SUPPORTING INFORMATION for

Analogues of the Marine Alkaloids Oroidin, Clathrodin, and Hymenidin Induce Apoptosis in Human HepG2 and THP-1 Cancer Cells

Tihomir Tomašič,^a Dominik Nabergoj,^{a,b} Sanja Vrbek,^{a,b} Nace Zidar,^a Žiga Jakopin,^a Aleš Žula,^a Žiga Hodnik,^a Marko Jukič,^a Marko Anderluh,^a Janez Ilaš,^a Marija Sollner Dolenc,^a Jean Peluso,^{b,c} Geneviève Ubeaud-Séquier,^{b,c} Christian D. Muller,^{b,c,*} Lucija Peterlin Mašič,^{a,*} Danijel Kikelj,^a

^aUniversity of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia

^bLaboratoire d'Innovation Thérapeutique, UMR 7200, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France

^cPlateforme eBioCyt, Faculté de Pharmacie & Féderation Translationnelle de Médecine, Université de Strasbourg, 67401 Illkirch, France

*To whom correspondence should be addressed. Phone: +386-1-4769635; Fax: +386-1-4258031; E-mail: lucija.peterlin@ffa.uni-lj.si; Phone: +33-688285839; Fax: +33-368854310; E-mail: cdmuller@unistra.fr;

1. Chemistry

All reagents were used as received from commercial sources without further purification unless otherwise indicated. Analytical TLC was performed on Merck silica gel (60 F 254) plates (0.25 mm) and components visualized with staining reagents or ultraviolet light. Column chromatography was carried out on silica gel 60 (particle size 240-400 mesh). ¹H NMR and ¹³C NMR spectra were recorded at 400 MHz and 101 MHz, respectively, on a Bruker AVANCE III spectrometer in DMSO-d₆, CD₃OD, acetone-d₆ or CDCl₃ solution with TMS as an internal standard at 25 °C. Spectra were assigned using gradient COSY, HSQC and DEPT experiments. Mass spectra were obtained using a VGAnalytical Autospec Q mass spectrometer.

For details on the synthesis of **clathrodin**, **oroidin** and compounds **3** and **4** please refer to N. Zidar, S. Montalvão, Ž. Hodnik, D. A. Nawrot, A. Žula, J. Ilaš, D. Kikelj, P. Tammela, L. Peterlin Mašič, *Mar. Drugs*, 2014, **12**, 940.

(*E*)-*N*-(3-(2-Amino-1*H*-imidazol-4-yl)allyl)-1*H*-pyrrole-2-carboxamide (clathrodin). ¹H NMR (400 MHz, MeOH- d_4) δ 4.05 (dd, 2H, J = 6.0 Hz, J = 1.2 Hz, -CH=CH-<u>CH-2</u>-), 5.94 (dt,1H, J = 15.8 Hz, J = 6.0 Hz, -CH=<u>CH</u>-CH₂-), 6.18 (dd, 1H, J = 3.7 Hz, J = 2.6 Hz, Ar-H⁴), 6.32 (td, 1H, J = 15.8 Hz, J = 1.2 Hz, -<u>CH</u>=CH-CH₂-), 6.51 (s, 1H, imidazole-H), 6.82 (dd, 1H, J = 3.7 Hz, J = 1.4 Hz, Ar-H³), 6.93 (dd, 1H, J = 2.5 Hz, J = 1.4 Hz, Ar-H⁵); ¹³C NMR (100 MHz, MeOH- d_4) δ 42.06, 110.22, 111.78, 117.01, 121.87, 122.66, 122.89, 126.87, 130.82, 151.66, 163.61; HRMS for C₁₁H₁₃N₅O: calculated, 231.1120; found, 231.1189.

(*E*)-*N*-(3-(2-Amino-1*H*-imidazol-4-yl)allyl)-4,5-dibromo-1*H*-pyrrole-2-carboxamide (oroidin). ¹H NMR (400MHz, MeOH- d_4) δ 4.03 (d, 2H, J = 6.0 Hz, -CH=CH-<u>CH</u>₂-), 5.91 (dt, 1H, J = 15.8 Hz, J = 6.0 Hz, -CH=<u>CH</u>-CH₂-), 6.31 (d, 1H, J = 15.8 Hz, -<u>CH</u>=CH-CH₂-), 6.51 (s, 1H, imidazole-H), 6.85 (s, 1H, Ar-H³); ¹³C NMR (100 MHz, MeOH- d_4) δ 42.18, 99.96, 106.09, 114.29, 117.00, 122.12, 122.28, 128.88, 130.94, 151.72, 161.53; HRMS for C₁₁H₁₁Br₂N₅O: calculated, 386.9330; found, 386.9408.

N-(3-(2-Amino-1*H*-imidazol-4-yl)propyl)-1*H*-pyrrole-2-carboxamide (1). ¹H NMR (400 MHz, MeOH- d_4) δ 1.83-1.92 (m, 2H, -CH₂CH₂CH₂-), 2.53 (t, 2H, J = 6.7 Hz, -<u>CH₂CH₂CH₂-CH₂-), 3.37 (t, 2H, J = 6.6 Hz, - CH₂CH₂CH₂-), 6.15-6.21 (m, 1H, pyrrole-<u>H</u>), 6.39 (s, 1H, imidazole-<u>H</u>), 6.76-6.81 (m, 1H, pyrrole-<u>H</u>), 6.90-6.94 (m, 1H, pyrrole-H) ppm. ¹³C NMR</u>

(100 MHz, MeOH-*d*₄) δ 163.94, 149.81, 131.88, 126.88, 122.81, 111.57, 111.21, 110.19, 39.59, 30.20, 24.35 ppm.

(*E*)-*N*-(3-(2-amino-1*H*-imidazol-4-yl)allyl)benzamide (2). ¹H NMR (400 MHz, DMSO- d_6) δ 3.98 (t, 2H, J = 5.3 Hz, -CH=CH-<u>CH</u>₂-), 5.99 (td, 1H, J = 5.7 Hz, J = 15.8 Hz, -CH=<u>CH</u>-CH₂), 6.22 (d, 1H, J = 16.0 Hz, -<u>CH</u>=CH-CH₂-), 6.29 (bs, 2H, imidazole-<u>NH</u>₂), 6.65 (s, 1H, imidazole-<u>H</u>), 7.45-7.49 (m, 3H, Ar-<u>H</u>), 7.87-7.90 (m, 2H, Ar-<u>H</u>), 8.75 (t, 1H, J = 5.6 Hz, -CO<u>NH</u>-) ppm; ¹³C NMR (100 MHz, MeOH- d_4 ,) δ 165.84, 150.23, 134.47, 131.05, 128.23, 127.15, 121.16, 121.00, 120.50, 120.47, 41.05 ppm.

(*E*)-*N*-(3-(2-amino-1*H*-imidazol-4-yl)allyl)-1*H*-indole-2-carboxamide (3). ¹H NMR (400 MHz, MeOH- d_4) δ 4.12 (dd, 2H, J = 6.2 Hz, J = 1.3 Hz, -CH=CH-<u>CH₂-</u>), 5.96 (ddd, 1H, J = 15.8 Hz, J = 6.2 Hz, J = 5.8 Hz, -CH=<u>CH</u>-CH₂-), 6.36 (td, 1H, J = 15.8 Hz, J = 1.3 Hz, -<u>CH</u>=CH-CH₂-), 6.50 (s, 1H, imidazole-H), 7.07 (ddd, 1H, J = 8.0 Hz, J = 7.0 Hz, J = 1.0, Ar-H⁶), 7.11 (d, 1H, J = 0.9 Hz, Ar-H³), 7.22 (ddd, 1H, J = 8.3 Hz, J = 7.0 Hz, J = 1.1, Ar-H⁵), 7.45 (ddd, 1H, J = 8.3 Hz, J = 1.8 Hz, J = 0.9, Ar-H⁴), 7.61 (td, 1H, J = 8.1 Hz, J = 1.0 Hz, Ar-H⁷); ¹³C NMR (100 MHz, MeOH- d_4) δ 41.01, 102.99, 111.64, 116.17, 119.74, 120.24, 121.27, 121.34, 123.61, 127.62, 129.83, 130.82, 136.90, 150.54, 162.56; HRMS for C₁₅H₁₅N₅O: calculated, 281.1277; found, 281.1344.

(*E*)-*N*-(3-(2-amino-1*H*-imidazol-4-yl)allyl)-5-fluoro-1*H*-indole-2-carboxamide (4). ¹H NMR (400 MHz, MeOH- d_4) δ 4.11 (dd, 2H, J = 6.2 Hz, J = 1.3 Hz, -CH=CH-<u>CH₂-</u>), 5.95 (td, 1H, J = 15.8 Hz, J = 6.2 Hz, -CH=<u>CH</u>-CH₂-), 6.36 (td, 1H, J = 15.8 Hz, J = 1.3 Hz, -<u>CH</u>=CH-CH₂-), 6.50 (s, 1H, imidazole-H), 7.02 (ddd, 1H, J = 8.0 Hz, J = 6.9 Hz, J = 0.9, Ar-H⁶), 7.08 (d, 1H, J = 0.9 Hz, Ar-H³), 7.28 (ddd, 1H, J = 9.6 Hz, J = 2.1 Hz, J = 0.4, Ar-H⁴), 7.43 (tdd, 1H, J = 9.0 Hz, J = 4.5 Hz, J = 0.7 Hz, Ar-H⁷); ¹³C NMR (100 MHz, MeOH- d_4) δ 40.96, 102.82 (d, ⁴ $J_{C-F} = 5.2$ Hz, C-4), 105.28 (d, ² $J_{C-F} = 23.2$ Hz, C-8), 112.26 (d, ² $J_{C-F} = 27.0$ Hz, C-2), 112.76 (d, ³ $J_{C-F} = 9.6$ Hz, C-7), 115.93, 120.71, 120.96, 127.73 (d, ³ $J_{C-F} = 10.3$ Hz, C-3), 129.32, 132.58, 133.51, 150.19, 157.96 (d, ¹ $J_{C-F} = 234.0$ Hz, C-1), 162.19; HRMS for C₁₅H₁₄FN₅O: calculated, 299.1182; found, 299.1194.

For details on the synthesis of compounds **1a-14a** please refer to Ž. Hodnik, T. Tomašić, L. Peterlin Mašič, F. Chan, R. W. Kirby, D. J. Madge, D. Kikelj, *Eur. J. Med. Chem.*, 2013, **70**, 154.

N-((2-Amino-4,5,6,7-tetrahydrobenzo[*d*]thiazol-6-yl)methyl)-1*H*-pyrrole-2-carboxamide (1a). ¹H NMR (400 MHz, DMSO-d₆) δ 1.36-1.47 (m, 1H, H_A-7), 1.82-1.90 (m, 1H, H_B-7),

1.93-2.05 (m, 1H, H-6), 2.10-2.25 (m, 1H, H_A-5), 2.31-2.41 (m, 1H, H_A-4), 2.42-2.49 (m, 1H, H_B-4), 2.58 (dd, 1H, J = 5.2, 15.7 Hz, H_B-5), 3.23 (t, 2H, J = 6.5 Hz, CH₂-NH), 6.06-6.08 (m, 1H, Ar-H-4), 6.62 (s, 2H, 2-NH₂), 6.77-6.79 (m, 1H, Ar-H-3), 6.83-6.85 (m, 1H, Ar-H-5), 8.03 (t, 1H, J = 5.9 Hz, NH-C=O), 11.41 (br s, 1H, Ar-NH); ¹³C NMR (101 MHz, DMSO-d₆) δ 25.39 (C-4), 26.56 (C-7), 26.70 (C-5), 35.14 (C-6), 43.18 (CH₂-NH), 108.43 (Ar-C-4), 109.70 (Ar-C-3), 113.63 (C-7a), 121.11 (Ar-C-5), 126.28 (Ar-C-2), 144.62 (C-3a), 160.71 (C=O), 165.63 (C-2). HRMS m/z for C₁₃H₁₆N₄OS ([M+H⁺]⁺): calcd 277.1123; found 277.1124.

N-((2-Amino-4,5,6,7-tetrahydrobenzo[*d*]thiazol-6-yl)methyl)-4,5-dibromo-*1H*-pyrrole-2carboxamide (2a). ¹H NMR (400 MHz, DMSO-d₆) δ 1.36-1.48 (m, 1H, H_A-7), 1.81-1.89 (m, 1H, H_B-7), 1.93-2.03 (m, 1H, H-6), 2.16-2.26 (m, 1H, H_A-5), 2.31-2.41 (m, 1H, H_A-4), 2.42-2.50 (m, 1H, H_B-4), 2.58 (dd, 1H, *J* = 5.1, 15.8 Hz, H_B-5), 3.22 (t, 2H, *J* = 6.7 Hz, C<u>H</u>₂-NH), 6.62 (s, 2H, 2-NH₂), 6.96 (s, 1H, Ar-H-3), 8.16 (t, 1H, *J* = 5.8 Hz, NH-C=O), 12.68 (br s, 1H, Ar-NH); ¹³C NMR (101 MHz, DMSO-d₆) δ 25.34 (C-4), 26.48 (C-7), 26.62 (C-5), 34.96 (C-6), 43.27 (<u>C</u>H₂-NH), 97.73 (Ar-C-4), 104.40 (Ar-C-5), 112.49 (Ar-C-3), 113.53 (C-7a), 128.15 (Ar-C-2), 144.58 (C-3a), 158.94 (C=O), 165.65 (C-2). HRMS m/z for C₁₃H₁₄Br₂N₄OS ([M+H⁺]⁺): calcd 432.9333; found 432.9342.

N-((2-Amino-4,5,6,7-tetrahydrobenzo[*d*]thiazol-6-yl)methyl)-4-bromo-*1H*-pyrrole-2carboxamide (3a). ¹H NMR (400 MHz, DMSO-d₆) δ 1.36-1.47 (m, 1H, H_A-7), 1.81-1.89 (m, 1H, H_B-7), 1.92-2.04 (m, 1H, H-6), 2.16-2.26 (m, 1H, H_A-5), 2.31-2.41 (m, 1H, H_A-4), 2.42-2.50 (m, 1H, H_B-4), 2.58 (dd, 1H, *J* = 5.1, 15.9 Hz, H_B-5), 3.23 (t, 2H, *J* = 6.1 Hz, C<u>H</u>₂-NH), 6.62 (s, 2H, 2-NH₂), 6.87-6.90 (m, 1H, Ar-H-5), 6.96-6.99 (m, 1H, Ar-H-3), 8.14 (t, 1H, *J* = 5.8 Hz, NH-C=O), 11.82 (br s, 1H, Ar-NH); ¹³C NMR (101 MHz, DMSO-d₆) δ 25.37 (C-4), 26.51 (C-7), 26.65 (C-5), 35.01 (C-6), 43.25 (<u>C</u>H₂-NH), 94.84 (Ar-C-4), 111.33 (Ar-C-3), 113.56 (C-7a), 121.04 (Ar-C-5), 126.89 (Ar-C-2), 144.63 (C-3a), 159.65 (C=O), 165.64 (C-2). HRMS m/z for C₁₃H₁₅BrN₄OS ([M+H⁺]⁺): calcd 355.0228; found 355.0241.

(2*S*)-*tert*-Butyl-2-(((2-amino-4,5,6,7-tetrahydrobenzo[*d*]thiazol-6-yl)methyl)carbamoyl) pyrrolidine-1-carboxylate (4a). ¹H NMR (400 MHz, CD₃OD) δ 1.36-1.58 (m, 10H, H_A-7, C(C<u>H</u>₃)₃), 1.82-2.12 (m, 5H, H-6, H_B-7, Pro-H_A-3, Pro-H-4), 2.15-2.35 (m, 2H, H_A-5, Pro-H_B-3), 2.40-2.74 (m, 3H, H-4, H_B-5), 3.13-3.32 (m, 2H, C<u>H</u>₂-NH), 3.39-3.60 (m, 2H, Pro-H-5), 4.19 (d, 1H, *J* = 7.5 Hz, Pro-H-2); ¹³C NMR (101 MHz, CD₃OD) δ 24.65 (25.48) (Pro-C-4), 26.37 (C-4), 27.94 (27.75, 27.79, 27.81, 28.01) (C-5,7), 28.72 (C(CH₃)₃), 32.71 (31.57) (Pro-C-3), 36.85 (36.69, 36.72, 36.89) (C-6), 45.11 (45.06) (CH₂-NH), 47.97 (47.90) (Pro-C-5), 62.06 (61.84, 62.02) (Pro-C-2), 81.52 (81.31) (C(CH₃)₃), 116.15 (116.44) (C-7a), 144.87 (144.73) (C-3a), 156.15 (156.44) (N- $\underline{C}OO$), 169.54 (C-2), 176.01 (175.68) (NH- $\underline{C}=O$). HRMS m/z for C₁₈H₂₈N₄O₃S ([M+H⁺]⁺): calcd 381.1960; found 381.1953.

2-Amino-6-(((*S***)-pyrrolidin-1-ium-2-carboxamido)methyl)-4,5,6,7-tetrahydrobenzo[***d***] thiazol-3-ium chloride (5a).** ¹H NMR (400 MHz, DMSO-d₆) δ 1.38-1.51 (m, 1H, H_A-7), 1.76-2.03 (m, 5H, H-6, H_B-7, Pro-H_A-3, Pro-H-4), 2.13-2.24 (m, 1H, H_A-5), 2.26-2.69 (m, 4H, H-4, H_B-5, Pro-H_B-3), 3.09-3.27 (m, 4H, CH₂-NH, Pro-H-5), 4.14-4.24 (m, 1H, Pro-H-2), 8.52 (br s, 1H, NH₂+Cl⁻), 8.93 (t, 1H, *J* = 4.7 Hz, NH-C=O), 9.38 (br s, 2H, 2-NH₂), 10.19 (br s, 1H, NH₂+Cl⁻), 13.42 (br s, 1H, NH⁺Cl⁻); ¹³C NMR (101 MHz, DMSO-d₆) δ 21.79 (C-4), 23.58 (Pro-C-4), 24.64 (C-7), 25.76 (C-5), 29.71 (Pro-C-3), 33.83 (C-6), 42.92 (CH₂-NH), 45.37 (Pro-C-5), 58.80 (Pro-C-2), 113.44 (C-7a), 133.02 (C-3a), 168.20 (C=O), 168.35 (C-2). HRMS m/z for C₁₃H₂₀N₄OS ([M+H⁺]⁺): calcd 281.1436; found 281.1437.

N-((2-Amino-4,5,6,7-tetrahydrobenzo[*d*]thiazol-6-yl)methyl)-1*H*-indole-2-carboxamide (6a). ¹H NMR (400 MHz, DMSO-d₆) δ 1.40-1.52 (m, 1H, H_A-7), 1.86-1.94 (m, 1H, H_B-7), 2.00-2.12 (m, 1H, H-6), 2.21-2.31 (m, 1H, H_A-5), 2.32-2.44 (m, 1H, H_A-4), 2.45-2.50 (m, 1H, H_B-4), 2.62 (dd, 1H, *J* = 4.9, 15.8 Hz, H_B-5), 3.32 (t, 2H, *J* = 6.7 Hz, C<u>H</u>₂-NH), 6.68 (s, 2H, 2-NH₂), 7.01-7.06 (m, 1H, Ar-H), 7.14-7.20 (m, 2H, Ar-H), 7.43 (dd, 1H, *J* = 0.9, 8.2 Hz, Ar-H), 7.61 (dd, 1H, *J* = 0.6, 7.8 Hz, Ar-H), 8.54 (t, 1H, *J* = 5.7 Hz, NH-C=O), 11.57 (br s, 1H, Ar-NH); ¹³C NMR (101 MHz, DMSO-d₆) δ 25.24 (C-4), 26.49 (C-7), 26.67 (C-5), 34.97 (C-6), 43.47 (<u>C</u>H₂-NH), 102.38 (Ar-C), 112.24 (Ar-C), 113.61 (C-7a), 119.63 (Ar-C), 121.39 (Ar-C), 123.16 (Ar-C), 127.05 (Ar-C), 131.75 (Ar-C), 136.35 (Ar-C), 144.20 (C-3a), 161.92 (C=O), 165.77 (C-2). HRMS m/z for C₁₇H₁₈N₄OS ([M+H⁺]⁺): calcd 327.1280; found 327.1274.

(*S*)-*N*-(2-Amino-4,5,6,7-tetrahydrobenzo[*d*]thiazol-6-yl)-1*H*-pyrrole-2-carboxamide (7a). ¹H NMR (400 MHz, DMSO-d₆) δ 1.73-1.83 (m, 1H, H_A-7), 1.90-1.95 (m, 1H, H_B-7), 2.46-2.55 (m, 3H, signal overlapped with DMSO-d₅, H_A-4, H-5), 2.77 (dd, 1H, J = 5.1, 15.2 Hz, H_B-4), 4.10-4.19 (m, 1H, C<u>H</u>NH), 6.08 (td, 1H, J = 2.5, 3.7 Hz, Ar-H-4), 6.71 (s, 2H, 2-NH₂), 6.81 (ddd, 1H, J = 1.5, 2.5, 3.7 Hz, Ar-H-3), 6.85 (dt, 1H, J = 1.5, 2.5 Hz, Ar-H-5), 7.95 (d, 1H, J = 8.0 Hz, NH-C=O), 11.47 (s, 1H, Ar-NH) ppm; ¹³C NMR (101 MHz, DMSO-d₆) δ 25.1 (C-5), 28.9 (C-4/7), 29.0 (C-4/7), 45.3 (C-6), 108.4 (Ar-C-4), 110.0 (Ar-C-3), 112.5 (C-7a), 121.2 (Ar-C-5), 126.2 (Ar-C-2), 144.2 (C-3a), 160.0 (C=O), 166.1 (C-2) ppm. HRMS m/z for C₁₂H₁₅N₄OS ([M+H⁺]⁺): calcd 263.0967; found 263.0963.

(*S*)-*N*-(2-Amino-4,5,6,7-tetrahydrobenzo[*d*]thiazol-6-yl)-4,5-dibromo-1*H*-pyrrole-2carboxamide (8a). ¹H NMR (400 MHz, DMSO-d₆) δ 1.73-1.83 (m, 1H, H_A-7), 1.89-1.96 (m, 1H, H_B-7), 2.43-2.54 (m, 3H, signal overlapped with DMSO-d₅, H-5, H_A-4), 2.79 (dd, 1H, *J* = 5.5, 14.7 Hz, H_B-4), 4.08-4.17 (m, 1H, C<u>H</u>NH), 6.69 (s, 2H, 2-NH₂), 7.00 (s, 1H, Ar-H-3), 8.07 (d, 1H, J = 7.8 Hz, NH-C=O), 12.69 (s, 1H, Ar-NH) ppm; ¹³C NMR (101 MHz, DMSOd₆) δ 24.9 (C-5), 28.7 (C-4/7), 28.8 (C-4/7), 45.5 (C-6), 97.8 (Ar-C-4), 104.5 (Ar-C-5), 112.3 (C-7a), 112.9 (Ar-C-3), 128.1 (Ar-C-2), 144.2 (C-3a), 158.3 (C=O), 166.2 (C-2) ppm. HRMS m/z for C₁₂H₁₃Br₂N₄OS ([M+H⁺]⁺): calcd 418.9177; found 418.9178.

(S)-N-(2-Amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-yl)-4-bromo-1H-pyrrole-2-

carboxamide (9a). ¹H NMR (400 MHz, DMSO-d₆) δ 1.72-1.83 (m, 1H, H_A-7), 1.88-1.96 (m, 1H, H_B-7), 2.44-2.55 (m, 3H, signal overlapped with DMSO-d₅, H-5, H_A-4), 2.78 (dd, 1H, *J* = 5.0, 15.0 Hz, H_B-4), 4.08-4.18 (m, 1H, C<u>H</u>NH), 6.68 (s, 2H, 2-NH₂), 6.92 (dd, 1H, *J* = 1.6, 2.8 Hz, Ar-H-3), 6.98 (dd, 1H, *J* = 1.6, 2.8 Hz, Ar-H-5), 8.03 (d, 1H, *J* = 7.9 Hz, NH-C=O), 11.84 (s, 1H, Ar-NH) ppm; ¹³C NMR (101 MHz, DMSO-d₆) δ 25.0 (C-5), 28.8 (C-4,7), 45.5 (C-6), 94.8 (Ar-C-4), 111.7 (Ar-C-3), 112.3 (C-7a), 121.1 (Ar-C-5), 126.8 (Ar-C-2), 144.2 (C-3a), 159.0 (C=O), 166.2 (C-2) ppm. HRMS m/z for C₁₂H₁₄BrN₄OS ([M+H⁺]⁺): calcd 341.0072; found 341.0068.

(S)-N-(2-Amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-yl)-1-methyl-1H-pyrrole-2-

carboxamide (10a). ¹H NMR (400 MHz, DMSO-d₆) δ 1.70-1.83 (m, 1H, H_A-7), 1.86-1.97 (m, 1H, H_B-7), 2.46-2.54 (m, 3H, signal overlapped with DMSO-d₅, H-5, H_A-4), 2.75 (dd, 1H, J = 5.4, 14.1 Hz, H_B-4), 3.83 (s, 3H, NCH₃), 4.04-4.16 (m, 1H, C<u>H</u>NH), 5.99 (dd, 1H, J = 2.4, 3.8 Hz, Ar-H-4), 6.63 (d, 2H, J = 4.0 Hz, 2-NH₂), 6.79 (dd, 1H, J = 1.7, 3.8 Hz, Ar-H-3), 6.88 (t, 1H, J = 2.4 Hz, Ar-H-5), 7.87 (d, 1H, J = 7.9 Hz, NH-C=O) ppm; ¹³C NMR (101 MHz, DMSO-d₆) δ 25.3 (C-5), 28.8 (C-4/7), 29.0 (C-4/7), 36.2 (NCH₃), 45.3 (C-6), 106.4 (Ar-C-4), 112.3 (Ar-C-3), 112.6 (C-7a), 125.5 (Ar-C-2), 127.6 (Ar-C-5), 144.1 (C-3a), 160.8 (C=O), 166.1 (C-2) ppm. HRMS m/z for C₁₃H₁₇N₄OS ([M+H⁺]⁺): calcd 277.1123; found 277.1120.

(*S*)-2-Amino-6-((*S*)-pyrrolidin-1-ium-2-carboxamido)-4,5,6,7-tetrahydrobenzo[*d*]thiazol-3-ium chloride (11a). ¹H NMR (400 MHz, DMSO-d₆) δ 1.74-1.92 (m, 5H, H-7, Pro-H-4, H_A-5), 2.28 (ddd, 1H, *J* = 6.5, 12.9, 14.4 Hz, H_B-5), 2.42 (dd, 1H, *J* = 6.5, 16.3 Hz, Pro-H_A-3), 2.56-2.68 (m, 2H, H-4), 2.80 (dd, 1H, *J* = 4.9, 16.3 Hz, Pro-H_B-3), 3.15-3.26 (m, 2H, Pro-H-5), 4.06-4.14 (m, 1H, Pro-H-2), 4.15-4.22 (m, 1H, H-6), 8.50-8.58 (m, 1H, NH₂+Cl⁻), 8.89 (d, 1H, *J* = 7.4 Hz, NH-C=O), 9.37 (s, 2H, 2-NH₂), 10.07-10.16 (m, 1H, NH₂+Cl⁻), 13.48 (br s, 1H, NH⁺Cl⁻) ppm; ¹³C NMR (101 MHz, DMSO-d₆) δ 20.5 (C-4), 23.5 (C-7/Pro-C-4), 26.0 (C-7/Pro-C-4), 27.8 (Pro-C-3), 29.8 (C-5), 44.3 (C-6), 45.5 (Pro-C-5), 58.6 (Pro-C-2), 111.9 (C-7a), 132.7 (C-3a), 167.7 (C-2), 168.6 (NH-C=O) ppm. HRMS m/z for C₁₂H₁₉N₄OS ([M+H⁺]⁺): calcd 267.1280; found 267.1281. (*S*)-*N*⁶-((1*H*-Pyrrol-2-yl)methyl)-4,5,6,7-tetrahydrobenzo[*d*]thiazole-2,6-diamine (12a). ¹H NMR (400 MHz, DMSO-d₆) δ 1.47-1.57 (m, 1H, H_A-7), 1.87-1.94 (m, 2H, H_B-7, H_A-5), 2.20-2.26 (m, 1H, H_B-5), 2.29-2.38 (m, 1H, H_A-4), 2.73 (dd, 1H, *J* = 4.9, 14.9 Hz, H_B-4), 2.78-2.84 (m, 1H, C<u>H</u>NH), 3.69 (s, 2H, C<u>H₂</u>NH), 5.85-5.87 (m, 1H, Ar-H-4), 5.88-5.90 (m, 1H, Ar-H-3), 6.59 (s, 2H, 2-NH₂), 6.61 (dt, 1H, *J* = 1.6, 2.6 Hz, Ar-H-5), 10.59 (br s, 1H, Ar-NH) ppm, signal for CH₂N<u>H</u> group not seen; ¹³C NMR (101 MHz, DMSO-d₆) δ 24.7 (C-5), 28.7 (C-4/7), 29.0 (C-4/7), 43.0 (<u>C</u>H₂NH), 52.6 (C-6), 105.8 (Ar-C-3/4), 106.9 (Ar-C-3/4), 112.9 (C-7a), 116.7 (Ar-C-5), 130.2 (Ar-C-2), 144.4 (C-3a), 165.8 (C-2) ppm. HRMS m/z for C₁₂H₁₇N₄S ([M+H⁺]⁺): calcd 249.1174; found 249.1169.

(S)-N-(2-Amino-4,5,6,7-tetrahydrobenzo[d]thiazol-6-yl)furan-2-carboxamide (13a).

¹H NMR (400 MHz, DMSO-d₆) δ 1.77-1.85 (m, 1H, H_A-7), 1.87-1.93 (m, 1H, H_B-7), 2.50-2.53 (m, 2H, signal overlapped with DMSO-d₅, H-5), 2.55-2.60 (m, 1H, H_A-4), 2.75 (dd, 1H, J = 5.1, 15.0 Hz, H_B-4), 4.09-4.18 (m, 1H, C<u>H</u>NH), 6.63 (dd, 1H, J = 1.8, 3.4 Hz, Ar-H-4), 6.68 (s, 2H, 2-NH₂), 7.12 (dd, 1H, J = 0.8, 3.4 Hz, Ar-H-3), 7.83 (dd, 1H, J = 0.8, 1.8 Hz, Ar-H-5), 8.34 (d, 1H, J = 8.1 Hz, NH-C=O) ppm; ¹³C NMR (101 MHz, DMSO-d₆) δ 25.1 (C-5), 28.5 (C-4/7), 28.7 (C-4/7), 45.5 (C-6), 111.8 (Ar-C-4), 112.4 (C-7a), 113.4 (Ar-C-3), 144.2 (Ar-C-2), 144.8 (Ar-C-5), 147.9 (C-3a), 157.2 (C=O), 166.2 (C-2) ppm. HRMS m/z for C₁₂H₁₄N₃O₂S ([M+H⁺]⁺): calcd 264.0807; found 264.0796.

(*S*)-*N*-(2-Amino-4,5,6,7-tetrahydrobenzo[*d*]thiazol-6-yl)-1*H*-indole-2-carboxamide (14a). ¹H NMR (400 MHz, DMSO-d₆) δ 1.78-1.91 (m, 1H, H_A-7), 1.94-2.05 (m, 1H, H_B-7), 2.51-2.61 (m, 3H, signal overlapped with DMSO-d₅, H-5, H_A-4), 2.84 (dd, 1H, *J* = 5.5, 15.1 Hz, H_B-4), 4.16-4.28 (m, 1H, C<u>H</u>NH), 6.71 (s, 2H, 2-NH₂), 7.03 (t, 1H, *J* = 7.9 Hz, Ar-H-5/6), 7.15-7.20 (m, 2H, Ar-H-3, Ar-H-5/6), 7.43 (dd, 1H, *J* = 0.6, 8.2 Hz, Ar-H-4/7), 7.61 (d, 1H, *J* = 7.9 Hz, Ar-H-4/7), 8.39 (d, 1H, *J* = 7.8 Hz, NH-C=O), 11.54 (s, 1H, Ar-NH) ppm; ¹³C NMR (101 MHz, DMSO-d₆) δ 25.1 (C-5), 28.7 (C-4/7), 28.8 (C-4/7), 45.8 (C-6), 102.8 (Ar-C), 112.2 (Ar-C), 112.4 (C-7a), 119.7 (Ar-C), 121.4 (Ar-C), 123.3 (Ar-C), 127.0 (Ar-C), 131.7 (Ar-C), 136.4 (Ar-C), 144.3 (C-3a), 160.6 (C=O), 166.2 (C-2) ppm. HRMS m/z for C₁₆H₁₇N₄OS ([M+H⁺]⁺): calcd 313.1123; found 313.1131.

For details on the synthesis of compounds **1b-10b** please refer to M. Jukič, R. Frlan, F. Chan, R. W. Kirby, D. J. Madge, M. Anderluh, D. Kikelj, *Med. Chem. Res.*, 2014, submitted.

(4-((2-Amino-1*H*-imidazol-4-yl)methyl)piperazin-1-yl)(1*H*-pyrrol-2-yl)methanone (1b).

¹H NMR (DMSO-d₆) δ = 3.05-3.10 (m, 2H, -NCH₂), 4.27 (s, 2H, -NCH₂), 4.48-4.52 (m, 2H, -NCH₂), 6.15 (s, 1H, CH_{Ar}), 6.58 (s, 1H, CH_{Ar}), 6.94 (s, 1H, CH_{Ar}), 7.10 (s, 1H, CH_{Ar}), 7.81 (s, 2H, -NH₂), 11.58 (s, 1H, NH), 12.20-12.21 (m, 1H, NH) ppm; ¹³C NMR (DMSO-d₆) δ = 29.96, 31.69, 41.36, 48.38, 48.45, 50.08, 108.63, 112.57, 115.08, 116.59, 121.90, 123.23, 147.43, 161,47 ppm; HRMS for C₁₃H₁₈N₆OCl: calculated 309.1231, found 309.1223.

4-((4-((1*H***-pyrrol-2-yl)methyl)piperazin-1-yl)methyl)-1***H***-imidazol-2-amine (2b). ¹H NMR (DMSO-d₆) \delta = 2.59 (s, 4H, -N(CH₂)₂), 3.08 (s, 4H, N(CH₂)₂), 3.44 (s, 2H, CH₂), 6.81 (s, 1H, CH_{Ar}), 7.54 (s, 2H, -NH₂), 8.79-8.81 (m, 2H, CH_{Ar}), 12.12 (2, 1H, NH), 12.43-12.46 (m, 1H, NH) ppm. ¹³C NMR (DMSO-d₆) \delta = 8.41, 28.99, 45.31, 47.45, 48.56, 83.71, 114.44, 114.98, 143.22, 147.30, 158.14, 161.59, 188.23 ppm; MS (ESI) m/z (%) = 334 (MH⁺).**

(*S*)-1-((2-amino-1*H*-imidazol-4-yl)methyl)-4-prolylpiperazine (3b). ¹H NMR (DMSO-d₆) δ = 1.87-1.92 (m, 3H, CH₂), 2.34-2.35 (m, 1H, CH₂), 3.19-3.21 (m, 6H, -N(CH₂)₂), 4.22-4.29 (m, 3H, CH₂), 4.62-4.63 (s, 1H, CH), 7.09-7.11 (s, 1H, CH_{Ar}), 7.75-7.81 (m, 2H, NH₂), 8.51-8.52 (s, 1H, NH), 12.16 (s, 1H, NH) ppm; ¹³C NMR (DMSO-d₆) δ = 23.63, 28.46, 30.70, 41.64, 45.63, 48.29, 49.35, 49.66 57.19, 115.01, 116.58, 147.41, 166.87 ppm; HRMS for C₁₃H₂₃N₆OCl₂: calculated 349.1310, found 349.1320.

(4-((2-Amino-1*H*-imidazol-4-yl)methyl)piperazin-1-yl)(1*H*-indol-2-yl)methanone (4b).

¹H NMR (DMSO-d₆) δ = 3.06-3.17 (m, 2H, -NCH₂), 4.29 (s, 2H, -NCH₂), 4.57-4.59 (m, 2H, -NCH₂), 6.90 (s, 1H, CH_{Ar}), 7.07 (t, *J*=7.53 Hz, 1H, CHAr), 7.11 (s, 1H, CH_{Ar}), 7.21 (t, *J*=7.54 Hz, 1H, CH_{Ar}), 7.45 (d, *J*=7.85 Hz, 1H, CH_{Ar}), 7.62 (d, *J*=7.74 Hz, 1H, CH_{Ar}) 7.82 (s, 2H, NH₂), 11.69 (s, 1H, NH), 12.21 (s, 1H, NH) ppm; ¹³C NMR (DMSO-d6) δ = 8.39, 30.68, 45.27, 48.46, 50.03, 104.80, 112.16, 115.01, 116.60, 119.88, 121.43, 123.55, 126.68, 128.84, 136.10, 147.45, 162.14 ppm; HRMS for C₁₇H₂₀N₆OCl: calculated 359.1387, found 359.1385.

(4-((2-Amino-1*H*-imidazol-4-yl)methyl)piperazin-1-yl)(1*H*-indol-3-yl)methanone (5b). ¹H NMR (DMSO-d₆) δ = 3.06-3.12 (m, 2H, NCH₂), 4.26-4.28 (m, 2H, -NCH₂), 4.39-4.43 (m, 2H, NCH₂), 7.11-7.18 (m, 3H, CH_{Ar}), 7.47 (d, *J*=7.42 Hz, 1H, CH_{Ar}), 7.72-7-79 (m, 2H, CH_{Ar}), 11.47-11.55 (s, 1H, NH), 11.77 (s, 1H, NH), 12.04-12.05 (m, 1H, NH) ppm; ¹³C NMR (DMSO-d6) δ = 50.23, 50.32, 67.96, 97.96, 112.05, 120.09, 120.41, 122.05, 125.89, 128.79, 135.75, 147.43, 155.04, 165.73, 178.58 ppm; MS (ESI) m/z (%) = 359 (M-HCl⁻).

4-((4-Benzylpiperazin-1-yl)methyl)-1*H*-imidazol-2-amine (6b). ¹H NMR (DMSO-d₆) $\delta = 2.09$ (s, 4H, -N(CH₂)₂), 4.06-4.10 (m, 2H, CH₂), 4.37 (s, 2H, CH₂), 7.03 (s, 1H, CH_{Ar}), 7.45-7.73 (m, 5H, CHAr), 12.14-12.24 (m, 2H, NH₂) ppm; ¹³C NMR (DMSO-d6) $\delta = 28.97$, 30.68, 47.13, 48.16, 58.37, 78.98, 128.73, 128.86, 129.47, 129.56, 131.42, 131.56, 147.31, 206.54 ppm; HRMS for C₁₅H₂₂N₅Cl₂: calculated 342.1252, found 342.1254.

(4-((2-Amino-1*H*-imidazol-4-yl)methyl)piperazin-1-yl)(pyridin-3-yl)methanone (7b).

¹H NMR (DMSO-d₆) δ = 3.12-3.15 (m, 8H, -N(CH₂)₂), 4.27 (s, 2H, CH₂), 7.12 (s, 1H, CH_{Ar}), 7.72 (dd, *J*=7.34, 5.11 Hz, 1H, CH_{Ar}), 7.81 (s, 1H, CH_{Ar}), 8.14 (d, *J*=7.65 Hz, 1H, CH_{Ar}), 8.79-8.82 (m, 2H, CH_{Ar}, NH), 12.18-12-20 (m, 2H, NH₂) ppm; ¹³C NMR (DMSO-d₆) δ = 33.08, 42.24, 43.79, 48.31, 49.49, 114.79, 116.78, 125.19, 132.07, 138.85, 144.79, 147.43, 147.48, 165.62 ppm; HRMS for C₁₄H₁₈N₆OCl: calculated 321.1231, found 321.1235.

(4-((1*H*-Imidazol-4-yl)methyl)piperazin-1-yl)(1*H*-pyrrol-2-yl)methanone (8b). ¹H NMR (DMSO-d₆) $\delta = 2.37-2.40$ (m, 4H, -N(CH₂)₂-], 3.43 (s, 2H, -CH₂-), 3.62-3.69 (m, 4H, -N(CH₂)₂-), 6.07-6.10 (m, 1H, Ar), 6.43-6.47 (m, 1H, Ar), 6.84-6.91 (m, 2H, Ar, Ar-imi.), 7.52-7.56 (m, 1H, Ar-imi.), 11.40 (s, 1H, Ar-NH), 11.93 (s, 1H, Ar-imi.-NH) ppm; ¹³C NMR (DMSO-d₆) $\delta = 44.23$, 44.33, 44.46, 44.52, 52.47, 108.27, 111.65, 120.99, 124.19, 134.81, 134.85, 134.96, 161.32 ppm; HRMS for C₁₃H₁₈N₅O: calculated 260.1511, found 260.1514.

1-(4-(1*H***-Pyrrole-2-carbonyl)piperazin-1-yl)-2-(2-aminothiazol-5-yl)ethan-1-one** (**9b**). ¹H NMR (DMSO-d₆) δ = 3.50-3.56 (m, 4H, -N(CH₂)₂-), 3.59-3.63 (m, 2H, -CO-CH₂-), 3.64-3.72 (m, 4H, -N(CH₂)₂-), 6.12 (td, *J* = 3.49, 2.45, 2.45 Hz, 1H, Ar), 6.26 (s, 1H, -S-CH=C-), 6.51 (ddd, *J* = 3.67, 2.50, 1.35 Hz, 1H, Ar), 6.85 (s, 2H, -NH₂), 6.89 (dt, *J* = 2.80, 2.70, 1.37 Hz, 1H, Ar), 11.44 (s, 1H, Ar-NH) ppm; ¹³C NMR (DMSO-d₆) δ = 21.04, 36.69, 41.25, 45.57, 102.28, 108.42, 112.02, 121.30, 123.99, 145.56, 161.58, 168.03, 168.14, 172.01 ppm; HRMS for C₁₄H₁₈N₅O₂S: calculated 320.1181, found 320.1185.

(4-(1*H*-Pyrrole-2-carbonyl)piperazin-1-yl)(2-aminothiazol-5-yl)methanone (10b). ¹H NMR (DMSO-d₆) $\delta = 3.73$ (s, 4H, -N(CH₂)₂), 3.79 (s, 4H, -N(CH₂)₂), 6.14 (s, 1H, CH_{Ar}), 6.51-6.55 (m, 1H, CH_{Ar}), 6.92 (s, 1H, CH_{Ar}), 7.54 (s, 1H, CH_{Ar}), 8.09-8.12 (m, 2H, -NH₂). 11.52 (s, 1H, NH) ppm; ¹³C NMR (DMSO-d₆) $\delta = 44.43$, 44.45, 108.49, 112.14, 119.59, 121.42, 123.99, 139.05, 158.13, 158.49, 160.72, 161.51, 170.83 ppm; HRMS for C₁₃H₁₆N₅O₂S: calculated 306.1025, found 306.1020.

For details on the synthesis of compounds 1c, 2c, 4c-6c, 14c-23c, 31c-34c, 37c-44c please refer to N. Zidar, Ž. Jakopin, D. J. Madge, F. Chan, J. Tytgat, S. Peigneur, M. Sollner Dolenc, T. Tomašić, J. Ilaš, L. Peterlin Mašič, D. Kikelj, *Eur. J. Med. Chem.*, 2014, 74, 23, and for compounds 7c-13c, 24c-30c, 35c, 36c refer to N. Zidar, S. Montalvão, Ž. Hodnik, D. A. Nawrot, A. Žula, J. Ilaš, D. Kikelj, P. Tammela, L. Peterlin Mašič, *Mar. Drugs*, 2014, 12, 940.

tert-Butyl 4-(3-(1*H*-pyrrole-2-carboxamido)phenyl)-2-amino-1*H*-imidazole-1carboxylate (1c). ¹H NMR (DMSO- d_6) δ 1.59 (s, 9H, *t*-Bu), 6.16–6.18 (m, 1H, Pyrr-H), 6.63 (br s, 2H, NH₂), 6.96–6.98 (m, 1H, Pyrr-H), 7.09–7.11 (m, 1H, Pyrr-H), 7.26 (s, 1H, Ar-H-5), 7.29 (t, 1H, ³*J* = 8.0 Hz, Ar-H-5'), 7.41–7.43 (m, 1H, Ar-H-4'/6'), 7.67–7.69 (m, 1H, Ar-H-4'/6'), 8.07 (t, 1H, ⁴*J* = 2.0 Hz, Ar-H-2'), 9.77 (s, 1H, NH), 11.63 (s, 1H, NH); ¹³C NMR (DMSO- d_6) δ 27.51 (C<u>C</u>H₃), 84.67 (<u>C</u>CH₃), 105.93, 108.89, 111.25, 116.28, 118.54, 119.41, 122.47, 126.06, 128.57, 133.69, 137.03, 139.47, 148.88, 150.39, 159.08; HRMS for C₁₉H₂₂N₅O₃: calculated 368.1723; found 368.1724.

tert-Butyl 4-(3-(1*H*-pyrrole-3-carboxamido)phenyl)-2-amino-1*H*-imidazole-1carboxylate (2c). ¹H NMR (DMSO- d_6) δ 1.59 (s, 9H, *t*-Bu), 6.61 (br s, 2H, NH₂), 6.66–6.67 (m, 1H, Pyrr-H), 6.81–6.83 (m, 1H, Pyrr-H), 7.24 (s, 1H, ArH-5), 7.26 (t, 1H, ³*J*= 8.0 Hz, Ar-H-5'), 7.38–7.41 (m, 1H, Ar-H-4'/6'), 7.54–7.56 (m, 1H, Pyrr-H), 7.65–7.68 (m, 1H, Ar-H-4'/6'), 8.06 (t, 1H, ⁴*J* = 2.0 Hz, Ar-H-2'), 9.52 (s, 1H, NH), 11.29 (br s, 1H, NH); ¹³C NMR (MeOH- d_4) δ 26.73 (C<u>C</u>H₃), 85.27 (<u>C</u>CH₃), 106.21, 107.16, 117.15, 118.69, 119.07, 119.82, 120.28, 121.56, 128.50, 133.40, 137.02, 139.02, 149.26, 151.38, 165.27; HRMS for C₁₉H₂₂N₅O₃: calculated 368.1723; found 368.1726.

tert-Butyl 4-(3-(((1*H*-pyrrole-2-yl)methyl)amino)phenyl)-2-amino-1*H*-imidazole-1carboxylate (3c). To a solution of *tert*-butyl 2-amino-4-(3-aminophenyl)-1*H*-imidazole-1carboxylate (II) (200 mg, 0.73 mmol) in dichloromethane (20 mL) were successively added pyrrole-2-carbaldehyde (97 mg mg, 1.02 mmol), glacial acetic acid (42 μ L, 0.73 mmol), and NaBH(OAc)₃ (232 mg, 1.09 mmol) and the mixture was stirred at rt for 10 h. The solvent was removed under reduced pressure, the residue was dissolved in ethyl acetate (30 mL), washed with water (2 × 15 mL), saturated aqueous NaHCO₃ solution (2 × 15 mL), and brine (1 × 15 mL). The organic phase was dried over Na₂SO₄, filtered and concentrated *in vacuo*. Crude product was purified with flash column chromatography (eluent: ethyl acetate/petroleum ether = 1:1) to give **3c** (197 mg) as a brown solid. Yield, 76%; mp 122–126 °C; IR (ATR) ν = 3359, 2977, 2933, 1734, 1684, 1605, 1481, 1432, 1352, 1257, 1202, 1154, 1118, 1027, 991, 842, 771, 720 cm⁻¹. ¹H NMR (DMSO-*d*₆) δ 1.58 (s, 9H, *t*-Bu), 4.17 (d, 2H, ³*J* = 5.2 Hz, CH₂), 5.73–5.76 (m, 1H, N<u>H</u>CH₂), 5.92–5.96 (m, 2H, 2 × Ar-H), 6.52–6.56 (m, 3H, Ar-H, NH₂), 6.64–6.66 (m, 1H, Ar-H), 6.92–6.93 (m, 1H, Ar-H), 7.01–7.05 (m, 2H, Ar-H), 7.17 (s, 1H, Ar-H), 10.72 (br s, 1H, NH); MS (ESI) m/z (%) = 354.2 (MH⁺, 20), 298.1 (100), 254.1 (40). HRMS for C₁₉H₂₄N₅O₂: calculated 354.1930; found 354.1935. HPLC: Phenomenex Luna 5 μ m C18 column (4.6 mm × 150 mm); mobile phase: 10–90% of MeOH in TFA (0.1%) in 20 min; flow rate 1.0 mL/min; injection volume: 10 μ L; retention time: 4.583 min (97.8% at 254 nm).

tert-Butyl (*R*)-2-amino-4-(3-(1-(tert-butoxycarbonyl)pyrrolidine-2-carboxamido)phenyl)-1*H*-imidazole-1-carboxylate (4c). ¹H NMR (DMSO- d_6) δ 1.28 (s, 5.85H, *t*-Bu-*cis/trans*), 1.41 (s, 3.15H, *t*-Bu-*cis/trans*), 1.59 (s, 9H, *t*-Bu), 1.75–1.94 (m, 3H, H_A from CHC<u>H₂</u>, CH₂), 2.13–2.25 (m, 1H, H_B from CHC<u>H₂</u>), 3.30–3.46 (m, 2H, NCH₂), 4.18–4.21 (m, 0.65H, CH*cis/trans*), 4.25–4.27 (m, 0.35H, CH- *cis/trans*), 6.61 (s, 2H, NH₂), 7.22–7.29 (m, 2H, 2 × Ar-H), 7.40–7.50 (m, 2H, 2 × Ar-H), 7.97 (s, 0.65H, Ar-H-2'- *cis/trans*), 8.02 (s, 0.35H, Ar-H-2'*cis/trans*), 10.00 (s, 1H, NH); ¹³C NMR (DMSO- d_6) δ 23.36 and 23.93 (CH₂, *cis* and *trans*), 27.50 (CCH₃), 27.92 and 28.13 (CCH₃, *cis* and *trans*), 30.18 and 30.96 (CH₂, *cis* and *trans*), 46.52 and 46.71 (CH₂, *cis* and *trans*), 59.98 and 60.37 (CH, *cis* and *trans*), 78.43 and 78.61 (CCH₃, *cis* and *trans*), 84.69 (CCH₃), 105.93, 115.56 and 115.63 (Ar-C, *cis* and *trans*), 117.83, 119.62, 128.71, 133.79, 136.92, 139.21, 148.85, 150.39, 153.14 and 153.56 (C=O, *cis* and *trans*), 171.01 and 171.48 (C=O, *cis* and *trans*); HRMS for C₂₄H₃₄N₅O₅: calculated 472.2560; found 472.2570.

tert-Butyl 4-(3-(1*H*-indole-2-carboxamido)phenyl)-2-amino-1*H*-imidazole-1-carboxylate (5c). ¹H NMR (DMSO- d_6) δ 1.60 (s, 9H, *t*-Bu), 6.64 (br s, 2H, NH₂), 7.08 (t, 1H, ³*J* = 7.6 Hz, Ar-H), 7.23 (dt, 1H, ³*J* = 7.6 Hz, ⁴*J* = 1.2 Hz, Ar-H), 7.30 (s, 1H, Ar-H-5), 7.34 (t, 1H, ³*J* = 8.0 Hz, Ar-H-5'), 7.47–7.49 (m, 3H, 3 × Ar-H), 7.69 (d, 1H, ³*J* = 7.6 Hz, Ar-H), 7.73–7.75 (m, 1H, Ar-H), 8.15 (s, 1H, Ar-H-2'), 10.24 (s, 1H, NH), 11.72 (s, 1H, NH); ¹³C NMR (DMSO- d_6) δ 27.51 (CCH₃), 84.70 (CCH₃), 103.81, 106.08, 112.35, 116.52, 118.77, 119.88, 119.96, 121,74, 123.75, 127.04, 128.71, 131.47, 133.82, 136.77, 136.94, 139.09, 148.88, 150.43, 159.65; HRMS for C₂₃H₂₄N₅O₃: calculated 418.1879; found 418.1884.

tert-Butyl 4-(3-(1*H*-indole-3-carboxamido)phenyl)-2-amino-1*H*-imidazole-1-carboxylate (6c). ¹H NMR (DMSO- d_6) δ 1.60 (s, 9H, *t*-Bu), 6.59 (br s, 2H, NH₂), 7.13–7.22 (m, 2 H, 2 × Ar-H), 7.26–7.32 (m, 2H, Ar-H-5, ArH-5'), 7.41 (d, 1H, ³J = 7.8 Hz, Ar-H), 7.46–7.49 (m, 1H, Ar-H), 7.68–7.71 (m, 1H, Ar-H), 8.12 (s, 1H, ArH-2'), 8.20–8.22 (m, 1H, Ar-H), 8.32 (d, 1H, ⁴J = 3.0 Hz, Ar-H), 9.71 (s, 1H, NH), 11.71 (s, 1H, NH); ¹³C NMR (DMSO- d_6) δ 27.53 (C<u>C</u>H₃), 84.67 (<u>C</u>CH₃), 105.89, 110.43, 111.92, 116.10, 118.39, 119.10, 120.66, 121.06,

122.11, 126.43, 128.52, 128.63, 133.65, 136.17, 137.15, 139.95, 148.91, 150.37, 163.27; HRMS for $C_{23}H_{24}N_5O_3$: calculated 418.1879; found 418.1898.

tert-Butyl 2-amino-4-(3-(5-methoxy-1*H*-indole-2-carboxamido)phenyl)-1*H*-imidazole-1carboxylate (7c). ¹H NMR (DMSO- d_6) δ 1.60 (s, 9H, *t*-Bu), 3.79 (s, 3H, OCH₃), 6.64 (s, 2H, NH₂), 6.89 (dd, 1H, ³*J* = 9.2 Hz, ⁴*J* = 2.4 Hz, Ar-H), 7.14 (d, 1H, ⁴*J* = 2.4 Hz, Ar-H), 7.29– 7.38 (m, 4H, 4 × Ar-H), 7.48 (dd, 1H, ³*J* = 7.6 Hz, ⁴*J* = 0.8 Hz, Ar-H), 7.72–7.75 (m, 1H, Ar-H), 8.13 (s, 1H, Ar-H), 10.19 (s, 1H, NH), 11.57 (s, 1H, NH); ¹³C NMR (DMSO- d_6) δ 27.51 (C<u>C</u>H₃), 55.25 (OCH₃), 84.70 (<u>C</u>CH₃), 102.04, 103.52, 106.07, 113.19, 115.04, 116.55, 118.81, 119.92, 127.35, 128.69, 131.74, 132.08, 133.80, 136.95, 139.12, 148.88, 150.43, 153.82, 159.61; HRMS for C₂₄H₂₆N₅O₄: calculated, 448.1985; found, 448.1983.

tert-Butyl 2-amino-4-(3-(5-(benzyloxy)-1*H*-indole-2-carboxamido)phenyl)-1*H*-imidazole-1carboxylate (8c). ¹H NMR (DMSO- d_6) δ 1.60 (s, 9H, *t*-Bu), 5.13 (s, 2H, OCH₂), 6.64 (s, 2H, NH₂), 6.97 (dd, 1H, ³*J* = 8.8 Hz, ⁴*J* = 2.4 Hz, Ar-H), 7.25–7.51 (m, 11H, 11 × Ar-H), 7.72– 7.75 (m, 1H, Ar-H), 8.14 (s, 1H, Ar-H), 10.18 (s, 1H, NH), 11.59 (s, 1H, NH); ¹³C NMR (DMSO- d_6) δ 27.51 (C<u>C</u>H₃), 69.61 (OCH₂), 84.70 (<u>C</u>CH₃), 103.54, 103.67, 106.07, 113.21, 115.53, 116.51, 118.77, 119.92, 127.30, 127.68, 128.36, 128.69, 131.84, 132.22, 133.80, 136.95, 137.54, 139.12, 148.88, 150.43, 152.81, 159.59 (signals for two C atoms overlap); HRMS for C₃₀H₃₀N₅O₄: calculated, 524.2298; found, 524.2302.

tert-Butyl 2-Amino-4-(3-(5-hydroxy-1*H*-indole-2-carboxamido)phenyl)-1*H*-imidazole-1carboxylate (9c). ¹H NMR (DMSO- d_6) δ 1.60 (s, 9H, *t*-Bu), 6.64 (br s, 2H, NH₂), 6.78 (dd, 1H, ³J = 8.8 Hz, ⁴J = 2.4 Hz, Ar-H), 6.93 (d, 1H, ⁴J = 2.4 Hz, Ar-H), 7.26–7.35 (m, 4H, 4 × Ar-H), 7.47 (dd, 1H, ³J = 8.0 Hz, ⁴J = 1.6 Hz, Ar-H), 7.71–7.73 (m, 1H, Ar-H), 8.13–8.14 (m, 1H, Ar-H), 8.86 (s, 1H, OH), 10.12 (s, 1H, NH), 11.43 (s, 1H, NH); ¹³C NMR (DMSO- d_6) δ 27.51 (C<u>C</u>H₃), 84.69 (<u>C</u>CH₃), 102.93, 104.35, 106.04, 112.85, 115.04, 116.45, 118.71, 119.85, 127.73, 128.68, 131.59, 131.60, 133.79, 136.97, 139.18, 148.88, 150.42, 151.19, 159.69; HRMS for C₂₃H₂₄N₅O₄: calculated, 434.1828; found, 434.1823.

tert-Butyl 2-amino-4-(3-(5-(trifluoromethoxy)-1*H*-indole-2-carboxamido)phenyl)-1*H*imidazole-1-carboxylate (10c). ¹H NMR (DMSO- d_6) δ 1.60 (s, 9H, *t*-Bu), 6.64 (s, 2H, NH₂), 7.22 (dd, 1H, ³*J* = 9.2 Hz, ⁴*J* = 1.6 Hz, Ar-H), 7.30 (s, 1H, Ar-H), 7.35 (t, 1H, ³*J* = 8.0 Hz, Ar-H), 7.49–7.57 (m, 3H, 3 × Ar-H), 7.74–7.76 (m, 2H, 2 × Ar-H), 8.14 (s, 1H, Ar-H), 10.36 (s, 1H, NH), 12.01 (s, 1H, NH); ¹³C NMR (DMSO- d_6) δ 27.51 (CCH₃), 84.70 (CCH₃), 104.09, 106.13, 113.61, 113.96, 116.63, 117.63, 118.88, 120.15, 120.41 (q, 1C, ^{*1*}*J*_{C-F} = 253 Hz, CF₃), 127.02, 128.73, 133.56, 133.85, 135.15, 136.89, 138.90, 142.20, 148.87, 150.43, 159.22; ¹⁹F NMR (DMSO- d_6) δ –59.92 (s, 3F, CF₃); HRMS for C₂₄H₂₃N₅O₄F₃: calculated, 502.1702; found, 502.1712.

tert-Butyl 2-amino-4-(3-(5-fluoro-1*H*-indole-2-carboxamido)phenyl)-1*H*-imidazole-1carboxylate (11c). ¹H NMR (DMSO-*d*₆) δ 1.60 (s, 9H, *t*-Bu), 6.64 (s, 2H, NH₂), 7.10 (dt, 1H, ³*J* = 9.2 Hz, ⁴*J* = 2.4 Hz, Ar-H), 7.30 (s, 1H, Ar-H), 7.34 (t, 1H, ³*J* = 8.0 Hz, Ar-H), 7.45–7.50 (m, 4H, 4 × Ar-H), 7.72–7.75 (m, 1H, Ar-H), 8.14 (s, 1H, Ar-H), 10.29 (s, 1H, NH), 11.84 (s, 1H, NH); ¹³C NMR (DMSO-*d*₆) δ 27.51 (C<u>C</u>H₃), 84.70 (<u>C</u>CH₃), 103.79 (d, 1C, ⁴*J*_{C-F} = 5 Hz), 105.88 (d, 1C, ²*J*_{C-F} = 23 Hz), 106.11, 112.51 (d, 1C, ²*J*_{C-F} = 27 Hz), 113.57 (d, 1C, ³*J*_{C-F} = 9 Hz), 116.58, 118.83, 120.08, 127.09 (d, 1C, ³*J*_{C-F} = 10 Hz), 128.72, 133.17, 133.50, 133.84, 136.91, 138.98, 148.87, 150.43, 157.19 (d, 1C, ¹*J*_{C-F} = 231 Hz), 159.35; ¹⁹F NMR (DMSO-*d*₆) δ -123.68 (s, 1F); MS (ESI) *m*/*z* (%) = 436.2 (MH⁺, 100). HRMS for C₂₃H₂₃N₅O₃F: calculated, 436.1785; found, 436.1780.

tert-Butyl 2-amino-4-(3-(5-chloro-1*H*-indole-2-carboxamido)phenyl)-1*H*-imidazole-1carboxylate (12c). ¹H NMR (DMSO- d_6) δ 1.60 (s, 9H, *t*-Bu), 6.64 (s, 2H, NH₂), 7.24 (dd, 1H, ³J = 8.8 Hz, ⁴J = 2.0 Hz, Ar-H), 7.30 (s, 1H, Ar-H), 7.35 (t, 1H, ³J = 8.0 Hz, Ar-H), 7.45– 7.50 (m, 3H, 3 × Ar-H), 7.72–7.75 (m, 1H, Ar-H), 7.79 (d, 1H, ⁴J = 2.0 Hz, Ar-H), 8.14 (t, 1H, ⁴J = 1.6 Hz, Ar-H), 10.32 (s, 1H, NH), 11.94 (s, 1H, NH); ¹³C NMR (DMSO- d_6) δ 27.51 (C<u>C</u>H₃), 84.70 (<u>C</u>CH₃), 103.34, 106.11, 113.96, 116.58, 118.83, 120.11, 120.80, 123.85, 124.36, 128.07, 128.73, 132.97, 133.84, 135.14, 136.90, 138.95, 148.87, 150.44, 159.28; HRMS for C₂₃H₂₃N₅O₃Cl: calculated, 452.1489; found, 452.1487.

tert-Butyl 4-(3-(4*H*-thieno[3,2-*b*]pyrrole-5-carboxamido)phenyl)-2-amino-1*H*-imidazole-1carboxylate (13c). ¹H NMR (acetone- d_6) δ 1.67 (s, 9H, *t*-Bu), 6.44 (s, 2H, NH₂), 7.09 (d, 1H, J = 5.2 Hz, Ar-H), 7.29–7.33 (m, 2H, 2 × Ar-H), 7.40–7.43 (m, 2H, 2 × Ar-H), 7.48–7.51 (m, 1H, Ar-H), 7.76–7.79 (m, 1H, Ar-H), 8.16 (s, 1H, Ar-H), 9.44 (s, 1H, NH), 11.07 (s, 1H, NH); ¹³C NMR (acetone- d_6) δ 28.10 (C<u>C</u>H₃), 85.61 (<u>C</u>CH₃), 103.42, 107.05, 112.65, 117.25, 119.36, 120.84, 124.93, 128.62, 129.52, 132.06, 135.32, 138.56, 140.40, 142.30, 150.40, 151.58, 160.34; HRMS for C₂₁H₂₂N₅O₃S: calculated, 424.1443; found, 424.1450.

tert-Butyl 4-(3-(1*H*-pyrrole-2-carboxamido)phenyl)-2-(methylamino)-4,5-dihydro-1*H*imidazole-1-carboxylate (14c). ¹H NMR (DMSO- d_6) δ 1.45 (s, 9H, *t*-Bu), 2.83 (d, 3H, ³J = 4.8 Hz, CH₃), 3.39 (dd, 1H, ²J = 10.0 Hz, ³J = 6.8 Hz, H_A from CH₂), 4.17 (t, 1H, J = 10.0 Hz, H_B from CH₂), 4.85 (dd, 1H, ³ J_1 = 10.0 Hz, ³ J_2 = 6.8 Hz, NCH), 6.15–6.17 (m, 1H, Pyrr-H), 6.77 (br s, 1H, NH), 6.95–6.98 (m, 2H, Pyrr-H, Ar-H-4'/6'), 7.07–7.09 (m, 1H, Pyrr-H), 7.27 (t, 1H, ³J = 8.0 Hz, Ar-H-5'), 7.58 (s, 1H, Ar-H-2'), 7.70–7.72 (m, 1H, Ar-H-4'/6'), 9.74 (s, 1H, NH), 11.64 (s, 1H, NH); ¹³C NMR (DMSO- d_6) δ 27.74 (C<u>C</u>H₃), 29.08 (NCH₃), 54.48 (CH₂), 62.32 (NCH), 81.52 (<u>C</u>CH₃), 108.85, 111.24, 117.63, 118.40, 121.05, 122.44, 126.05, 128.39, 139.36, 145.82, 151.58, 153.56, 159.08; HRMS for $C_{20}H_{26}N_5O_3$: calculated 384.2036; found 384.2035.

tert-Butyl 4-(3-(furan-2-carboxamido)phenyl)-2-(methylamino)-4,5-dihydro-1*H*imidazole-1-carboxylate (15c). ¹H NMR (DMSO- d_6) δ 1.45 (s, 9H, *t*-Bu), 2.83 (d, 3H, ³*J* = 4.4 Hz, CH₃), 3.39 (dd, 1H, ²*J* = 10.0 Hz, ³*J* = 6.8 Hz, H_A from CH₂), 4.17 (t, 1H, *J* = 10.0 Hz, ⁴*J* = 6.8 Hz, NCH), 6.70 (dd, 1H, ³*J* = 3.6 Hz, ³*J* = 1.6 Hz, Fur-H), 6.78 (br s, 1H, NH), 7.02 (d, 1H, ³*J* = 8.0, Ar-H-4'/6'), 7.29 (t, 1H, ³*J* = 8.0 Hz, Ar-H-5'), 7.35 (dd, 1H, ³*J* = 3.6 Hz, ⁴*J* = 0.8 Hz, Fur-H), 7.62 (t, 1H, ⁴*J* = 1.6 Hz, Ar-H-2'), 7.68–7.70 (m, 1H, Ar-H-4'/6'), 7.94 (dd, 1H, ³*J* = 1.6 Hz, ⁴*J* = 0.8 Hz, Fur-H), 10.17 (s, 1H, NH); ¹³C NMR (DMSO- d_6) δ 27.73 (CCH₃), 29.08 (NCH₃), 54.43 (CH₂), 62.24 (NCH), 81.54 (<u>C</u>CH₃), 112.07, 114.57, 118.17, 118.84, 121.80, 128.47, 138.54, 145.68, 145.89, 147.48, 151.57, 153.59, 156.15; HRMS for C₂₀H₂₅N₄O₄: calculated 385.1876; found 385.1872.

tert-Butyl 4-(3-(1*H*-indole-2-carboxamido)phenyl)-2-(methylamino)-4,5-dihydro-1*H*imidazole-1-carboxylate (16c). ¹H NMR (DMSO- d_6) δ 1.45 (s, 9H, *t*-Bu), 2.85 (d, 3H, ³*J* = 4.8 Hz, CH₃), 3.41 (dd, 1H, ²*J* = 9.6 Hz, ³*J* = 6.8 Hz, H_A from CH₂), 4.19 (t, 1H, *J* = 9.6 Hz, ⁴*J* = 9.6 Hz, ³*J* = 6.8 Hz, NCH), 6.80 (br s, 1H, NH), 7.03 (d, 1H, ³*J* = 7.6 Hz, Ar-H), 7.06–7.10 (m, 1H, Ar-H), 7.21–7.25 (m, 1H, Ar-H), 7.32 (t, 1H, ³*J* = 8.0 Hz, Ar-H-5'), 7.44–7.48 (m, 2H, 2 × Ar-H), 7.67–7.69 (m, 2H, 2 × Ar-H), 7.77–7.80 (m, 1H, Ar-H-4'/6'), 10.22 (s, 1H, NH), 11.74 (s, 1H, NH); ¹³C NMR (DMSO- d_6) δ 27.74 (C<u>C</u>H₃), 29.10 (NCH₃), 54.47 (CH₂), 62.24 (NCH), 81.55 (<u>C</u>CH₃), 103.80, 112.34, 117.86, 118.61, 119.86, 121.61, 121.72, 123.72, 127.02, 128.54, 131.47, 136.76, 138.99, 145.95, 151.57, 153.62, 159.64; HRMS for C₂₄H₂₈N₅O₃: calculated 434.2192; found 434.2183.

tert-Butyl 4-(3-(furan-2-carboxamido)phenyl)-2-(methylamino)-1*H*-imidazole-1carboxylate (17c). ¹H NMR (DMSO- d_6) δ 1.59 (s, 9H, *t*-Bu), 2.96 (d, 3H, ³*J* = 4.8 Hz, CH₃), 6.71 (dd, 1H, ³*J*₁ = 3.6 Hz, ³*J*₂ = 1.6 Hz, Fur-H), 6.75 (q, 1H, ³*J* = 4.8 Hz, NH), 7.30–7.34 (m, 2H, Ar-H-5, Ar-H-5'), 7.38 (dd, 1H, ³*J* = 3.6 Hz, ⁴*J* = 0.8 Hz, Fur-H), 7.50–7.52 (m, 1H, Ar-H-4'/6'), 7.71–7.74 (m, 1H, Ar-H-4'/6'), 7.95 (dd, 1H, ³*J* = 1.6 Hz, ⁴*J* = 0.8 Hz, Fur-H), 8.05 (t, 1H, ⁴*J* = 2.0 Hz, Ar-H-2'), 10.21 (s, 1H, NH); ¹³C NMR (DMSO- d_6) δ 27.53 (CCH₃), 29.41 (NCH₃), 84.58 (CCH₃), 106.48, 112.08, 114.58, 116.78, 119.10, 120.32, 128.61, 133.79, 137.11, 138.62, 145.73, 147.47, 148.93, 151.38, 156.21; HRMS for C₂₀H₂₃N₄O₄: calculated 383.1719; found 383.1713.

tert-Butyl 4-(3-(1*H*-indole-2-carboxamido)phenyl)-2-(methylamino)-1*H*-imidazole-1carboxylate (18c). ¹H NMR (DMSO- d_6) δ 1.60 (s, 9H, t-Bu), 2.97 (d, 3H, ³J = 4.8 Hz, CH₃), 6.77 (q, 1H, ${}^{3}J$ = 4.8 Hz, NH), 7.08 (dt, 1H, ${}^{3}J$ = 8.0 Hz, ${}^{4}J$ = 1.2 Hz, Indol-H), 7.23 (dt, 1H, ${}^{3}J$ = 8.0 Hz, ${}^{4}J$ = 1.2 Hz, Indol-H), 7.33–7.37 (m, 2H, Ar-H-5, Ar-H-5'), 7.46–7.53 (m, 3H, 2 × Indol-H, Ar-H-4'/6'), 7.69 (d, 1H, ${}^{3}J$ = 8.0 Hz, Indol-H), 7.82–7.84 (m, 1H, Ar-H-4'/6'), 8.11 (t, 1H, ${}^{4}J$ = 2.0 Hz, Ar-H-2'), 10.28 (s, 1H, NH), 11.76 (s, 1H, NH); ${}^{13}C$ NMR (DMSO-*d*₆) δ 27.53 (C<u>C</u>H₃), 29.42 (NCH₃), 84.58 (<u>C</u>CH₃), 103.85, 106.50, 112.34, 116.54, 118.86, 119.86, 120.09, 121.74, 123.73, 127.05, 128.67, 131.48, 133.83, 136.77, 137.16, 139.08, 148.94, 151.41, 159.71; HRMS for C₂₄H₂₆N₅O₃: calculated 432.2036; found 432.2022.

4-(3-(1*H***-Pyrrole-2-carboxamido)phenyl)-2-amino-1***H***-imidazol-3-ium chloride (19c). ¹H NMR (DMSO-***d***₆) \delta 6.17–6.19 (m, 1H, Pyrr-H), 6.97–6.99 (m, 1H, Pyrr-H), 7.09–7.11 (m, 1H, Pyrr-H), 7.28 (s, 1H, Ar-H-5), 7.34 (d, 1H, ³***J* **= 8.0 Hz, Ar-H-4'/6'), 7.41 (t, 1H, ³***J* **= 8.0 Hz, Ar-H-5'), 7.48 (s, 2H, NH₂), 7.67 (d, 1H, ³***J* **= 8.0 Hz, Ar-H-4'/6'), 8.03 (s, 1H, Ar-H-2'), 10.04 (s, 1H, NH), 11.80 (s, 1H, NH), 12.18 (br s, 1H, NH), 12.87 (br s, 1H, NH); ¹³C NMR (DMSO-***d***₆) \delta 108.95, 109.32, 111.86, 116.11, 119.22, 120.00, 122.65, 125.86, 126.48, 128.01, 129.20, 139.83, 147.77, 159.12; HRMS for C₁₄H₁₄N₅O: calculated 268.1198; found 268.1193.**

4-(3-(1*H***-Pyrrole-3-carboxamido)phenyl)-2-amino-1***H***-imidazol-3-ium chloride (20c). ¹H NMR (DMSO-***d***₆) \delta 6.66–6.68 (m, 1H, Pyrr-H), 6.83–6.85 (m, 1H, Pyrr-H), 7.29–7.32 (m, 2H, 2 × Ar-H), 7.38 (t, 1H, ³***J* **= 8.0 Hz, Ar-H-5'), 7.45 (br s, 2H, NH₂), 7.57–7.59 (m, 2H, 2 × Ar-H), 8.09 (t, 1H, ⁴***J* **= 2.0 Hz, Ar-H-2'), 9.68 (s, 1H, NH), 11.38 (s, 1H, NH), 12.13 (s, 1H, NH), 12.77 (s, 1H, NH); ¹³C NMR (DMSO-***d***₆) \delta 107.77, 109.24, 116.03, 118.82, 118.87, 119.31, 119.89, 121.53, 126.55, 127.89, 129.08, 140.24, 147.74, 162.90 (CO); HRMS for C₁₄H₁₄N₅O: calculated 268.1198; found 268.1201.**

(R)-2-Amino-4-(3-(pyrrolidin-1-ium-2-carboxamido)phenyl)-1H-imidazol-3-ium

chloride (21c). ¹H NMR (DMSO- d_6) δ 1.92–2.02 (m, 3H, H_A from CHC<u>H₂</u>, CH₂), 2.42–2.51 (m, 1H, H_B from CHC<u>H₂</u>), 3.23–3.32 (m, 2H, NCH₂), 4.43–4.46 (m, 1H, CH), 7.28 (s, 1H, ArH-5), 7.40–7.46 (m, 2H, Ar-H-4'/6', Ar-H-5'), 7.50 (s, 2H, NH₂), 7.57–7.60 (m, 1H, Ar-H-4'/6'), 7.85 (s, 1H, Ar-H-2'), 8.69 (br s, 1H, NH), 10.19 (br s, 1H, NH), 11.15 (s, 1H, NH), 12.25 (br s, 1H, NH), 12.97 (br s, 1H, NH); ¹³C NMR (DMSO- d_6) δ 23.57 (CH₂), 29.72 (CH₂), 45.62 (CH₂), 59.46 (CH₂), 109.60, 115.46, 119.48, 120.34, 126.08, 128.42, 129.60, 138.68, 147.89, 167.05 (C=O); HRMS for C₁₄H₁₈N₅O: calculated 272.1511; found 272.1513.

4-(3-(1*H***-Indole-2-carboxamido)phenyl)-2-amino-1***H***-imidazol-3-ium chloride (22c). ¹H NMR (DMSO-d_6) \delta 7.08 (dt, 1H, ³J= 7.2 Hz, ⁴J= 0.9 Hz, Ar-H), 7.24 (dt, 1H, ³J= 8.1 Hz, ⁴J= 0.9 Hz, Ar-H), 7.31 (s, 1H, ArH-5), 7.38–7.50 (m, 6H, NH₂, 4 × Ar-H), 7.67–7.72 (m, 2H, Ar-H), 8.09 (s, 1H, Ar-H-2'), 10.43 (s, 1H, NH), 11.81 (s, 1H, NH), 12.13 (br s, 1H, NH),**

12.82 (br s, 1H, NH); ¹³C NMR (DMSO- d_6) δ 104.39, 109.47, 112.39, 116.46, 119.81, 119.94, 120.32, 121.77, 123.87, 126.39, 129.95, 128.15, 129.33, 131.27, 136.84, 139.40, 147.81, 159.76; HRMS for C₁₈H₁₆N₅O: calculated 318.1355; found 318.1344.

4-(3-(1*H***-Indole-3-carboxamido)phenyl)-2-amino-1***H***-imidazol-3-ium chloride (23c). ¹H NMR (DMSO-d_6) \delta 7.13–7.23 (m, 2 H, 2 × Ar-H), 7.30–7.50 (m, 6H, NH₂, 4 × Ar-H), 7.60 (d, 1H, ³***J* **= 8.0 Hz, Ar-H), 8.17 (s, 1H, ArH-2'), 8.21 (d, 1H, ³***J* **= 7.6 Hz, Ar-H), 8.43 (d, 1H, ⁴***J* **= 3.2 Hz, Ar-H), 9.95 (s, 1H, NH), 11.86 (br s, 1H, NH), 12.16 (br s, 1H, NH), 12.79 (br s, 1H, NH); ¹³C NMR (DMSO-d_6) \delta 109.35, 110.12, 112.01, 115.87, 118.88, 119.75, 120.72, 120.97, 122.15, 126.40, 126.63, 127.97, 129.02, 129.15, 136.21, 140.33, 147.73, 163.37; HRMS for C₁₈H₁₆N₅O: calculated 318.1355; found 318.1357.**

2-Amino-4-(3-(5-methoxy-1H-indole-2-carboxamido)phenyl)-1H-imidazol-3-ium

chloride (24c). ¹H NMR (DMSO- d_6) δ 3.79 (s, 3H, OCH₃), 6.89 (dd, 1H, ³J = 9.2 Hz, ⁴J = 2.4 Hz, Ar-H), 7.15 (d, 1H, ⁴J = 2.4 Hz, Ar-H), 7.33 (s, 1H, Ar-H), 7.37–7.49 (m, 6H, 4 × Ar-H, NH₂), 7.69–7.72 (m, 1H, Ar-H), 8.08 (s, 1H, Ar-H), 10.42 (s, 1H, NH), 11.70 (s, 1H, NH), 12.16 (s, 1H, NH), 12.85 (s, 1H, NH); ¹³C NMR (DMSO- d_6) δ 55.25 (OCH₃), 102.02, 104.14, 109.43, 113.23, 115.19, 116.46, 119.74, 120.33, 126.39, 127.26, 128.12, 129.30, 131.54, 132.16, 139.45, 147.82, 153.84, 159.72; HRMS for C₁₉H₁₈N₅O₂: calculated, 348.1461; found, 348.1459.

2-Amino-4-(3-(5-(benzyloxy)-1H-indole-2-carboxamido)phenyl)-1H-imidazol-3-ium

chloride (25c). ¹H NMR (DMSO- d_6) δ 5.13 (s, 2H, OCH₂), 6.98 (dd, 1H, ³J = 9.2 Hz, ⁴J = 2.4 Hz, Ar-H), 7.26 (d, 1H, ⁴J = 2.4 Hz, Ar-H), 7.32–7.51 (m, 12H, 10 × Ar-H, NH₂), 7.67–7.69 (m, 1H, Ar-H), 8.08 (t, 1H, ⁴J = 2.0 Hz, Ar-H), 10.37 (s, 1H, NH), 11.69 (s, 1H, NH), 12.12 (s, 1H, NH), 12.80 (s, 1H, NH); ¹³C NMR (DMSO- d_6) δ 69.61 (OCH₂), 103.67, 103.92, 109.59, 113.27, 115.69, 116.50, 119.85, 120.33, 126.49, 127.23, 127.68, 128.15, 128.37, 129.34, 131.59, 132.31, 137.52, 139.38, 147.74, 152.85, 159.72 (signals for two C atoms overlap); HRMS for C₂₅H₂₂N₅O₂: calculated, 424.1774; found, 424.1771.

2-Amino-4-(3-(5-hydroxy-1*H***-indole-2-carboxamido)phenyl)-1***H***-imidazol-3-ium chloride (26c**). ¹H NMR (DMSO- d_6) δ 6.79 (dd, 1H, ³J = 8.8 Hz, ⁴J = 2.0 Hz, Ar-H), 6.94 (d, 1H, ⁴J = 2.0 Hz, Ar-H), 7.26–7.48 (m, 7H, 5 × Ar-H, NH₂), 7.67–7.69 (m, 1H, Ar-H), 8.08 (s, 1H, Ar-H), 8.91 (s, 1H, OH), 10.32 (s, 1H, NH), 11.52 (s, 1H, NH), 12.12 (s, 1H, NH), 12.80 (s, 1H, NH); ¹³C NMR (DMSO- d_6) δ 103.40, 104.34, 109.51, 112.89, 115.22, 116.39, 119.73, 120.24, 126.46, 127.65, 128.12, 129.31, 131.35, 131.66, 139.48, 147.77, 151.26, 159.82; HRMS for C₁₈H₁₆N₅O₂: calculated, 334.1304; found, 334.1296.

2-Amino-4-(3-(5-(trifluoromethoxy)-1H-indole-2-carboxamido)phenyl)-1H-imidazol-3-

ium chloride (27c). ¹H NMR (DMSO- d_6) δ 7.22–7.25 (m, 1H, Ar-H), 7.34 (s, 1H, Ar-H), 7.41–7.58 (m, 6H, 4 × Ar-H, NH₂), 7.68–7.71 (m, 1H, Ar-H), 7.74 (s, 1H, Ar-H), 8.07 (t, 1H, ⁴J = 1.6 Hz, Ar-H), 10.55 (s, 1H, NH), 12.11 (s, 1H, NH), 12.13 (s, 1H, NH), 12.81 (s, 1H, NH); ¹³C NMR (DMSO- d_6) δ 104.71, 109.50, 113.67, 113.95, 116.58, 117.75, 120.00, 120.40 (q, 1C, ¹J_{C-F} = 253 Hz, CF₃), 120.44, 126.34, 126.92, 128.18, 129.35, 133.36, 135.21, 139.21, 142.21, 147.83, 159.34; ¹⁹F NMR (DMSO- d_6) δ –56.93 (s, 3F, CF₃); HRMS for C₁₉H₁₅N₅O₂F₃: calculated, 402.1178; found, 402.1171.

2-Amino-4-(3-(5-fluoro-1*H***-indole-2-carboxamido)phenyl)-1***H***-imidazol-3-ium chloride (28c). ¹H NMR (DMSO-***d***₆) \delta 7.11 (dt, 1H, ³***J* **= 9.2 Hz, ⁴***J* **= 2.0 Hz, Ar-H), 7.33 (s, 1H, Ar-H), 7.40–7.50 (m, 7H, 5 × Ar-H, NH₂), 7.69–7.71 (m, 1H, Ar-H), 8.08 (t, 1H, ⁴***J* **= 1.6 Hz, Ar-H), 10.49 (s, 1H, NH), 11.95 (s, 1H, NH), 12.14 (s, 1H, NH), 12.83 (s, 1H, NH); ¹³C NMR (DMSO-***d***₆) \delta 104.34 (d, 1C, ⁴***J***_{C-F} = 5 Hz), 105.89 (d, 1C, ²***J***_{C-F} = 23 Hz), 109.51, 112.65 (d, 1C, ²***J***_{C-F} = 26 Hz), 113.63 (d, 1C, ³***J***_{C-F} = 9 Hz), 116.52, 119.93, 120.39, 126.37, 127.00 (d, 1C, ³***J***_{C-F} = 9 Hz), 128.17, 129.35, 132.96, 133.57, 139.28, 147.81, 157.20 (d, 1C, ¹***J***_{C-F} = 231 Hz), 159.47; ¹⁹F NMR (DMSO-***d***₆) \delta –123.59 (s, 1F); HRMS for C₁₈H₁₅N₅OF: calculated, 336.1261; found, 336.1264.**

2-Amino-4-(3-(5-chloro-1*H***-indole-2-carboxamido)phenyl)-1***H***-imidazol-3-ium chloride (29c**). ¹H NMR (DMSO- d_6) δ 7.25 (dd, 1H, ³J = 8.8 Hz, ⁴J = 2.0 Hz, Ar-H), 7.33 (s, 1H, Ar-H), 7.40–7.51 (m, 6H, 4 × Ar-H, NH₂), 7.69–7.71 (m, 1H, Ar-H), 7.79 (d, 1H, ⁴J = 2.0 Hz, Ar-H), 8.07 (s, 1H, Ar-H), 10.53 (s, 1H, NH), 12.05 (s, 1H, NH), 12.14 (s, 1H, NH), 12.84 (s, 1H, NH); ¹³C NMR (DMSO- d_6) δ 103.87, 109.52, 114.01, 116.53, 119.98, 120.40, 120.82, 123.98, 124.42, 126.37, 127.98, 128.18, 129.36, 132.75, 135.21, 139.23, 147.80, 159.41; HRMS for C₁₈H₁₅N₅OCl: calculated, 352.0965; found, 352.0959.

4-(3-(4*H***-Thieno[3,2-***b***]pyrrole-5-carboxamido)phenyl)-2-amino-1***H***-imidazol-3-ium chloride (30c**). ¹H NMR (DMSO-*d*₆) δ 7.03 (dd, 1H, ³*J* = 5.2 Hz, ⁴*J* = 0.8 Hz, Ar-H), 7.31 (s, 1H, Ar-H), 7.36–7.49 (m, 6H, 4 × Ar-H, NH₂), 7.66–7.69 (m, 1H, Ar-H), 8.06 (t, 1H, ⁴*J* = 1.6 Hz, Ar-H), 10.24 (s, 1H, NH), 11.99 (s, 1H, NH), 12.14 (s, 1H, NH), 12.82 (s, 1H, NH); ¹³C NMR (DMSO-*d*₆) δ 103.91, 109.43, 111.90, 116.27, 119.48, 120.15, 122.94, 126.45, 128.08, 128.28, 129.26, 130.49, 139.64, 141.32, 147.77, 159.41; HRMS for C₁₆H₁₄N₅OS: calculated, 324.0919; found, 324.0911.

4-(3-(1*H*-Pyrrole-2-carboxamido)phenyl)-2-(methylamino)-4,5-dihydro-1*H*-imidazol-3ium chloride (31c). ¹H NMR (DMSO- d_6) δ 2.86 (d, 3H, ³J = 4.8 Hz, CH₃), 3.43 (m, 1H, H_A from CH₂, overlaping with the peak for water), 4.07 (br t, 1H, J = 9.0 Hz, H_B from CH₂), 5.09 (br t, 1H, ${}^{3}J$ = 9.0 Hz, NCH), 6.16–6.18 (m, 1H, Pyrr-H), 6.97–6.99 (m, 1H, Pyrr-H), 7.05– 7.10 (m, 2H, Pyrr-H, Ar-H-4'/6'), 7.37 (t, 1H, ${}^{3}J$ = 8.0 Hz, Ar-H-5'), 7.78 (d, 1H, ${}^{3}J$ = 8.0 Hz, Ar-H-4'/6'), 7.85 (s, 1H, Ar-H-2'), 8.01 (br s, ${}^{1}_{2}$ H, NH), 8.35–8.41 (m, 1H, N<u>H</u>CH₃), 8.61 (br s, ${}^{1}_{2}$ H, NH), 8.65 (br s, ${}^{1}_{2}$ H, NH), 9.08 (br s, ${}^{1}_{2}$ H, NH), 9.98 (s, 1H, NH), 11.77 (s, 1H, NH); 13 C NMR (DMSO-*d*₆) δ 28.91 (NCH₃), 50.96 (CH₂), 57.93 (NCH), 108.91, 111.92, 117.32, 119.52, 120.89, 122.54, 125.96, 128.97, 140.01, 141.13, 159.10, 159.52; HRMS for C₁₅H₁₈N₅O: calculated 284.1511; found 284.1515.

4-(3-(Furan-2-carboxamido)phenyl)-2-(methylamino)-4,5-dihydro-1*H***-imidazol-3-ium chloride (32c**). ¹H NMR (DMSO- d_6) δ 2.86 (d, 3H, ³*J* = 4.8 Hz, CH₃), 3.41 (m, 1H, H_A from CH₂, overlaping with the peak for water), 4.07 (br t, 1H, *J* = 8.4 Hz, H_B from CH₂), 5.10 (br t, 1H, ³*J* = 8.4 Hz, NCH), 6.72 (dd, 1H, ³*J* = 3.6 Hz, ³*J* = 1.6 Hz, Fur-H), 7.11 (d, 1H, ³*J* = 7.6 Hz, Ar-H-4'/6'), 7.37–7.41 (m, 2H, Ar-H-5', Fur-H), 7.75 (d, 1H, ³*J* = 7.6 Hz, Ar-H-4'/6'), 7.86 (s, 1H, Ar-H-2'), 7.95 (dd, 1H, ³*J* = 1.6 Hz, ⁴*J* = 0.8 Hz, Fur-H), 8.01 (br s, ¹/₂H, NH), 8.36– 8.39 (m, 1H, N<u>H</u>CH₃), 8.60 (br s, ¹/₂H, NH), 8.66 (br s, ¹/₂H, NH), 9.08 (br s, ¹/₂H, NH), 10.34 (s, 1H, NH; ¹³C NMR (DMSO- d_6) δ 28.91 (NCH₃), 50.96 (CH₂), 57.86 (NCH), 112.12, 114.93, 117.93, 120.05, 121.69, 129.05, 139.11, 141.22, 145.85, 147.29, 156.27, 159.53; HRMS for C₁₅H₁₇N₄O₂: calculated 285.1352; found 285.1353.

4-(3-(1*H***-Indole-2-carboxamido)phenyl)-2-(methylamino)-4,5-dihydro-1***H***-imidazol-3ium chloride (33c). ¹H NMR (DMSO-***d***₆) \delta 2.87 (d, 3H, ³***J* **= 5.2 Hz, CH₃), 3.41 (m, 1H, H_A from CH₂, overlaping with the peak for water), 4.09 (br t, 1H,** *J* **= 8.6 Hz, H_B from CH₂), 5.12 (br t, 1H, ³***J* **= 8.6 Hz, NCH), 7.06–7.13 (m, 2H, 2 × Ar-H), 7.22–7.26 (m, 1H, Ar-H), 7.42 (t, 1H, ³***J* **= 8.0 Hz, Ar-H-5'), 7.47–7.49 (m, 2H, 2 × Ar-H), 7.68 (d, 1H, ³***J* **= 8.0 Hz, Ar-H), 7.85 (d, 1H, ³***J* **= 8.0 Hz, Ar-H), 7.91 (s, 1H, Ar-H), 8.03 (br s, ¹/₂H, NH), 8.37–8.41 (m, 1H, N<u>H</u>CH₃), 8.63 (br s, ¹/₂H, NH), 8.68 (br s, ¹/₂H, NH), 9.11 (br s, ¹/₂H, NH), 10.44 (s, 1H, NH), 11.85 (s, 1H, NH); ¹³C NMR (DMSO-***d***₆) \delta 28.93 (NCH₃), 50.98 (CH₂), 57.89 (NCH), 104.42, 112.35, 117.62, 119.80, 119.91, 121.47, 121.74, 123.84, 126.94, 129.11, 131.35, 136.80, 139.59, 141.30, 159.54, 159.72; HRMS for C₁₉H₂₀N₅O: calculated 334.1668; found 334.1658.**

4-(3-(1*H***-Indole-2-carboxamido)phenyl)-2-(methylamino)-1***H***-imidazol-3-ium chloride (34c**). ¹H NMR (DMSO- d_6) δ 2.95 (d, 3H, ³J = 4.8 Hz, CH₃), 7.09 (dt, 1H, ³J = 6.8 Hz, ⁴J = 1.2 Hz, Indol-H), 7.24 (dt, 1H, ³J = 6.8 Hz, ⁴J = 1.2 Hz, Indol-H), 7.43–7.50 (m, 5H, 5 × Ar-H), 7.68–7.72 (m, 2H, 2 × Ar-H), 7.84 (q, 1H, ³J = 4.8 Hz, NH), 8.11 (t, 1H, ⁴J = 2.0 Hz, Ar-H-2'), 10.44 (s, 1H, NH), 11.82 (s, 1H, NH), 12.40 (br s, 1H, NH), 12.62 (br s, 1H, NH); ¹³C NMR (DMSO- d_6) δ 30.07 (CH₃), 105.00, 110.20, 112.88, 117.28, 120.42, 120.67, 120.87, 122.25, 124.35, 127.43, 127.45, 128.69, 129.72, 131.80, 137.33, 139.87, 149.08, 160.25; HRMS for $C_{19}H_{18}N_5O$: calculated 332.1511; found 332.1499.

N-(3-(2-Amino-1-benzyl-1*H*-imidazol-4-yl)phenyl)-1*H*-pyrrole-2-carboxamide (35c). ¹H NMR (DMSO-*d*₆) δ 5.02 (s, 2H, CH₂), 5.69 (s, 2H, NH₂), 6.15–6.18 (m, 1H, Ar-H), 6.95–6.98 (m, 1H, Ar-H), 7.03 (s, 1H, Ar-H), 7.08–7.12 (m, 1H, Ar-H), 7.21 (t, 1H, ${}^{3}J$ = 7.8 Hz, Ar-H), 7.26–7.32 (m, 4H, 4 × Ar-H), 7.35–7.40 (m, 2H, 2 × Ar-H), 7.54–7.58 (m, 1H, Ar-H), 7.94–7.97 (m, 1H, Ar-H), 9.70 (s, 1H, NH) 11.60 (br s, 1H, NH); ¹³C NMR (DMSO-*d*₆) δ 47.20, 108.84, 110.73, 111.29, 115.37, 117.14, 118.45, 122.30, 126.18, 127.35, 127.44, 128.34, 128.52, 135.40, 135.49, 137.76, 139.34, 149.52, 158.99; HRMS for C₂₁H₂₀N₅O: calculated, 358.1668; found, 358.1661.

4-(3-(((1*H***-Pyrrol-2-yl)methyl)amino)phenyl)-1-benzyl-1***H***-imidazol-2-amine (36c). ¹H NMR (DMSO-d_6) \delta 4.14 (d, 2H, ³J = 5.5 Hz, CH₂) 4.97 (s, 2H, CH₂), 5.56–5.62 (m, 3H, NH, NH₂), 5.91–5.96 (m, 2H, 2 × Ar-H), 6.40–6.44 (m, 1H, Ar-H), 6.62–6.65 (m, 1H, Ar-H), 6.80–6.84 (m, 1H, Ar-H), 6.93–6.98 (m, 3H, 3 × Ar-H), 7.23–7.31 (m, 3H, 3 × Ar-H), 7.33–7.39 (m, 2H, 2 × Ar-H), 10.70 (br s, 1H, NH); ¹³C NMR (DMSO-d_6) \delta 40.44, 47.12, 105.71, 107.11, 107.66, 110.20, 110.33, 112.09, 116.70, 127.27, 127.32, 128.47 (2 signals overlapped), 128.68, 135.62, 136.30, 137.90, 148.70, 149.29; HRMS for C₂₁H₂₂N₅: calculated, 344.1875; found, 344.1873.**

tert-Butyl 4-(4-(1*H*-pyrrole-2-carboxamido)phenyl)-2-amino-1*H*-imidazole-1carboxylate (37c). ¹H NMR (DMSO- d_6) δ 1.59 (s, 9H, *t*-Bu), 6.16–6.18 (m, 1H, Pyrr-H), 6.56 (br s, 2H, NH₂), 6.59–6.60 (m, 1H, Pyrr-H), 7.07 (s, 1H, Pyrr-H), 7.28 (s, 1H, Ar-H-5), 7.67 (d, 2H, ³J = 8.7 Hz, Ar-H-2',6'/3',5'), 7.72 (d, 2H, ³J = 8.7 Hz, Ar-H-2',6'/3',5'), 9.76 (s, 1H, NH), 11.66 (s, 1H, NH); ¹³C NMR (DMSO- d_6) δ 27.53 (CCH₃), 84.51 (CCH₃), 105.29, 108.87, 111.25, 119.70, 122.51, 124.89, 126.04, 128.19, 136.85, 138.18, 148.93, 150.34, 158.99; HRMS for C₁₉H₂₂N₅O₃: calculated 368.1723; found 368.1734.

To a suspension of *tert*-butyl 2-amino-4-(4-aminophenyl)-1*H*-imidazole-1-carboxylate (I) (190 mg, 0.69 mmol) in dichloromethane (30 mL) were added pyrrole-2-carboxaldehyde (208 mg, 1.04 mmol) and glacial acetic acid (40 μ L, 0.69 mmol). The mixture became clear, whereupon NaBH(OAc)₃ (208 mg, 1.04 mmol) was added and the mixture was stirred at room temperature for 13 h. The solution was diluted with dichloromethane (20 mL) and washed with saturated aqueous NaHCO₃ solution (2 × 30 mL) and brine (1 × 30 mL). The organic phase was dried over Na₂SO₄, filtered and concentrated *in vacuo*. Crude product was purified with column chromatography (eluent: dichloromethane/MeOH = 9:1 + NH₃) to give **38c** (114 mg; 47% yield) as an orange solid.

tert-Butyl 4-(4-(((1*H*-pyrrol-2-yl)methyl)amino)phenyl)-2-amino-1*H*-imidazole-1carboxylate (38c). Yield, 47%; orange solid; mp 160–163 °C; IR (KBr) v = 3396, 3282, 3126, 2974, 1740, 1639, 1616, 1593, 1512, 1458, 1394, 1373, 1359, 1320, 1296, 1270, 1212, 1180, 1160, 1125, 1094, 1074, 1025, 937, 885, 849, 834, 770, 737, 719, 696, 599, 558, 514 cm⁻¹. ¹H NMR (DMSO-*d*₆) δ 1.57 (s, 9H, *t*-Bu), 4.14 (d, 2H, ³*J* = 5.2 Hz, CH₂), 5.86–5.88 (m, 1H, NH), 5.92–5.97 (m, 2H, 2×Ar-H), 6.52 (s, 2H, NH₂), 6.61–6.66 (m, 3H, 3×Ar-H), 7.03 (s, 1H, Ar-H), 7.43 (d, 2H, ³*J* = 8.8 Hz, Ar-H), 10.72 (br s, 1H, NH); ¹³C NMR (DMSO-*d*₆) δ 27.54, 83.79, 102.96, 105.86, 107.15, 112.11, 125.49, 129.42, 129.89, 136.26, 140.22, 140.76, 150.01, 159.91, 161.88; MS (ESI) *m/z* (%) = 354.2 (MH⁺, 100). HRMS for C₁₉H₂₄N₅O₂: calculated 354.1930; found 354.1921. HPLC: Phenomenex Luna 5 µm C18 column (4.6 mm × 150 mm); mobile phase: 10–90% of MeOH in TFA (0.1%) in 20 min; flow rate 1.0 mL/min; injection volume: 10 µL; retention time: 14.879 min (95.4% at 254 nm).

tert-Butyl 4-(4-(((1*H*-imidazol-4-yl)methyl)amino)phenyl)-2-amino-1*H*-imidazole-1carboxylate (39c). Yield, 22%; orange solid; mp 170–172 °C; IR (KBr) v = 3380, 2978, 1735, 1615, 1516, 1356, 1292, 1257, 1158, 1118, 1011, 936, 828, 772, 738, 698, 659, 621 cm⁻¹. ¹H NMR (DMSO-*d*₆) δ 1.57 (s, 9H, *t*-Bu), 4.14 (d, 2H, ³*J* = 5.2 Hz, CH₂), 5.88–5.91 (m, 1H, NH), 6.52 (s, 2H, NH₂), 6.61 (d, 2H, ³*J* = 8.8 Hz, 2×Ar-H), 6.93 (s, 1H, Ar-H), 7.03 (s, 1H, Ar-H), 7.43 (d, 2H, ³*J* = 8.8 Hz, Ar-H), 7.57 (s, 1H, Ar-H), 11.90 (br s, 1H, NH); MS (ESI) *m*/*z* (%) = 355.2 (MH⁺, 100). HRMS for C₁₈H₂₃N₆O₂: calculated 355.1882; found 355.1890. HPLC: Phenomenex Luna 5 µm C18 column (4.6 mm × 150 mm); mobile phase: 10–90% of MeOH in TFA (0.1%) in 20 min; flow rate 1.0 mL/min; injection volume: 10 µL; retention time: 19.623 min (97.3% at 254 nm).

tert-Butyl (*S*)-2-amino-4-(4-(1-(*tert*-butoxycarbonyl)pyrrolidine-2-carboxamido)phenyl)-1*H*-imidazole-1-carboxylate (40c). ¹H NMR (DMSO- d_6) δ 1.28 (s, 9H, *t*-Bu), 1.58 (s, 9H, *t*-Bu), 1.74–2.27 (m, 4H, CH₂CH₂), 3.28–3.47 (m, 2H, NCH₂), 4.17–4.27 (m, 1H, COCHN), 6.56 (br s, 2H, NH₂), 7.25 (s, 1H, Ar-H-5), 7.57 (d, 2H, ${}^{3}J$ = 7.7 Hz, Ar-H-2',6'/3',5'), 7.66 (d, 2H, ${}^{3}J$ = 7.7 Hz, Ar-H-2',6'/3',5'), 9.96 (s, 1H, NH); 13 C NMR (DMSO-*d*₆) δ 23.36 and 23.94 (*cis* and *trans*), 27.51, 27.91 and 28.12 (*cis* and *trans*), 30.18 and 30.97 (*cis* and *trans*), 46.53 and 46.71 (*cis* and *trans*), 59.98 and 60.35 (*cis* and *trans*), 78.44 and 78.63 (*cis* and *trans*), 84.52, 105.36, 119.11, 125.01, 128.46, 136.76, 137.88, 148.93, 150.34, 153.12, 171.37; HRMS for C₂₄H₃₄N₅O₅: calculated 472.2560; found 472.2568.

tert-Butyl (*R*)-2-amino-4-(4-(1-(*tert*-butoxycarbonyl)pyrrolidine-2-carboxamido)phenyl)-1*H*-imidazole-1-carboxylate (41c). ¹H NMR (DMSO- d_6) δ 1.28 (s, 9H, *t*-Bu), 1.58 (s, 9H, *t*-Bu), 1.75–1.95 (m, 4H, CH₂CH₂), 3.24–3.46 (m, 2H, NCH₂), 4.19–4.25 (m, 1H, COCHN), 6.55 (br s, 2H, NH₂), 7.25 (s, 1H, Ar-H-5), 7.57 (d, 2H, ³*J* = 8.7 Hz, Ar-H-2',6'/3',5'), 7.67 (d, 2H, ³*J* = 8.7 Hz, Ar-H-2',6'/3',5'), 9.96 (s, 1H, NH); ¹³C NMR (DMSO- d_6) δ 23.36 and 23.94 (*cis* and *trans*), 27.51, 27.91 and 28.12 (*cis* and *trans*), 30.18 and 30.97 (*cis* and *trans*), 46.53 and 46.71 (*cis* and *trans*), 59.98 and 60.35 (*cis* and *trans*), 78.44 and 78.63 (*cis* and *trans*), 84.52, 105.36, 119.11, 125.01, 128.46, 136.76, 137.88, 148.93, 150.34, 153.12, 171.37; HRMS for C₂₄H₃₄N₅O₅: calculated 472.2560; found 472.2569.

tert-Butyl 4-(4-(1*H*-indole-2-carboxamido)phenyl)-2-amino-1*H*-imidazole-1-carboxylate (42c). ¹H NMR (DMSO- d_6) δ 1.59 (s, 9H, *t*-Bu), 6.58 (br s, 2H, NH₂), 7.07 (t, 1H, ${}^{3}J$ = 7.2 Hz, Ar-H), 7.23 (t, 1H, ${}^{3}J$ = 7.5 Hz, Ar-H), 7.30 (s, 1H, Ar-H), 7.42–4.79 (m, 2H, 2 × Ar-H), 7.68 (d, 1H, ${}^{3}J$ = 7.8 Hz, Ar-H), 7.72 (d, 2H, ${}^{3}J$ = 8.7 Hz, Ar-H-2',6'/3',5'), 7.80 (d, 2H, ${}^{3}J$ = 8.7 Hz, Ar-H-2',6'/3',5'), 7.80 (d, 2H, ${}^{3}J$ = 8.7 Hz, Ar-H-2',6'/3',5'), 10.20 (s, 1H, NH), 11.70 (s, 1H, NH); ¹³C NMR (DMSO- d_6) δ 27.53 (C<u>C</u>H₃), 84.55 (<u>C</u>CH₃), 103.79, 105.51, 112.36, 119.90, 119.96, 121.71, 123.74, 124.35, 124.98, 127.00, 128.75, 131.47, 136.78, 137.77, 148.93, 150.38, 159.55; HRMS for C₂₃H₂₄N₅O₃: calculated 418.1879; found 418.1875.

4-(4-(1*H***-Pyrrole-2-carboxamido)phenyl)-2-amino-1***H***-imidazol-3-ium chloride (43c). ¹H NMR (DMSO-d_6) \delta 6.16–6.19 (m, 1H, Pyrr-H), 6.98 (br s, 2H, NH₂), 7.08 (s, 1H, Pyrr-H), 7.29 (s, 1H, Pyrr-H), 7.41 (s, 1H, Ar-H-5), 7.61 (d, 2H, ³J = 8.7 Hz, Ar-H-2',6'/3',5'), 7.84 (d, 2H, ³J = 8.7 Hz, Ar-H-2',6'/3',5'), 9.94 (s, 1H, NH), 11.73 (s, 1H, NH), 12.02 (s, 1H, NH), 12.76 (s, 1H, NH); ¹³C NMR (DMSO-d_6) \delta 108.44, 108.96, 111.73, 119.88, 122.24, 122.73, 124.60, 125.89, 126.45, 139.20, 147.46, 159.08; MS (ESI) m/z = 268 [M-Cl]⁺. HRMS for C₁₄H₁₄N₅O: calculated 268.1198; found 268.1194.**

(*S*)-2-Amino-4-(4-(pyrrolidin-1-ium-2-carboxamido)phenyl)-1*H*-imidazol-3-ium chloride (44c). ¹H NMR (DMSO- d_6) δ 1.93–2.01 (m, 4H, CH₂CH₂), 3.25–3.31 (m, 2H, NCH₂), 4.36– 4.44 (m, 1H, COCHN), 7.34 (br s, 2H, NH₂), 7.43 (s, 1H, Ar-H-5), 7.65 (d, 2H, ³*J* = 8.7 Hz, Ar-H-2',6'/3',5'), 7.70 (d, 2H, ³*J* = 8.7 Hz, Ar-H-2',6'/3',5'), 8.67 (s, 1H, NH), 9.81 (s, 1H, NH), 10.99 (s, 1H, NH), 12.07 (s, 1H, NH), 12.87 (s, 1H, NH); ¹³C NMR (DMSO- d_6) δ 23.59, 29.65, 45.69, 59.59, 108.92, 119.65, 123.49, 124.83, 126.08, 137.82, 147.58, 166.93; HRMS for C₁₄H₁₉N₅O: calculated 272.1511; found 272.1520.

2-Amino-4-(3-(5-methoxy-1*H*-indole-2-carboxamido)phenyl)-1*H*-imidazol-3-ium chloride (**24c**)

2-Amino-4-(3-(5-fluoro-1*H*-indole-2-carboxamido)phenyl)-1*H*-imidazol-3-ium chloride (**28c**)

2-Amino-4-(3-(5-chloro-1*H*-indole-2-carboxamido)phenyl)-1*H*-imidazol-3-ium chloride (**29c**)

0

4-(3-(4*H*-Thieno[3,2-*b*]pyrrole-5-carboxamido)phenyl)-2-amino-1*H*-imidazol-3-ium chloride (**30c**)

2. Cells, cell cultures, cells incubations and apoptosis monitoring

The human hepatocellular carcinoma cell line HepG2 was obtained from the American Type Culture Collection (Maryland, USA) and was maintained in DMEM culture medium supplemented with 10% FBS, Penicillin/Streptomycin (100 unit/mL and 100 μ g/mL) and Glutamine (2 mM). Cells were grown at 37 °C in a humidified incubator equilibrated with 5% CO₂. Cells were trypsinized and subcultured twice a week.² The human monocytic cell line THP-1 (from American Type Culture Collection, ATCC) was routinely maintained in RPMI 1640 culture medium supplemented with 10% (v/v) FBS and Penicillin/Streptomycin (100 unit/mL and 100 μ g/mL). Cells were grown in the same condition as previously described and were subcultured three times per week.³

HepG2 and THP-1 cells were incubated in 96-well culture plates for 24 h, at 37 °C in a humidified 5% CO₂/95% air atmosphere in presence of increasing doses of the tested compounds. The final concentration of cells was 1×10^{5} /mL in a final volume of 200 μ L per well. Final concentration of DMSO applied to cells during incubation with tested compounds was 0.5%. In the tested setup these concentrations had no adverse effects on cell viability nor cell morphology.

Apoptosis assay was performed using Annexin V-FITC (ImmunoTools) and propidium iodide (MiltenyiBiotec) according to manufacturer instructions.⁴ Measurements were done by microcapillary flow cytometry (Guava EasyCyteTM, Millipore/Merck, CA, USA) and the cellular fluorescence intensity of Annexin V-FITC at 530/40 nm was computed on the Guava InCyte software (GuavaSoft 2.7, Millipore/Merck, CA, USA) in terms of x-geometric mean arbitrary units (AU). 2,000 events per sample were analysed. To discriminate between negative and positive events in the analysis, a non-stained control sample from each culture condition always accompanied acquisition of the stained cells to define the cut off. Negative control, i.e. sample with cells without compounds but with the same % of DMSO (v/v) as for diluted compounds, was included in each experiment. Celastrol was used as positive control for apoptotic assays. Gates were drawn around the appropriate cell populations using a forward scatter (FSC) versus side scatter (SSC) acquisition dot plot to exclude debris. Cytometers performances are checked weekly using the Guava easyCheck Kit 4500-0025 (Millipore /Merck, CA, USA). Cell cycle assay was performed as already reported.⁵ Briefly, cells were first treated with compounds and after 24 h or 48 h of incubation, approximately 10⁶ cells were collected, washed with PBS and centrifuged at 200g, pellet suspended in 0.5 mL of PBS and then fixed in 70% ethanol, on ice. Ethanol-suspended cells were kept at -20 °C during the night. Next day, ethanol was thoroughly removed by centrifugation at 400g. After that, cells were washed with PBS, centrifuged at 400g and stained with propidium iodide (FxCycle[™] PI/RNase Staining Solution, Molecular Probes, Life Technologies), according to the manufacturer instructions. Specific DNA staining was achieved by enzymatic removal of RNA by RNAase. Samples were analyzed by a micro-capillary flow cytometer and data was computed on the Guava InCyte software. 5,000 events per sample were analysed. Debris and doublets were excluded by appropriate gating before further cell cycle analysis.

Compound	Structure	% of apoptosis of HepG2 at 50 μM^a	Compound	Structure	% of apoptosis of HepG2 at 50 µM ^a
clathrodin	H_2N H_N	27±19	2	H ₂ N-N-N-N-H-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V-	33±10
oroidin	$H_2N \xrightarrow{N}_{HN} H_N \xrightarrow{N}_{H} H_N \xrightarrow{O}_{H} H$	35±10	3	H_2N H_N	36±17
hymenidin	$H_2N \xrightarrow{N}_{HN} H_1$	25±9	4	H_2N H_N	38±11
1	$H_2N \xrightarrow{N} H_N$	25±16			
^{<i>a</i>} Results are the mean of four independent experiments.					

 Table S1. Apoptosis-inducing activity of clathrodin, oroidin, hymenidin and their analogues 1-4 in HepG2 cell line.

Compound	Structure	% of apoptosis of HepG2 at 50 µMª	Compound	Structure	% of apoptosis of HepG2 at 50 μM ^a
1a	H ₂ N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	20±9	8a	H ₂ N S H Br N N H Br	35±8
2a	$H_{2}N \xrightarrow{N} N \xrightarrow{P^{r^{n}} N} H \xrightarrow{H_{2}N} Br$	23±15	9a	$H_2N \bigvee_{N} S \bigvee_{O} H \bigvee_{O} H$	28±10
3 a	H ₂ N-S-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	38±12	10a	H_2N N N N N N N N N N	20±10
4a	$H_2N \xrightarrow{S} M \xrightarrow{O} O \xrightarrow{O} O$	23±8	11a	H ₂ N S -CI ⁺ HN O H ₂ +CI ⁻	22±10
5a		27±12	12a	H_2N N N N H	30±21
6a	H ₂ N-S-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	32±7	13a	H_2N N N N N N N N N N	29±11
7a	H_2N N N N N N N N N N	23±6	14a	$H_2N \xrightarrow{S}_{N} H_2 \xrightarrow{H}_{O} H_1$	27±7
^a Results are the mean of four independent experiments.					

 Table S2 Apoptosis-inducing activity of type A analogues 1a-14a in HepG2 cell line.

Compound	Structure	% of apoptosis of HepG2 at 50 μM ^a	Compound	Structure	% of apoptosis of HepG2 at 50 µM ^a
1b	$HN \rightarrow NH^{+}CI^{-} \qquad HN \rightarrow HN \rightarrow H^{+}CI^{-} \qquad HN \rightarrow HN$	27±7	6b	$HN \rightarrow NH^{+}CI^{-} N \rightarrow H^{+}CI^{-} H_{2}N$	32±14
2b	$HN \rightarrow NH^{+}CI^{-} N \rightarrow NH^{+}CI^{-} HN \rightarrow H^{+}DI^{-} N \rightarrow H^{+}DI^{-} HN \rightarrow HN $	34±13	7ь	$HN \rightarrow NH^{+}CI^{-} N \rightarrow O$ $H_{2}N \rightarrow O$	28±9
3b	$HN \rightarrow NH^{+}CI^{-} N \rightarrow H_{2}^{+}CI^{-} H_{2}^{+}CI^{-}$	28±10	8b		23±9
4b	$HN \rightarrow NH^+CI^- N \rightarrow O$	32±15	9b	H ₂ N S N N N	23±7
5b	$HN \rightarrow NH^+CI^- N \rightarrow O$	30±19	10b	$N \rightarrow S \qquad N \rightarrow N$	20±7
^{<i>a</i>} Results are the mean of four independent experiments.					

 Table S3. Apoptosis-inducing activity of type B analogues 1b-10b in HepG2 cell line.

Compound	Structure	% of apoptosis of HepG2 at 50 µMª	Compound	Structure	% of apoptosis of HepG2 at 50 µM ^a
1c	H_2N	21±18	2c	$H_2N \xrightarrow{N} H \xrightarrow{N} H \xrightarrow{N} H$	19±11
Зс	H_2N N H	40±21	4c	$H_2N \xrightarrow{N} H_2N \xrightarrow{N} H_2N$	18±9
5c	$H_2N \xrightarrow{N} H_2N \xrightarrow{N} H_1$	75±8	6с	H_2N	62±13

 Table S4. Apoptosis-inducing activity of type C analogues 1c-65c in HepG2 cell line.

Figure S1. Induction of apoptosis in HepG2 cells by type C analogues 1c-44c at 50 μ M. Indole-based compounds are coloured *red* to highlight the importance of the indole moiety for potent apoptosis-inducing activity. Celastrol and DMSO were used as positive and negative controls, respectively.

Figure S2. Distribution of a) MW, b) logD, c) number of hydrogen bond donors and d) number of hydrogen bond acceptors in the library of oroidin analogs. Active compounds (>50% apoptotic HepG2 cells at 50 μ M) are colored green, inactive compounds (<50% apoptotic HepG2 cells at 50 μ M) are colored red and blue color indicates the sum of both.

Calculation of Molecular Descriptors. The three-dimensional models of clathrodin, oroidin, hymenidin and their analogues were built in ChemBio3D Ultra 13.0. The geometries of the molecules were optimized using MMFF94⁶ force field and partial atomic charges. The energy was minimized until the gradient value was smaller than 0.001 kcal/(mol Å). The optimized structure was further refined with GAMESS interface in ChemBio3D Ultra 13.0 using semiempirical PM3 method, QA optimization algorithm and Gasteiger Hückel charges for all atoms for 100 steps.⁷ Molecular descriptors were calculated using Calculate Molecular Properties protocol as available in Accelrys Discovery Studio 3.0.⁸

Table S5. Percent of sub-G1 population of THP-1 cells after 24 h and 48 h treatment with DMSO (0.25%) as a negative control and compounds **24c**, **28c**, **29c**, and **34c** at 25 μ M.

	sub-G1 population [%] ^a			
	24 h	48 h		
control	2 ± 1	2 ± 1		
24c	45 ± 1	60 ± 1		
28c	36 ± 2	41 ± 2		
29c	26 ± 3	40 ± 1		
34c	18 ± 1	49 ± 3		
$^{(P)}$ A point of the mean + SD of three				

^{*a*}Results are the mean \pm SD of three independent experiments.

REFERENCES

1 N. Zidar, S. Montalvão, Ž. Hodnik, D. A. Nawrot, A. Žula, J. Ilaš, D. Kikelj, P. Tammela, L. Peterlin Mašič, *Mar. Drugs*, 2014, **12**, 940.

2 L. Saab, J. Peluso, C. D: Muller, G. Ubeaud-Sequier, Cytometry A, 2013, 83, 403.

3 H. Moreira-Tabaka, J. Peluso, J. L. Vonesch, D. Hentsch, P. Kessler, J. M. Reimund, S. Dumont, C. D. Muller, *PLoS One*, 2012, 7, e34184.

4 I. Vermes, C. Haanen, H. Steffens-Nakken, C. Reutelingsperger, J. Immunol. Methods, 1995, 184, 39.

5 C. Riccardi, I. Nicoletti, Nat. Protoc., 2006, 1, 1458.

6 T. A. Halgren, J. Comput. Chem., 1996, 17, 490.

7 GAMESS interface, ChemBio3D Ultra 13.0, ChemBioOffice Ultra 13.0, CambridgeSoft.

8 Accelrys Discovery Studio 3.0. Accelrys, Inc.