6H, N-C H_2 -P), 2.28 (s, 3H, CH₃). ¹H NMR (acetone- d_6): δ 8.34 (d, $J_{H-H} = 5.4$ Hz, 1H, H⁶), 7.62 (m, AA' part of an AA'BB', $J_{H-H} = 9.0$, 6.0, 3.3 Hz, 2H, H^{3°}, H^{6°}), 7.12 (m, BB' part, $J_{H-H} = 9.0$, 5.7, 2.7 Hz, 2H, H^{4′}, H^{5′}), 7.07 (d, $J_{H-H} = 5.4$ Hz, 1H, H⁵), 4.83 (q, $J_{H-F} = 8.4$ Hz, 2H, OC H_2 CF₃), 4.71 (AB, $J_{AB} = 12.9$ Hz, 6H, N-C H_2 -N), 4.57 (s, 2H, C H_2 SO), 4.52 (s, 6H, N-C H_2 -P), 2.27 (s, 3H, CH₃). ³¹P NMR (CDCl₃): δ -58.6 ppm (s, TPA).

Dinuclear Complexes

 $[Au_2(L^1)(PPh_3)_2](BF_4)$ (7a-BF₄) A solution of HL¹ (98.9 mg, 0.28 mmol) and NaH (6.72 mg, 0.28 mmol) in THF (20 mL) was stirred for 10 minutes. Then the solvent was removed under vacuum and a dichloromethane solution of $[(PPh_3)Au](BF_4)$ (0.56 mmol in 20 mL) added to the residue. The resulting mixture was stirred for 5 h at room temperature, in the darkness. Afterward the suspension was filtered through Celite and concentrated to a small volume. Addition of diethyl ether afforded a white solid of 7a-BF₄. Yield: 74%. Mp 190 °C. Anal. Calcd for C₅₂H₄₃Au₂BF₇N₃OP₂S (1357.66): C, 46.00; H, 3.19; N, 3.10. Found: C, 46.02; H, 3.23; N, 2.97.

Selected IR bands (v/cm⁻¹, nujol mull): 1679, 1581, 1261, 1165, 1105 (PPh₃), 1059 (BF₄-), 970, 837, 746, 692. ¹H NMR (CDCl₃): δ 8.03 (d, $J_{\text{H-H}}$ = 5.2 Hz, 1H, H⁶), 7.75 (m, 2H, AA' part of an AA'BB', $J_{\text{H-H}}$ = 8.8, 5.6, 3.2 Hz, H^{3'}, H^{6'}), 7.63-7.55 (m, 30H, PPh₃), 7.34 (m, BB' part, $J_{\text{H-H}}$ = 8.8, 5.6, 2.8 Hz, 2H, H^{4'}, H^{5'}), 6.67 (d, $J_{\text{H-H}}$ = 5.6 Hz, 1H, H⁵), 4.59 (s, 2H, CH₂S), 4.30 (q, $J_{\text{H-F}}$ = 8.0 Hz, 2H, CH₂CF₃), 1.92 (s, 3H, CH₃). ³¹P NMR (CD₂Cl₂): δ 31.2 and 33.1 ppm.

[Au₂(L²)(PPh₃)₂](BF₄) (7b-BF₄) Same procedure as for 7a-BF₄. Yield 57%. Mp 135 °C. Anal. Calcd for C₅₂H₄₃Au₂BF₇N₃O₂P₂S (1373.66): C, 45.47; H, 3.16; N, 3.06. Found: C, 45.33; H, 2.92; N, 2.88. Selected IR bands (v/cm⁻¹, nujol mull): 1682, 1579, 1261, 1167, 1103 (PPh₃), 1057 (BF₄⁻), 970, 810, 748, 694. ¹H NMR (CDCl₃): δ 7.95 (d, br, J_{H-H} = 4.8 Hz, 1H, H⁶), 7.81 (m, AA' part of an AA'BB', J_{H-H} = 8.8, 5.6, 2.8 Hz, 2H, H^{3'}, H^{6'}), 7.59 (m, br, 30H, PPh₃), 7.39 (m, br, BB' part, J_{H-H} = 9.2, 5.2, 3.2 Hz, 2H, H^{4'}, H^{5'}), 6.78 (d, J_{H-H} = 5.6 Hz, 1H, H⁵), 4.78 (q, AB, J_{H-H} = 13.2 Hz, 2H, CH₂SO), 4.27 (qd, J_{H-F} = 8.0, 3.2 Hz, 2H, CH₂CF₃), 1.93 (s, 3H, CH₃). ³¹P NMR (CDCl₃): δ 31.0 and 33.2 ppm.

Cell viability assay

The human ovarian cancer A2780 and A2780cisR cells, (obtained from the European Centre of Cell Cultures ECACC, Salisbury, UK) were cultured in RPMI medium containing GlutaMax-I supplemented with 10% FBS and 1% penicillin/streptomycin (all from Invitrogen), at 37°C in a humidified atmosphere of 95% of air and 5% CO₂ (Heraeus, Germany). Non-tumoral human embryonic kidney cells HEK-293T were cultivated in DMEM medium with GlutaMax-I, 10% FBS and 1% penicillin/streptomycin, incubated in the same conditions as other cell lines. For evaluation of growth inhibition, cells were seeded in 96-well plates (Costar, Integra Biosciences, Cambridge, MA) at a concentration of 10000 cells/well and grown for 24 h in complete medium. Solutions of the compounds were prepared by diluting a freshly prepared stock solution (10⁻² M in DMSO) of the corresponding compound in aqueous media (RPMI or DMEM depending on the cell lines). The percentage of DMSO in the culture medium never exceeded 0.2%: at this concentration DMSO has no effect on the cell viability. Cisplatin (Sigma-Aldrich) stock solutions were prepared at 1 mM conc. in MilliQ water. Afterwards, the intermediate dilutions of the compounds were added to the wells (200 µL) to obtain a final concentration ranging from 0 to 200 µM, and the cells were incubated for 72 h. Following 72 h drug exposure, 3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide (MTT) was added to the cells at a final concentration of 0.50 mg.ml⁻¹ incubated for 3-4 h, then the culture medium was removed and the violet formazan dissolved in DMSO. The optical density of each well (96-well plates) was quantified in quadruplicate at 540 nm

using a multi-well plate reader and the percentage of surviving cells was calculated from the ratio of absorbance between treated and untreated cells. The IC_{50} value was calculated as the concentration reducing the proliferation of the cells by 50% and is presented as a mean (\pm SE) of at least three independent experiments.

Measurement of intracellular ATP content

Cellular ATP levels as an indirect parameter of the activity of V-H⁺-ATPase were determined using a bioluminescence-based assay (Roche diagnostic, Mannheim, Germany). Thus, $1x10^4$ cells per well were allowed to attach in white-bottom 96-well plates overnight. Then cells were treated with compounds at different concentrations (2 μ M and 5 μ M) for 3 h at 37°C. The medium was then removed, and the cells were lysed as previously reported (Schneider V. et al, JBIC 2013, 18, 165). ATP content was quantified using the above mentioned detection kit and measuring the luminescence signal in a black 96-well plate Lucy1 luminometer (Anthos, Durham, NC, USA) using a standard ATP calibration curve. The ATP content was related to protein content determined by the Lowry protein assay (Bio Rad, Veenendaal, The Netherlands). Results are expressed as a mean (\pm SE) of at least three independent experiments.

NMR spectra

¹H NMR (CDCl₃) HL²

³¹P NMR (CDCl₃) **2a**-BF₄

¹H NMR (CDCl₃) 2b-BF₄

³¹P NMR(CDCl₃) 2b-BF₄

³¹P NMR (CDCl₃) 5b

³¹P NMR (CDCl₃) **7b-**BF₄

¹ S. Gangula, C. R. Elati, A. Neredla, S. R. Baddam, U. K. Neelam, R. Bandichhor and A. Dongamanti, *Org. Process Res. Dev.*, **2010**, *14*, 229-233.

² C.A. McAuliffe, R.V. Parish and P.D. Randall, J. Chem. Soc., Dalton Trans. 1979, 1730–1735.

³ Z. Assefa, B. G. McBurnett, R. J. Staples, J. P. Fackler, B. Assmann, K. Angermaier, H. Schmidbaur, *Inorg. Chem.* **1995**, *34*, 75-83.

⁴ R. Uson, A. Laguna and M. Laguna, *Inorg. Synth.* 1989, 26, 85.

⁵ M. A. Cinellu, L. Maiore, A. Schier, H. Schmidbaur, D. Rossi. Z. Naturforsch. B, 2008, 63b, 1027-1034.