Tetrazole Regioisomers in the Development of Nitro Group-Containing Antitubercular Agents

Galina Karabanovich,^a Jaroslav Roh,^a* Ondřej Soukup,^b Ivona Pávková,^c Markéta Pasdiorová,^b Vojtěch Tambor,^b Jiřina Stolaříková,^d Marcela Vejsová,^a Kateřina Vávrová,^a Věra Klimešová,^a and Alexandr Hrabálek^a

^{*a*} Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 50005 Hradec Králové, Czech Republic, e-mail: jaroslav.roh@faf.cuni.cz

^b Biomedical Research Center, University Hospital Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic

^c Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Třebešská 1575, 50005 Hradec Králové, Czech Republic

^d Regional Institute of Public Health, Department of Bacteriology and Mycology, Partyzánské náměstí 7, 70200 Ostrava, Czech Republic

CONTENT

Table S1	2
Table S2	3
Experimental section	4
Chemistry	4
NOESY experiments	27
In vitro antimycobacterial assay	35
In vitro antibacterial and antifungal assays	36
In vitro cell proliferation/viability assessment	37
Ames Fluctuation test	38
References	40

Strains		Studie	d compo	ounds –	MIC (IC	² 95; μM)		
		18b	23b	36b	40b	40d	VAN	GEN
SA	24 h	>500	>500	>500	>500	>500	0.35	-
571	48 h	>500	>500	>500	>500	>500	-	-
MRSA	24 h	>500	>500	>500	>500	>500	0.35	-
WIK5/Y	48 h	>500	>500	>500	>500	>500	-	-
SE	24 h	>500	>500	>500	>500	>500	0.35	-
SE	48 h	>500	>500	>500	>500	>500	-	-
EE	24 h	>500	>500	>500	>500	>500	0.7	-
	48 h	>500	>500	>500	>500	>500	-	-
FC	24 h	>500	>500	>500	>500	>500	-	0.26
LC	48 h	>500	>500	>500	>500	>500	-	-
КР	24 h	>500	>500	>500	>500	>500	-	0.26
111	48 h	>500	>500	>500	>500	>500	-	-
KP-F	24 h	>500	>500	>500	>500	>500	-	0.26
	48 h	>500	>500	>500	>500	>500	-	-
РА	24 h	>500	>500	>500	>500	>500	-	1
PA	48 h	>500	>500	>500	>500	>500	-	-

<u>Table S1.</u> In vitro antibacterial activities of compounds 18b, 23b, 36b, 40b and 40d expressed as MIC (μ M).

SA - *Staphylococcus aureus* ATCC 6538; **MRSA** - methicillin resistant *Staphylococcus aureus* H 5996/08; **SE** - *Staphylococcus epidermidis* H 6966/08; **EF** - *Enterococcus faecalis* J 14365/08; **EC** - *Escherichia coli* ATCC 8739; **KP** - *Klebsiella pneumoniae* D 11750/08; **KP**-**E** - ESBL positive *Klebsiella pneumoniae* J 14368/08; **PA** - *Pseudomonas aeruginosa* ATCC 9027; **VAN** – Vancomycin; **GEN** – Gentamicin

Table S2.	In v	vitro	antifungal	activities	of	compounds	1 8b ,	23b,	36b ,	40b	and	40d	expresse
as MIC (µl	M).												

Strains		Studie	d compo	ounds - N	AIC* (IC	C ₈₀ /IC ₅₀ ;	μΜ)	
		18b	23b	36b	40b	40d	FLU	AMB
CA	24 h	>500	>500	>500	>500	>125	0.82	0.54
CIT	48 h	>500	>500	>500	>500	>125	-	-
СТ	24 h	>500	>500	>500	>500	>125	1.6	0.54
01	48 h	>500	>500	>500	>500	>125	-	-
СК	24 h	>500	>500	>500	>500	>125	105	1
en	48 h	>500	>500	>500	>500	>125	-	-
CG	24 h	>500	>500	>500	>500	>125	26	0.54
00	48 h	>500	>500	>500	>500	>125	-	-
ТА	24 h	>500	>500	>500	>500	>125	210	0.27
111	48 h	>500	>500	>500	>500	>125	-	-
AF	24 h	>500	>500	>500	>500	>125	>500	0.54
111	48 h	>500	>500	>500	>500	>125	-	-
AC	24 h	>500	>500	>500	>500	>125	>500	1
ne	48 h	>500	>500	>500	>500	>125	-	-
ТМ	72 h	>500	>500	>500	>500	>125	105	0.54
	120 h	>500	>500	>500	>500	>125	-	-

*IC50 for AF, AC, TM; IC80 for CA, CT, CK, CG, TA

CA - Candida albicans ATCC 44859; CT - Candida tropicalis 156; CK - Candida krusei E28; CG - Candida glabrata 20/I; TA - Trichosporon asahii 1188; AF - Aspergillus fumigatus 231; AC - Absidia corymbifera 272; TM - Trichophyton mentagrophytes 445; FLU – Fluconazole; AMB – Amphotericin B

Experimental section

Chemistry

The structures of the prepared compounds were identified using ¹H-NMR and ¹³C-NMR spectroscopy. The purity of all compounds reported was determined by elemental analysis or HPLC-HRMS. All chemicals were obtained from Sigma-Aldrich (Schnelldorf, Germany) and were used without further purification. TLC was performed on Merck aluminum plates with silica gel 60 F_{254} . Merck Kieselgel 60 (0.040-0.063 mm) was used for column chromatography. Melting points were recorded with a Büchi B-545 apparatus (BUCHI Labortechnik AG, Flawil, Switzerland) and are uncorrected. ¹H and ¹³C NMR spectra were recorded by Varian Mercury Vx BB 300 or VNMR S500 NMR spectrometers (Varian, Palo Alto, CA, USA). Chemical shifts were reported as δ values in parts per million (ppm) and were indirectly referenced to tetramethylsilane (TMS) via the solvent signal. The elemental analysis was carried out on an Automatic Microanalyser EA1110CE (Fisons Instruments S.p.A., Milano, Italy). HPLC-HRMS (ESI+) experiments were performed using the UltiMate3000 Rapid Separation Liquid Chromatography System with a Q-Exactive Plus Mass Spectrometer (Thermo Scientific, Bremen, Germany).

Although we did not observe any explosive or shock-sensitive properties of studied compounds, proper safety precautions should be applied while synthesizing and handling them!

Synthesis of alkyl selenocyanates (9-13):

A suspension of alkyl halide (10 mmol) and potassium selenocyanate (11 mmol) in 7 mL DMF or THF was stirred until completion under the conditions given below. The reaction mixture was then diluted with EtOAc (10 mL) and the organic layer was washed with 1%

aqueous NaOH (2 \times 10 mL) and H₂O (1 \times 10 mL). The organic solvent was dried over Na₂SO₄. If necessary, the crude product was purified by column chromatography (Mobile phase: Hexane/EtOAc).

Benzyl selenocyanate (9): Benzyl bromide was used as a substrate. The reaction mixture was stirred in THF at room temperature (rt) for 1 h. Yield: 84% as a malodorous white solid; mp 68-69 °C (lit.¹ mp 68-70 °C). ¹H NMR (300 MHz, acetone) δ 7.53 – 7.24 (m, 5H), 4.43 (s, 2H); ¹³C NMR (75 MHz, Acetone) δ 138.62, 129.80, 129.57, 128.91, 103.04, 33.04.

4-Nitrobenzyl selenocyanate (10):² 4-Nitrobenzyl chloride was used as a substrate. The reaction mixture was heated in DMF at 80 °C for 8 h. The product was purified by column chromatography (Mobile phase: Hexane/EtOAc, 4:1). Yield: 66% as a yellow solid; mp 121-122 °C (lit.³ mp 122 °C). ¹H NMR (300 MHz, acetone) δ 8.26 (d, *J* = 8.8 Hz, 2H), 7.73 (d, *J* = 8.8 Hz, 2H), 4.55 (s, 2H); ¹³C NMR (75 MHz, acetone) δ 148.48, 146.63, 131.02, 124.64, 102.75, 31.48.

2,4-Dinitrobenzyl selenocyanate (11): 2,4-Dinitrobenzyl chloride was used as a substrate. The reaction mixture was heated in THF at 60 °C for 10 h. Yield: 90% as a yellowish solid; mp 69-70 °C (lit.⁴ mp 70-72 °C) . ¹H NMR (500 MHz, CDCl₃) δ 9.06 (d, *J* = 2.4 Hz, 1H), 8.55 (dd, *J* = 8.5, 2.4 Hz, 1H), 7.76 (d, *J* = 8.5 Hz, 1H), 4.51 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 148.01, 146.60, 139.55, 133.32, 128.70, 121.70, 101.46, 29.29.

3,5-Dinitrobenzyl selenocyanate (12): 3,5-Dinitrobenzyl chloride was used as a substrate. The reaction mixture was heated in DMF at 80 °C for 5 h. The product was purified by column chromatography (Mobile phase: Hexane/EtOAc, 10:1). Yield: 82% as a yellow solid; mp 128-129 °C. ¹H NMR (300 MHz, acetone) δ 8.90 (t, *J* = 2.1 Hz, 1H), 8.77 (d, *J* = 2.1 Hz, 2H), 4.75 (s, 2H); ¹³C NMR (75 MHz, acetone) δ 149.54, 143.87, 130.02, 118.85, 102.67, 30.54. Anal. Calcd for C₈H₅N₃O₄Se: C, 33.58; H, 1.76; N, 14.64. Found: C, 33.62; H, 1.97; N, 14.55.

4-Methoxybenzyl selenocyanate (13): 4-Methoxybenzyl chloride was used as a substrate. The reaction mixture was stirred in THF at rt for 10 h. Yield: 97% as a brownish solid; mp 53-55 °C (lit.⁵ mp 54-55 °C). ¹H NMR (300 MHz, acetone) δ 7.37 (d, J = 8.8 Hz, 2H), 6.92 (d, J = 8.8 Hz, 2H), 4.41 (s, 2H), 3.79 (s, 3H); ¹³C NMR (75 MHz, acetone) δ 160.59, 131.14, 130.22, 114.96, 103.20, 55.55, 33.19.

Synthesis of 5-[3,5-(dinitrobenzyl)selanyl]-1*H*-tetrazole (14):

3,5-Dinitrobenzyl selenocyanate **12** (0.286 g, 1 mmol) was added to a suspension of sodium azide (0.065 g, 1 mmol) and triethylammonium chloride (0.138 g, 1 mmol) in toluene (7 mL). The reaction mixture was stirred at 50 °C for 10 h. The reaction mixture was cooled to rt and extracted with 1% aqueous NaOH (15 mL). The aqueous layer then was washed with EtOAc (2 × 15 mL) and carefully acidified by HCl to pH 5.5-6, and the product was filtered and washed with water. Rapid acidification of the aqueous phase or acidification to a lower pH led to precipitation of selenium. Yield: 46% as white solid. ¹H NMR (500 MHz, acetone) δ 8.80 – 8.77 (m, 3H), 4.85 (s, 2H); ¹³C NMR (126 MHz, acetone) δ 149.28, 144.96, 130.23, 118.14, 29.33. Anal. Calcd for C₈H₆N₆O₄Se: C, 29.19; H, 1.84; N, 25.53. Found: C, 29.55; H, 2.14; N, 25.49.

General procedure for the preparation of 1-alkyl-5-(alkylselanyl)-1*H*-tetrazoles (15-19) and 2-alkyl-5-(alkylselanyl)-2*H*-tetrazoles (20-24).

Alkyl selenocyanate 9, 10, 12 or 13 (1 mmol) was added to a suspension of sodium azide (1 mmol) and triethylammonium chloride (1 mmol) in toluene (7 mL). The reaction mixture was stirred at 80-90 °C for 2-6 h until completion, as determined by TLC. The reaction mixture was cooled to rt and extracted with 1% aqueous NaOH (15 mL). The aqueous layer then was

washed with EtOAc (2×15 mL). Alkyl halide (0.75 mmol) and TBAB (0.038 mmol) in CH₂Cl₂ (15 mL) were added to the aqueous phase. The reaction mixture was stirred at rt for 48 h. Subsequently, the organic layer was separated, washed with water (2×15 mL) and dried over Na₂SO₄. The solvent was evaporated under reduced pressure and the products, 1- and 2-isomers, were separated by silica gel column chromatography using the mobile phase hexane/EtOAc.

When 2,4-dinitrobenzyl selenocyanate **11** was used as a substrate, the reaction with sodium azide and triethylammonium chloride was stirred in THF at rt overnight and then THF was evaporated. Subsequently, the residue was dissolved in 1% aqueous NaOH (15 mL), and the procedure continued as described previously.

Dimethyl sulfate, benzyl bromide, 4-nitrobenzyl iodide, 3,5-dinitrobenzyl iodide and 2,4dinitrobenzyl iodide were used as alkylating agents.

1-Alkyl-5-(alkylselanyl)-1*H*-tetrazoles (15-19):

5-(*Benzylselanyl*)-1-(3,5-dinitrobenzyl)-1H-tetrazole (**15d**): Yield: 32% as a yellowish solid; mp 111-112 °C. ¹H NMR (500 MHz, acetone) δ 8.88 (t, *J* = 2.1 Hz, 1H), 8.54 (d, *J* = 2.1 Hz, 2H), 7.27 – 7.24 (m, 2H), 7.19 – 7.12 (m, 3H), 5.87 (s, 2H), 4.54 (s, 2H); ¹³C NMR (126 MHz, acetone) δ 149.54, 147.66, 139.12, 138.80, 129.59, 129.57, 129.32, 128.35, 119.57, 50.40, 33.39. Anal. Calcd for C₁₅H₁₂N₆O₄Se: C, 42.97; H, 2.88; N, 20.05. Found: C, 43.28; H, 2.92; N, 19.69.

5-(*Benzylselanyl*)-1-(2,4-*dinitrobenzyl*)-1*H*-*tetrazole* (**15***e*): Yield: 12% as a beige solid; mp 78-82 °C. ¹H NMR (500 MHz, acetone) δ 8.91 (d, *J* = 2.4 Hz, 1H), 8.44 (dd, *J* = 8.6, 2.4 Hz, 1H), 7.34 – 7.32 (m, 2H), 7.30 – 7.23 (m, 3H), 7.11 (d, *J* = 8.6 Hz, 1H), 6.03 (s, 2H), 4.58 (s, 2H); ¹³C NMR (126 MHz, acetone) δ 148.77, 148.75, 148.32, 138.87, 136.61, 132.10, 129.77, 129.48, 129.02, 128.49, 121.50, 48.98, 33.34. HRMS (ESI+) m/z calcd for C₁₅H₁₃N₆O₄Se⁺: 421.01580 (100.0%), 419.01659 (47.9%), 417.01849 (18.9%), 423.01598 (17.6%); found 421.0141 (100%), 419.0155 (50%), 417.0173 (19%), 423.0139 (18%).

5-[(4-Nitrobenzyl)selanyl]-1-(4-nitrobenzyl)-1H-tetrazole (**16c**): Yield: 16% as a yellowish solid; mp 132-133 °C (with decomposition). ¹H NMR (300 MHz, acetone) δ 8.18 (d, *J* = 8.8 Hz, 2H), 8.09 (d, *J* = 8.8 Hz, 2H), 7.61 (d, *J* = 8.8 Hz, 2H), 7.46 (d, *J* = 8.8 Hz, 2H), 5.74 (s, 2H), 4.68 (s, 2H); ¹³C NMR (75 MHz, acetone) δ 148.84, 148.06, 147.30, 147.16, 142.02, 130.96, 129.91, 124.70, 124.34, 51.12, 31.69. Anal. Calcd for C₁₅H₁₂N₆O₄Se: C, 42.97; H, 2.88; N, 20.05. Found: C, 42.68; H, 3.05; N, 19.73.

1-(3,5-Dinitrobenzyl)-5-[(4-nitrobenzyl)selanyl]-1H-tetrazole (**16d**): Yield: 30% as a light beige solid; mp 135-136 °C (with decomposition). ¹H NMR (500 MHz, acetone) δ 8.87 (t, *J* = 2.1 Hz, 1H), 8.56 (d, *J* = 2.1 Hz, 2H), 8.06 (d, *J* = 8.7 Hz, 2H), 7.59 (d, *J* = 8.7 Hz, 2H), 5.94 (s, 2H), 4.69 (s, 2H); ¹³C NMR (126 MHz, acetone) δ 149.53, 148.00, 147.46, 147.19, 139.06, 130.88, 129.62, 124.31, 119.53, 50.47, 31.85. Anal. Calcd for C₁₅H₁₁N₇O₆Se: C, 38.81; H, 2.39; N, 21.12. Found: C, 38.84; H, 2.94; N, 20.59.

1-(2,4-Dinitrobenzyl)-5-[(4-nitrobenzyl)selanyl]-1H-tetrazole (**16e**): Yield: 20% as an amorphous yellow solid. ¹H NMR (500 MHz, acetone) δ 8.91 (d, *J* = 2.4 Hz, 1H), 8.47 (dd, *J* = 8.6, 2.4 Hz, 1H), 8.13 (d, *J* = 8.7 Hz, 2H), 7.65 (d, *J* = 8.7 Hz, 2H), 7.25 (d, *J* = 8.6 Hz, 1H), 6.09 (s, 2H), 4.71 (s, 2H); ¹³C NMR (126 MHz, acetone) δ 148.83, 148.10, 148.05, 147.18, 136.42, 132.44, 131.02, 128.98, 124.41, 121.52, 49.13, 31.79. Anal. Calcd for C₁₅H₁₁N₇O₆Se: C, 38.81; H, 2.39; N, 21.12. Found: C, 38.87; H, 2.54; N, 21.43. HRMS (ESI+) m/z calcd for C₁₅H₁₂N₇O₆Se⁺: 466.00088 (100.0%), 464.00167 (47.9%), 462.00357 (18.9%), 468.00106 (17.6%); found: 466.0009 (100%), 464.0021 (49%), 462.0037 (19%), 468.0010 (18%).

5-[(2,4-Dinitrobenzyl)selanyl]-1-methyl-1H-tetrazole (17a): Yield: 16% as a yellow solid; mp 88-89 °C. ¹H NMR (500 MHz, acetone) δ 8.87 (d, J = 2.4 Hz, 1H), 8.53 (dd, J = 8.6, 2.4 Hz, 1H), 8.03 (d, J = 8.6 Hz, 1H), 4.91 (s, 2H), 3.98 (s, 3H); ¹³C NMR (126 MHz, acetone) δ 148.37, 148.28, 147.14, 142.27, 134.82, 128.86, 121.57, 34.67, 28.89. Anal. Calcd for C₉H₈N₆O₄Se: C, 31.50; H, 2.35; N, 24.49. Found: C, 31.63; H, 2.69; N, 24.78.

1-Benzyl-5-[(2,4-dinitrobenzyl)selanyl]-1H-tetrazole (17b): Yield: 13% as a light beige solid; mp 159-160 °C. ¹H NMR (500 MHz, acetone) δ 8.82 (d, *J* = 2.4 Hz, 1H), 8.46 (dd, *J* = 8.5, 2.4 Hz, 1H), 7.94 (d, *J* = 8.5 Hz, 1H), 7.35 – 7.30 (m, 3H), 7.25 – 7.23 (m, 2H), 5.57 (s, 2H), 4.89 (s, 2H); ¹³C NMR (126 MHz, acetone) δ 148.23, 147.14, 142.15, 134.84, 134.69, 129.77, 129.46, 128.89, 128.83, 121.61, 52.13, 29.26. Anal. Calcd for C₁₅H₁₂N₆O₄Se: C, 42.97; H, 2.88; N, 20.05. Found: C, 43.28; H, 3.18; N, 19.81.

1-[(2,4-Dinitrobenzyl)selanyl]-1-(4-nitrobenzyl)-1H-tetrazole (17c): Yield: 7% as an oil. ¹H NMR (300 MHz, acetone) δ 8.81 (d, J = 2.4 Hz, 1H), 8.48 (dd, J = 8.5, 2.4 Hz, 1H), 8.20 (d, J = 8.7 Hz, 2H), 7.96 (d, J = 8.5 Hz, 1H), 7.51 (d, J = 8.7 Hz, 2H), 5.79 (s, 2H), 4.91 (s, 2H); ¹³C NMR (75 MHz, acetone) δ 148.87, 148.23 (2C), 147.54, 142.01, 141.90, 134.76, 130.02, 128.85, 124.75, 121.55, 51.21, 29.44. HRMS (ESI+) m/z calcd for C₁₅H₁₂N₇O₆Se⁺: 466.00088 (100.0%), 464.00167 (47.9%), 462.00357 (18.9%), 468.00106 (17.6%); found 466.0011 (100%), 464.0018 (47%), 462.0038 (19%), 468.0013 (18%).

5-[(2,4-Dinitrobenzyl)selanyl]-1-(3,5-dinitrobenzyl)-1H-tetrazole (17d): Yield: 10% as an amorphous yellow solid. ¹H NMR (300 MHz, acetone) δ 8.89 (t, J = 2.1 Hz, 1H), 8.82 (d, J = 2.4 Hz, 1H), 8.60 (d, J = 2.1 Hz, 2H), 8.48 (dd, J = 8.5, 2.4 Hz, 1H), 7.98 (d, J = 8.5 Hz, 1H), 6.00 (s, 2H), 4.92 (s, 2H); ¹³C NMR (75 MHz, acetone) δ 149.63, 148.30 (2C), 147.79, 142.05, 139.03, 134.82, 129.69, 128.91, 121.55, 119.63, 50.59, 29.58. Anal. Calcd for C₁₅H₁₀N₈O₈Se: C, 35.38; H, 1.98; N; 22.0. Found: C, 35.66; H, 1.87; N, 22.04. HRMS (ESI+) m/z calcd for C₁₅H₁₁N₈O₈Se⁺: 510.98596 (100.0%), 508.98674 (47.9%), 506.98865 (18.9%), 512.98613 (17.6%); found 510.9857 (100%), 508.9868 (49%), 506.9886 (19%), 512.9860 (19%).

1-(2,4-Dinitrobenzyl)-5-[(2,4-dinitrobenyl)selanyl]-1H-tetrazole (*17e*): Yield: 6% as an amorphous yellow solid. ¹H NMR (500 MHz, acetone) δ 8.92 (d, *J* = 2.4 Hz, 1H), 8.85 (d, *J* = 2.5 Hz, 1H), 8.55 – 8.51 (m, 2H), 8.04 (d, *J* = 8.4 Hz, 1H), 7.35 (d, *J* = 8.6 Hz, 1H), 6.14 (s, 2H), 4.95 (s, 2H); ¹³C NMR (126 MHz, acetone) δ 148.92, 148.84, 148.36, 148.31, 142.03, 136.37, 134.88, 132.60, 129.07, 128.94, 121.60 (2c), 49.39, 29.54. Anal. Calcd for C₁₅H₁₀N₈O₈Se: C, 35.38; H, 1.98; N; 22.0. Found: C, 35.55; H, 1.98; N, 21.72. HRMS (ESI+) m/z calcd for C₁₅H₁₁N₈O₈Se⁺: 510.98596 (100.0%), 508.98674 (47.9%), 506.98865 (18.9%), 512.98613 (17.6%); found 510.9854 (100%), 508.9867 (48%), 506.9883 (18%), 512.9857 (18%).

5-*[*(*3*,5-*Dinitrobenzyl*)*selanyl*]-1-*methyl*-1*H*-*tetrazole* (**18***a*): Yield: 15% as a light grey solid; mp 118-119 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.93 (t, *J* = 2.1 Hz, 1H), 8.70 (d, *J* = 2.1 Hz, 2H), 4.76 (s, 2H), 3.94 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 148.54, 145.62, 141.90, 129.39, 118.19, 34.12, 29.67. Anal. Calcd for C₉H₈N₆O₄Se: C, 31.50; H, 2.35; N, 24.49. Found: C, 31.42; H, 2.54; N, 24.74.

1-Benzyl-5-[(3,5-dinitrobenzyl)selanyl]-1H-tetrazole (**18b**):¹⁷ Yield: 12% as a light beige solid; mp 154-156 °C (with decomposition). ¹H NMR (500 MHz, acetone) δ 8.75 (t, *J* = 2.1 Hz, 1H), 8.68 (d, *J* = 2.1 Hz, 2H), 7.35 – 7.29 (m, 3H), 7.22 – 7.19 (m, 2H), 5.57 (s, 2H), 4.81 (s, 2H); ¹³C NMR (126 MHz, acetone) δ 149.21, 146.86, 144.55, 134.90, 130.16, 129.72, 129.45, 128.81, 118.26, 52.09, 30.51. Anal. Calcd for C₁₅H₁₂N₆O₄Se: C, 42.97; H, 2.88; N, 20.05. Found: C, 43.05; H, 2.80; N, 20.15.

5-[(3,5-Dinitrobenzyl)selanyl]-1-(4-nitrobenzyl)-1H-tetrazole (18c): Yield: 15% as a beige solid; mp 156-158 °C. ¹H NMR (500 MHz, acetone) δ 8.75 (t, J = 2.1 Hz, 1H), 8.69 (d, J = 2.1 Hz, 2H), 8.19 (d, J = 8.7 Hz, 2H), 7.49 (d, J = 8.7 Hz, 2H), 5.79 (s, 2H), 4.85 (s, 2H); ¹³C NMR (126 MHz, acetone) δ 148.34, 148.01, 146.45, 143.66, 141.13, 129.34, 129.10, 123.87, 117.39, 50.34, 29.86. Anal. Calcd for C₁₅H₁₁N₇O₆Se: C, 38.81; H, 2.39; N, 21.12. Found: C,

39.1; H, 2.71; N, 20.8. HRMS (ESI+) m/z calcd for C₁₅H₁₂N₇O₆Se⁺: 466.00088 (100.0%), 464.00167 (47.9%), 462.00357 (18.9%), 468.00106 (17.6%); found 466.0011 (100%), 464.0019 (46%), 462.0036 (18%), 468.0012 (18%).

1-(3,5-Dinitrobenzyl)-5-[(3,5-dinitrobenzyl)selanyl]-1H-tetrazole (**18***d*): Yield: 12% as a beige solid; mp 140-143 °C. ¹H NMR (300 MHz, acetone) δ 8.89 (t, J = 2.1 Hz, 1H), 8.77 – 8.72 (m, 4H), 8.59 (d, J = 2.1 Hz, 1H), 5.99 (s, 2H), 4.88 (s, 2H); ¹³C NMR (75 MHz, acetone) δ 149.59, 149.24, 147.54, 144.53, 139.00, 130.25, 129.64, 119.59, 118.26, 50.52, 30.77. Anal. Calcd for C₁₅H₁₀N₈O₈Se: C, 35.38; H, 1.98; N; 22.0. Found: C, 35.74; H, 2.66; N, 21.51.

1-(2,4-Dinitrobenzyl)-5-[(3,5-Dinitrobenzyl)selanyl]-1H-tetrazole (18e): Yield: 12% as a beige solid; mp 137-138 °C (with decomposition). ¹H NMR (500 MHz, acetone) δ 8.91 (d, *J* = 2.4 Hz, 1H), 8.80 (t, *J* = 2.1 Hz, 1H), 8.75 (d, *J* = 2.1 Hz, 2H), 8.51 (dd, *J* = 8.6, 2.4 Hz, 1H), 7.36 (d, *J* = 8.6 Hz, 1H), 6.12 (s, 2H), 4.89 (s, 2H); ¹³C NMR (126 MHz, acetone) δ 149.27, 148.93, 148.87, 148.00, 144.51, 136.30, 132.77, 130.31, 129.02, 121.55, 118.31, 49.29, 30.81. Anal. Calcd for C₁₅H₁₀N₈O₈Se: C, 35.38; H, 1.98; N; 22.0. Found: C, 35.67; H, 2.26; N, 21.63.

1-(3,5-dinitrobenzyl)-5-[(4-methoxybenzyl)selanyl]-1H-tetrazole (19d): Yield: 12% yield as a yellowish solid; mp 121-123 °C. ¹H NMR (500 MHz, acetone) δ 8.88 (t, J = 2.1 Hz, 1H), 8.54 (d, J = 2.1 Hz, 2H), 7.14 (d, J = 8.7 Hz, 2H), 6.69 (d, J = 8.7 Hz, 2H), 5.87 (s, 2H), 4.50 (s, 2H), 3.71 (s, 3H); ¹³C NMR (126 MHz, acetone) δ 160.04, 149.49, 147.74, 139.13, 130.79, 130.45, 129.57, 119.46, 114.60, 55.43, 50.38, 33.36. Anal. Calcd for C₁₆H₁₄N₆O₅Se: C, 42.77; H, 3.14; N, 18.71. Found: C, 42.72; H, 3.34; N, 18.48.

1-(2,4-dinitrobenzyl)-5-[(4-methoxybenzyl)selanyl]-1H-tetrazole (**19e**): Yield: 11% as a yellow solid; 122-124 °C (with decomposition). ¹H NMR (500 MHz, acetone) δ 8.91 (d, J = 2.4 Hz, 1H), 8.42 (dd, J = 8.5, 2.4 Hz, 1H), 7.22 (d, J = 8.6 Hz, 2H), 7.03 (d, J = 8.5 Hz, 1H),

6.79 (d, J = 8.6 Hz, 2H), 6.02 (s, 2H), 4.53 (s, 2H), 3.77 (s, 3H); ¹³C NMR (126 MHz, acetone) δ 160.22, 148.67, 148.38, 136.64, 131.97, 130.97, 130.53, 128.92, 121.46, 114.80, 55.51, 48.90, 33.32. Anal. Calcd for C₁₆H₁₄N₆O₅Se: C, 42.77; H, 3.14; N, 18.71. Found: C, 42.72; H, 3.43; N, 18.57.

2-Alkyl-5-(alkylselanyl)-2H-tetrazoles (20-24):

5-(*Benzylselanyl*)-2-(3,5-*dinitrobenzyl*)-2*H*-*tetrazole* (**20***d*): Yield: 34% as a yellow solid; mp 102-103 °C. ¹H NMR (500 MHz, acetone) δ 8.97 (t, J = 2.1 Hz, 1H), 8.78 (d, J = 2.1 Hz, 2H), 7.44 – 7.31 (m, 2H), 7.27 – 7.06 (m, 3H), 6.31 (s, 2H), 4.47 (s, 2H); ¹³C NMR (126 MHz, acetone) δ 157.68, 149.68, 139.27, 138.74, 130.17, 129.76, 129.23, 128.04, 119.80, 55.55, 30.53. Anal. Calcd for C₁₅H₁₂N₆O₄Se: C, 42.97; H, 2.88; N, 20.05. Found: C, 42.92; H, 3.17; N, 19.79.

5-(*Benzylselanyl*)-2-(2,4-*dinitrobenzyl*)-2*H*-*tetrazole* (**20e**): Yield: 15% as a beige solid; mp 75-77 °C. ¹H NMR (500 MHz, acetone) δ 8.97 (d, J = 2.4 Hz, 1H), 8.60 (dd, J = 8.6, 2.4 Hz, 1H), 7.55 (d, J = 8.6 Hz, 1H), 7.39 – 7.32 (m, 2H), 7.28 – 7.19 (m, 3H), 6.48 (s, 2H), 4.48 (s, 2H); ¹³C NMR (126 MHz, acetone) δ 157.60, 149.11, 149.03, 139.26, 136.04, 133.59, 129.79, 129.29, 129.07, 128.08, 121.50, 54.19, 30.58. Anal. Calcd for C₁₅H₁₂N₆O₄Se: C, 42.97; H, 2.88; N, 20.05. Found: C, 43.17; H, 3.39; N, 19.74.

2-(4-Nitrobenzyl)-5-[(4-nitrobenzyl)selanyl]-2H-tetrazole (**21c**): Yield: 28% as a white solid; 132-133 °C. ¹H NMR (500 MHz, acetone) δ 8.28 (d, J = 8.7 Hz, 2H), 8.06 (d, J = 8.7 Hz, 2H), 7.68 (d, J = 8.7 Hz, 2H), 7.62 (d, J = 8.7 Hz, 2H), 6.10 (s, 2H), 4.58 (s, 2H). ¹³C NMR (126 MHz, acetone) δ 156.75, 149.11, 147.85, 141.79, 130.98, 130.56, 124.77, 124.20, 56.41, 29.33. Anal. Calcd for C₁₅H₁₂N₆O₄Se: C, 42.97; H, 2.88; N, 20.05. Found: C, 42.96; H, 3.07; N, 19.99. HRMS (ESI+) m/z calcd for C₁₅H₁₃N₆O₄Se⁺: 421.01580 (100.0%), 419.01659 (47.9%), 417.01849 (18.9%), 423.01598 (17.6%); found 421.0156 (100%), 419.0164 (48%), 417.0184 (19%), 423.0155 (18%). 2-(3,5-Dinitrobenzyl)-5-[(4-nitrobenzyl)selanyl]-2H-tetrazole (**21d**): Yield: 31% as a beige solid; mp 110-112 °C. ¹H NMR (500 MHz, acetone) δ 8.96 (t, *J* = 2.1 Hz, 1H), 8.77 (d, *J* = 2.1 Hz, 2H), 8.07 (d, *J* = 8.8 Hz, 2H), 7.65 (d, *J* = 8.8 Hz, 2H), 6.32 (s, 2H), 4.59 (s, 2H); ¹³C NMR (126 MHz, acetone) δ 157.08, 149.66, 147.85, 138.64, 130.98, 130.16, 124.20, 119.81, 55.62, 29.30. Anal. Calcd for C₁₅H₁₁N₇O₆Se: C, 38.81; H, 2.39; N, 21.12. Found: C, 38.81; H, 2.61; N, 21.25.

2-(2,4-Dinitrobenzyl)-5-[(4-nitrobenzyl)selanyl]-2H-tetrazole (**21e**): Yield: 37% as an oil. ¹H NMR (500 MHz, acetone) δ 8.96 (d, J = 2.4 Hz, 1H), 8.61 (dd, J = 8.6, 2.4 Hz, 1H), 8.09 (d, J = 8.8 Hz, 2H), 7.64 – 7.61 (m, 3H), 6.47 (s, 2H), 4.58 (s, 2H); ¹³C NMR (126 MHz, acetone) δ 156.91, 149.17, 149.13, 147.87, 147.83, 135.76, 133.86, 130.98, 129.07, 124.24, 121.51, 54.26, 29.37. HRMS (ESI+) m/z calcd for C₁₅H₁₂N₇O₆Se⁺: 466.00088 (100.0%), 464.00167 (47.9%), 462.00357 (18.9%), 468.00106 (17.6%); found 466.0004 (100%), 464.0015 (50%), 462.0032 (19%), 468.0005 (18%).

5-[(2,4-Dinitrobenzyl)selanyl]-2-methyl-2H-tetrazole (**22a**): Yield: 30% as a yellow solid; mp 91-93 °C. ¹H NMR (500 MHz, acetone) δ 8.84 (d, J = 2.5 Hz, 1H), 8.47 (dd, J = 8.5, 2.5 Hz, 1H), 8.00 (d, J = 8.5 Hz, 1H), 4.83 (s, 2H), 4.39 (s, 3H); ¹³C NMR (126 MHz, acetone) δ 155.86, 148.58, 148.02, 142.97, 134.79, 128.55, 121.48, 40.09, 26.66. Anal. Calcd for C₉H₈N₆O₄Se: C, 31.50; H, 2.35; N, 24.49. Found: C, 31.58; H, 2.57; N, 24.3.

2-Benzyl-5-[(2,4-dinitrobenzyl)selanyl]-2H-tetrazole (**22b**): Yield: 24% as an oil. ¹H NMR (500 MHz, acetone) δ 8.81 (d, J = 2.4 Hz, 1H), 8.33 (dd, J = 8.5, 2.4 Hz, 1H), 7.86 (d, J = 8.5 Hz, 1H), 7.44 – 7.39 (m, 5H), 5.90 (s, 2H), 4.80 (s, 2H); ¹³C NMR (126 MHz, acetone) δ 156.24, 148.50, 147.95, 142.80, 134.78, 134.68, 129.74, 129.66, 129.45, 128.38, 121.51, 57.52, 26.81. HRMS (ESI+) m/z calcd for C₁₅H₁₃N₆O₄Se⁺: 421.01580 (100.0%), 419.01659 (47.9%), 417.01849 (18.9%), 423.01598 (17.6%); found 421.0149 (100%), 419.0162 (49%), 417.0181 (19%), 423.0147 (18%).

5-[(2,4-Dinitrobenzyl)selanyl]-2-(4-nitrobenzyl)-2H-tetrazole (**22c**): Yield: 11% as an oil. ¹H NMR (300 MHz, acetone) δ 8.81 (d, J = 2.4 Hz, 1H), 8.39 (dd, J = 8.5, 2.4 Hz, 1H), 8.28 (d, J = 8.7 Hz, 2H), 7.94 (d, J = 8.5 Hz, 1H), 7.70 (d, J = 8.7 Hz, 2H), 6.12 (s, 2H), 4.83 (s, 2H); ¹³C NMR (75 MHz, acetone) δ 156.73, 149.09, 148.58, 148.00, 142.76, 141.70, 134.77, 130.59, 128.45, 124.78, 121.50, 56.47, 26.84. HRMS (ESI+) m/z calcd for C₁₅H₁₂N₇O₆Se⁺: 466.00088 (100.0%), 464.00167 (47.9%), 462.00357 (18.9%), 468.00106 (17.6%); found 466.0006 (100%), 464.0019 (52%), 462.0035 (19%), 468.0007 (19%).

5-[(2,4-Dinitrobenzyl)selanyl]-2-(3,5-dinitrobenzyl)-2H-tetrazole (**22d**): Yield: 22% as a yellow solid; mp 142-144 °C. ¹H NMR (300 MHz, acetone) δ 8.97 (t, *J* = 2.1 Hz, 1H), 8.81 (d, *J* = 2.4 Hz, 1H), 8.79 (d, *J* = 2.1 Hz, 2H), 8.42 (dd, *J* = 8.6, 2.4 Hz, 1H), 7.99 (d, *J* = 8.6 Hz, 1H), 6.33 (s, 2H), 4.84 (s, 2H); ¹³C NMR (75 MHz, acetone) δ 157.07, 149.69, 148.61, 148.00, 142.78, 138.56, 134.81, 130.21, 128.49, 121.47, 119.84, 55.70, 26.83. Anal. Calcd for C₁₅H₁₀N₈O₈Se: C, 35.38; H, 1.98; N; 22.0. Found: C, 35.49; H, 2.14; N, 21.81.

2-(2,4-Dinitrobenzyl)-5-[(2,4-dinitrobenyl)selanyl]-2H-tetrazole (22e): Yield: 23% as a yellow solid; mp 94-97 °C. ¹H NMR (500 MHz, acetone) δ 8.97 (d, J = 2.4 Hz, 1H), 8.81 (d, J = 2.4 Hz, 1H), 8.62 (dd, J = 8.5, 2.4 Hz, 1H), 8.42 (dd, J = 8.5, 2.4 Hz, 1H), 7.95 (d, J = 8.5 Hz, 1H), 7.64 (d, J = 8.5 Hz, 1H), 6.49 (s, 2H), 4.83 (s, 2H); ¹³C NMR (126 MHz, acetone) δ 156.92, 149.19, 149.11, 148.55, 148.03, 142.70, 135.74, 134.77, 133.85, 129.11, 128.52, 121.53, 121.52, 54.36, 26.96. Anal. Calcd for C₁₅H₁₀N₈O₈Se: C, 35.38; H, 1.98; N; 22.0. Found: C, 35.56; H, 2.16; N, 21.65.

5-[(3,5-Dinitrobenzyl)selanyl]-2-methyl-2H-tetrazole (**23a**): Yield: 23% as a beige solid; mp 102-103 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.89 (t, *J* = 2.1 Hz, 1H), 8.60 (d, *J* = 2.1 Hz, 2H), 4.54 (s, 2H), 4.35 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 154.74, 148.40, 143.24, 129.21, 117.67, 39.78, 27.70. Anal. Calcd for C₉H₈N₆O₄Se: C, 31.50; H, 2.35; N, 24.49. Found: C, 31.61; H, 2.51; N, 24.74. 2-*Benzyl-5-[(3,5-dinitrobenzyl)selanyl]-2H-tetrazole (23b)*: Yield: 20% as a beige solid; mp 96-97 °C. ¹H NMR (300 MHz, acetone) δ 8.77 – 8.69 (m, 3H), 7.36 (s, 5H), 5.87 (s, 2H), 4.74 (s, 2H); ¹³C NMR (75 MHz, acetone) δ 156.18, 149.19, 145.24, 134.74, 130.19, 129.70, 129.28, 128.92, 117.96, 57.50, 28.39. Anal. Calcd for C₁₅H₁₂N₆O₄Se: C, 42.97; H, 2.88; N, 20.05. Found: C, 43.2; H, 3.0; N, 19.82.

5-[(3,5-Dinitrobenzyl)selanyl]-2-(4-nitrobenzyl)-2H-tetrazole (**23c**): Yield: 44% as a light grey solid; mp 101-103 °C. ¹H NMR (300 MHz, acetone) δ 8.74 (t, *J* = 2.1 Hz, 1H), 8.70 (d, *J* = 2.1 Hz, 2H), 8.24 (d, *J* = 8.6 Hz, 2H), 7.64 (d, *J* = 8.6 Hz, 2H), 6.10 (s, 2H), 4.75 (s, 2H); ¹³C NMR (75 MHz, acetone) δ 156.72, 149.22, 149.09, 145.24, 141.72, 130.46, 130.22, 124.79, 118.01, 56.50, 28.52. Anal. Calcd for C₁₅H₁₁N₇O₆Se: C, 38.81; H, 2.39; N, 21.12. Found: C, 39.16; H, 2.35; N, 21.25.

2-(3,5-Dinitrobenzyl)-5-[(3,5-dinitrobenzyl)selanyl]-2H-tetrazole (**23d**): Yield: 31% as a beige solid; mp 162-164 °C. ¹H NMR (300 MHz, acetone) δ 8.96 (t, J = 2.1 Hz, 1H), 8.77 – 8.69 (m, 5H), 6.32 (s, 2H), 4.76 (s, 2H); ¹³C NMR (75 MHz, acetone) δ 155.68, 149.69, 149.21, 145.22, 138.55, 130.17, 130.10, 119.82, 117.96, 55.71, 28.48. Anal. Calcd for C₁₅H₁₀N₈O₈Se: C, 35.38; H, 1.98; N; 22.0. Found: C, 35.68; H, 2.34; N, 22.18.

2-(2,4-Dinitrobenzyl)-5-[(3,5-dinitrobenzyl)selanyl]-2H-tetrazole (**23e**): Yield: 35% as a white solid; mp 124-125 °C. ¹H NMR (500 MHz, acetone) δ 8.95 (d, J = 2.4 Hz, 1H), 8.75 (t, J = 2.1 Hz, 1H), 8.70 (d, J = 2.1 Hz, 2H), 8.57 (dd, J = 8.6, 2.4 Hz, 1H), 7.58 (d, J = 8.6 Hz, 1H), 6.47 (s, 2H), 4.75 (s, 2H); ¹³C NMR (126 MHz, acetone) δ 156.82, 149.19, 149.16, 145.14, 135.69, 133.73, 130.19, 129.5, 121.5, 117.99, 54.34, 28.52. Anal. Calcd for C₁₅H₁₀N₈O₈Se: C, 35.38; H, 1.98; N; 22.0. Found: C, 35.53; H, 2.25; N, 21.84.

2-(3,5-Dinitrobenzyl)-5-[(4-methoxybenzyl)selanyl]-2H-tetrazole (24d): Yield: 18% as a yellow solid; mp 93-97 °C. ¹H NMR (300 MHz, acetone) δ 8.97 (t, J = 2.1 Hz, 1H), 8.78 (d, J = 2.1 Hz, 2H), 7.27 (d, J = 8.7 Hz, 2H), 6.75 (d, J = 8.7 Hz, 2H), 6.31 (s, 2H), 4.43 (s, 2H),

3.72 (s, 3H); ¹³C NMR (75 MHz, acetone) δ 159.88, 157.84, 149.67, 138.77, 130.96, 130.86, 130.16, 119.79, 114.58, 55.52, 55.42, 30.28. Anal. Calcd for C₁₆H₁₄N₆O₅Se: C, 42.77; H, 3.14; N, 18.71. Found: C, 43.1; H, 3.46; N, 18.78.

2-(2,4-dinitrobenzyl)-5-[(4-methoxybenzyl)selanyl]-2H-tetrazole (**24e**): Yield: 5% as an oil. ¹H NMR (500 MHz, acetone) δ 8.97 (d, J = 2.4 Hz, 1H), 8.60 (dd, J = 8.6, 2.4 Hz, 1H), 7.50 (d, J = 8.6 Hz, 1H), 7.28 (d, J = 8.7 Hz, 2H), 6.79 (d, J = 8.7 Hz, 2H), 6.47 (s, 2H), 4.44 (s, 2H), 3.75 (s, 3H); ¹³C NMR (126 MHz, acetone) 159.90, 157.70, 149.09, 149.05, 136.11, 133.49, 131.01, 130.87, 129.06, 121.49, 114.64, 55.46, 54.15, 30.36. HRMS (ESI+) m/z calcd for C₁₆H₁₅N₆O₅Se⁺: 451.02636 (100.0%), 449.02715 (47.9%), 447.02906 (18.9%), 453.02654 (17.6%); found 451.0265 (100%), 449.0273 (48%), 447.0293 (19%), 453.0266 (18%).

Synthesis of alkyl thiocyanates (25-28):

A suspension of alkyl halide (10 mmol) and potassium thiocyanate (11 mmol) in 7 mL DMF or THF was stirred until completion, as determined by TLC, under the conditions given below. The reaction mixture was then diluted with EtOAc (10 mL) and the organic layer was washed with 1% aqueous NaOH (2×10 mL) and H₂O (1×10 mL). The organic solvent was dried over Na₂SO₄. If necessary, the crude product was purified by column chromatography (Mobile phase: Hexane/EtOAc).

Benzyl thiocyanate (25):⁶ Benzyl bromide was used as the starting material. The reaction mixture was stirred in DMF at 100 °C for 1 h. Yield: 95% as a white solid; mp 40-41 °C (lit.⁷ mp 39-40 °C). ¹H NMR (300 MHz, DMSO) δ 7.48 – 7.28 (m, 5H), 4.35 (s, 2H); ¹³C NMR (75 MHz, DMSO) δ 136.33, 129.21, 128.93, 128.46, 113.15, 37.18.

4-Nitrobenzyl thiocyanate (26):⁸ 4-Nitrobenzyl chloride was used as a substrate. The reaction mixture was heated in DMF at 100 °C for 6 h. Yield: 96% as a yellowish solid; mp 79-81 °C (lit.⁹ mp 85-86 °C). ¹H NMR (300 MHz, DMSO) δ 8.26 (d, *J* = 8.7 Hz, 2H), 7.69 (d, *J* = 8.7

Hz, 2H), 4.48 (s, 2H); ¹³C NMR (75 MHz, DMSO) δ 147.44, 144.24, 130.56, 124.11, 112.82, 35.94.

3,5-Dinitrobenzyl thiocyanate (27): 3,5-Dinitrobenzyl chloride was used as a substrate. The reaction mixture was heated in DMF at 100 °C for 3 h. The product was purified by column chromatography (Mobile phase: Hexane/EtOAc, 7:1). Yield: 82% as a white solid; mp 120-122 °C (lit.¹⁰ mp 120-121 °C). ¹H NMR (500 MHz, acetone) δ 8.95 (t, *J* = 2.1 Hz, 1H), 8.82 (d, *J* = 2.1 Hz, 2H), 4.74 (s, 2H); ¹³C NMR (126 MHz, acetone) δ 149.66, 141.82, 130.29, 119.37, 111.87, 36.31. Anal. Calcd for C₈H₅N₃O₄S: C, 40.17; H, 2.11; N, 17.57; S, 13.40. Found: C, 40.15; H, 2.06; N, 17.42; S, 13.53.

2,4-Dinitrobenzyl thiocyanate (28): 2,4-Dinitrobenzyl chloride was used as the starting material. The reaction mixture was refluxed in THF for 10 h. Yield: 75% as a yellowish solid; mp 84-86 °C (lit.⁸ mp 86-87 °C). ¹H NMR (300 MHz, DMSO) δ 8.82 (d, *J* = 2.4 Hz, 1H), 8.66 (dd, *J* = 8.5, 2.4 Hz, 1H), 7.99 (d, *J* = 8.5 Hz, 1H), 4.74 (s, 2H); ¹³C NMR (75 MHz, DMSO) δ 147.71, 147.62, 137.98, 134.32, 128.64, 121.11, 112.39, 33.83.

General procedure for the synthesis of 5-(alkylsulfanyl)-1*H*-tetrazoles (29-31):

Acetic acid (0.39 g, 6.5 mmol) was added to a suspension of alkyl thiocyanate **25-27** (5 mmol) and sodium azide (0.42 g, 6.5 mmol) in *n*-butanol (15 mL). The reaction mixture was heated at 100 °C for 4-8 h. Subsequently, the solvent was evaporated under reduced pressure. The obtained solid was dissolved in 3% NaOH (10 mL) and washed with EtOAc (2×15 mL). The aqueous layer was acidified to pH 2-3, and the product was filtered and washed with water.

5-(*Benzylsulfanyl*)-*1H-tetrazole* (**29**):¹¹ Yield: 50% as a white solid; mp 138-139 °C (lit.¹² mp 134-136 °C). ¹H NMR (300 MHz, DMSO) δ 7.44 – 7.20 (m, 5H), 4.50 (s, 2H); ¹³C NMR (75 MHz, DMSO) δ 153.88, 136.85, 129.09, 128.73, 127.82, 36.17.

5-[(4-Nitrobenzyl)sulfanyl]-1H-tetrazole (**30**): Yield: 51% as a yellow solid; mp 147-148 °C. ¹H NMR (300 MHz, DMSO) δ 8.16 (d, *J* = 8.7 Hz, 2H), 7.67 (d, *J* = 8.7 Hz, 2H), 4.62 (s, 2H); ¹³C NMR (75 MHz, DMSO) δ 153.74, 146.97, 145.35, 130.37, 123.80, 35.21. Anal. Calcd for C₈H₇N₅O₂S: C, 40.5; H, 2.97; N, 29.52; S, 13.52. Found: C, 40.66; H, 3.23; N, 29.81; S, 13.85.

5-[(3,5-Dinitrobenzyl)sulfanyl]-1H-tetrazole (**31**): Yield: 68% as a white solid; mp 151-152 °C. ¹H NMR (500 MHz, DMSO) δ 8.75 (t, *J* = 2.1 Hz, 1H), 8.71 (d, *J* = 2.1 Hz, 2H), 4.75 (s, 2H); ¹³C NMR (126 MHz, DMSO) δ 148.09, 142.46, 129.7, 126.96, 117.92, 34.39. Anal. Calcd for C₈H₆N₆O₄S: C, 34.04; H, 2.14; N, 29.78; S, 11.36. Found: C, 34.06; H, 2.1; N, 29.46; S, 11.34.

Synthesis of 5-[(2,4-dinitrobenzyl)sulfanyl]-1H-tetrazole (32)

2,4-Dinitrobenzyl thiocyanate **28** (0.72 g, 3 mmol) was added to a suspension of sodium azide (0.23 g, 3.6 mmol) and triethylammonium chloride (0.5 g, 3.6 mmol) in THF. The reaction mixture was stirred at rt overnight. Subsequently, the solvent was evaporated under reduced pressure. The crude product was dissolved in 1% NaOH (10 mL), washed with EtOAc (2 × 15 mL) and the aqueous layer was acidified to pH 1-2. The product was filtered and washed with water. Yield: 80% as a yellowish solid; mp 167-168 °C. ¹H NMR (300 MHz, DMSO) δ 8.75 (d, *J* = 2.4 Hz, 1H), 8.52 (dd, *J* = 8.5, 2.4 Hz, 1H), 7.99 (d, *J* = 8.5 Hz, 1H), 4.87 (s, 2H); ¹³C NMR (75 MHz, DMSO) δ 153.80, 148.10, 147.15, 139.47, 134.11, 128.15, 120.72, 33.19. Anal. Calcd for C₈H₆N₆O₄S: C, 34.04; H, 2.14; N, 29.78; S, 11.36. Found: C, 34.28; H, 2.31; N, 29.66; S, 11.68.

General procedure for the preparation of 1-alkyl-5-(alkylsulfanyl)-1*H*-tetrazoles (33-36) and 2-alkyl-5-(alkylsulfanyl)-2*H*-tetrazoles (37-40).

An alkylating agent (1 mmol) was added to a solution of 5-(alkylsulfanyl)-1*H*-tetrazole **29-32** (1.1 mmol) and KOH (1.2 mmol) in 7 mL of THF (for 2,4-dinitrobenzyl derivatives) or DMF (for other derivatives). The reaction mixture was heated at 75 °C for 2-10 h until completion, as determined by TLC. The solvent was evaporated under reduced pressure and the resulting mass was dissolved in EtOAc (20 mL), washed with 1% NaOH (2×20 mL) and water (1×20 mL) and dried over sodium sulfate Na₂SO₄. The solvent was evaporated and the products, 1- and 2-isomers, were separated using silica gel column chromatography (Mobile phase: Hexane/EtOAc, 10:1 - 5:1).

Dimethyl sulfate, benzyl bromide, 4-nitrobenzyl iodide, 3,5-dinitrobenzyl iodide, 4chlorobenzyl chloride and 3,4-dichlorobenzyl chloride were used as alkylating agents.

1-Alkyl-5-(alkylsulfanyl)-1*H*-tetrazoles (33-36):

5-(*Benzylsulfanyl*)-1-(3,5-dinitrobenzyl)-1H-tetrazole (**33d**): The reaction mixture was heated for 2 h. Yield: 25% as a white solid; mp 112-113 °C.¹H NMR (300 MHz, acetone) δ 8.90 (t, *J* = 2.1 Hz, 1H), 8.56 (d, *J* = 2.1 Hz, 2H), 7.37 – 7.32 (m, 2H), 7.27 – 7.19 (m, 3H), 5.89 (s, 2H), 4.56 (s, 2H); ¹³C NMR (75 MHz, acetone) δ 154.65, 149.60, 138.99, 137.32, 129.78, 129.54, 129.40, 128.66, 119.60, 49.80, 38.31. Anal. Calcd for C₁₅H₁₂N₆O₄S: C, 48.38; H, 3.25; N, 22.57; S, 8.61. Found: C, 48.63; H, 3.38; N, 22.93; S, 8.75.

1-(4-Nitrobenzyl)-5-[(4-nitrobenzyl)sulfanyl]-1H-tetrazole (34c): The reaction mixture was heated for 4 h. Yield: 28% as a white solid; mp 126-127 °C. ¹H NMR (300 MHz, acetone) δ 8.21 (d, *J* = 8.7 Hz, 2H), 8.13 (d, *J* = 8.7 Hz, 2H), 7.69 (d, *J* = 8.7 Hz, 2H), 7.49 (d, *J* = 8.7 Hz, 2H), 5.74 (s, 2H), 4.71 (s, 2H); ¹³C NMR (75 MHz, acetone) δ 154.10, 148.87, 148.31, 145.41, 141.84, 131.10, 129.92, 124.74, 124.36, 50.54, 36.94. Anal. Calcd for C₁₅H₁₂N₆O₄S: C, 48.38; H, 3.25; N, 22.57; S, 8.61. Found: C, 48.59; H, 3.59; N, 22.76; S, 8.69.

5-[(4-Nitrobenzyl)sulfanyl]-1-(3,5-dinitrobenzyl)-1H-tetrazole (**34d**): The reaction mixture was heated for 5 h. Yield: 27% as a white solid; mp 160-161 °C. ¹H NMR (300 MHz, acetone) δ 8.91 (t, J = 2.1 Hz, 1H), 8.59 (d, J = 2.1 Hz, 2H), 8.13 (d, J = 8.8 Hz, 2H), 7.70 (d, J = 8.8 Hz, 2H), 5.95 (s, 2H), 4.74 (s, 2H); ¹³C NMR (75 MHz, acetone) δ 154.31, 149.63, 148.33, 145.45, 138.92, 131.10, 129.59, 124.36, 119.61, 49.92, 37.04. Anal. Calcd for C₁₅H₁₁N₇O₆S: C, 43.17; H, 2.66; N, 23.49; S, 7.68. Found: C, 42.9; H, 2.74; N, 23.14; S, 7.83. 5-[(2,4-Dinitrobenzyl)sulfanyl]-1-methyl-1H-tetrazole (**35a**): The reaction mixture was heated for 4 h. Yield: 15% as a white solid; mp 111-112 °C .¹H NMR (300 MHz, acetone) δ 8.87 (d, J = 2.4 Hz, 1H), 8.55 (dd, J = 8.5, 2.4 Hz, 1H), 8.15 (d, J = 8.5 Hz, 1H), 5.00 (s, 2H), 3.94 (s, 3H); ¹³C NMR (75 MHz, acetone) δ 153.77, 149.00, 148.51, 140.28, 135.27, 128.63, 121.47, 34.77, 33.96. Anal. Calcd for C₉H₈N₆O₄S: C, 36.49; H, 2.72; N, 28.37; S, 10.82. Found: C, 36.72; H, 3.01; N, 27.99; S, 10.51.

1-Benzyl-5-[(2,4-dinitrobenzyl)sulfanyl]-1H-tetrazole (35b): The reaction mixture was heated for 7 h. Yield: 19% as a yellowish solid; mp 145-146 °C .¹H NMR (300 MHz, acetone) δ 8.82 (d, *J* = 2.4 Hz, 1H), 8.48 (dd, *J* = 8.6, 2.4 Hz, 1H), 8.03 (d, *J* = 8.6 Hz, 1H), 7.37 – 7.29 (m, 3H), 7.26 – 7.21 (m, 2H), 5.53 (s, 2H), 4.98 (s, 2H); ¹³C NMR (75 MHz, acetone) δ 153.72, 148.85, 148.48, 140.14, 135.12, 134.71, 129.75, 129.42, 128.82, 128.60, 121.51, 51.51, 35.08. Anal. Calcd for C₁₅H₁₂N₆O₄S: C, 48.38; H, 3.25; N, 22.57; S, 8.61. Found: C, 48.16; H, 3.34; N, 22.22; S, 8.48.

5-[(2,4-Dinitrobenzyl)sulfanyl]-1-(4-nitrobenzyl)-1H-tetrazole (**35c**): The reaction mixture was heated for 8 h. Yield: 10% as a brownish solid. ¹H NMR (300 MHz, acetone) δ 8.81 (d, J = 2.4 Hz, 1H), 8.50 (dd, J = 8.5, 2.4 Hz, 1H), 8.20 (d, J = 8.9 Hz, 2H), 8.07 (d, J = 8.5 Hz, 1H), 7.50 (d, J = 8.9 Hz, 2H), 5.75 (s, 2H), 5.00 (s, 2H); ¹³C NMR (75 MHz, acetone) δ 154.15, 148.89, 148.81, 148.48, 141.75, 140.01, 135.22, 129.95, 128.65, 124.76, 121.46, 50.61, 35.12. Anal. Calcd for C₁₅H₁₁N₇O₆S: C, 43.17; H, 2.66; N, 23.49; S, 7.68. Found: C,

43.6; H, 2.82; N, 23.73; S, 7.48. HRMS (ESI+) m/z calcd for C₁₅H₁₂N₇O₆S⁺: 418.05643 (100.0%), 419.05978 (16.2%); found 418.0557 (100%), 419.0580 (17%).

5-[(2,4-Dinitrobenzyl)sulfanyl]-1-(3,5-dinitrobenzyl)-1H-tetrazole (**35d**): The reaction mixture was heated for 10 h. The product was purified by preparative TLC. Yield: 16% as a brownish solid. ¹H NMR (300 MHz, acetone) δ 8.91 (t, J = 2.0 Hz, 1H), 8.81 (d, J = 2.4 Hz, 1H), 8.58 (d, J = 2.0 Hz, 2H), 8.51 (dd, J = 8.5, 2.4 Hz, 1H), 8.10 (d, J = 8.5 Hz, 1H), 5.96 (s, 2H), 5.02 (s, 2H); ¹³C NMR (75 MHz, acetone) δ 154.38, 149.64, 148.91, 148.53, 139.96, 138.82, 135.27, 129.58, 128.64, 121.42, 119.61, 49.94, 35.14. Anal. Calcd for C₁₅H₁₀N₈O₈S: C, 38.97; H, 2.18; N, 24.24; S, 6.94. Found: C, 39.17; H, 2.55; N, 24.29; S, 6.7. HRMS (ESI+) m/z calcd for C₁₅H₁₁N₈O₈S⁺: 463.04151 (100.0%), 464.04486 (16.2%); found 463.0408 (100%), 464.0440 (18%).

5-[(3,5-Dinitrobenzyl)sulfanyl]-1-methyl-1H-tetrazole (**36a**): The solution of dimethyl sulfate (0.126g, 1 mmol) and TBAB (0.02 g, 0.05 mmol) in CH₂Cl₂ (5 mL) was added to the solution of 5-[(3,5-dinitrobenzyl)sulfanyl]-1H-tetrazole **31** (0.31 g, 1.1. mmol) and NaOH (0.048 g, 1.2 mmol) in water (5 mL). The reaction mixture was stirred 48 h at rt. The organic layer was separated, washed with 1M NaOH (1 × 5 mL) and water (1 × 10 mL) and dried over Na₂SO₄. The solvent was evaporated under reduced pressure and the product was isolated by column chromatography (hexane/EtOAc, 3:1). Yield: 30% as a white solid; mp 106-108 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.96 (t, *J* = 2.1 Hz, 1H), 8.72 (d, *J* = 2.1 Hz, 2H), 4.73 (s, 2H), 3.92 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 152.33, 148.56, 140.71, 129.35, 118.45, 35.37, 33.51. Anal. Calcd for C₉H₈N₆O₄S: C, 36.49; H, 2.72; N, 28.37; S, 10.82. Found: C, 36.70; H, 2.88; N, 28.48; S, 11.09.

1-Benzyl-5-[(3,5-dinitrobenzyl)sulfanyl]-1H-tetrazole (**36b**):¹⁷ Compound was prepared analogously to **36a**. Yield: 21% as a beige solid; mp 154-156 °C (with decomposition). ¹H NMR (500 MHz, DMSO) δ 8.72 – 8.64 (m, 3H), 7.33 – 7.27 (m, 3H), 7.17 – 7.11 (m, 2H),

5.54 (s, 2H), 4.77 (s, 2H); ¹³C NMR (126 MHz, DMSO) δ 153.06, 147.97, 141.97, 133.92, 129.70, 128.99, 128.62, 127.95, 117.99, 50.51, 35.00. Anal. Calcd for C₁₅H₁₂N₆O₄S: C, 48.38; H, 3.25; N, 22.57; S, 8.61. Found: C, 48.26; H, 3.21; N, 22.49; S, 8.58.

5-[(3,5-Dinitrobenzyl)sulfanyl]-1-(4-nitrobenzyl)-1H-tetrazole (**36c**): The reaction mixture was heated for 10 h. Yield: 35% as a yellowish solid; mp 140-143 °C. ¹H NMR (500 MHz, acetone) δ 8.80 (t, J = 2.1 Hz, 1H), 8.76 (d, J = 2.1 Hz, 2H), 8.21 (d, J = 8.7 Hz, 2H), 7.51 (d, J = 8.7 Hz, 2H), 5.77 (s, 2H), 4.89 (s, 2H); ¹³C NMR (126 MHz, acetone) δ 153.91, 149.25, 148.89, 142.87, 141.77, 130.32, 129.90, 124.75, 118.63, 50.61, 36.13. Anal. Calcd for C₁₅H₁₁N₇O₆S: C, 43.17; H, 2.66; N, 23.49; S, 7.68. Found: C, 43.46; H, 2.86; N, 23.22; S, 7.95.

1-(3,5-Dinitrobenzyl)-5-[(3,5-dinitrobenzyl)sulfanyl]-1H-tetrazole (**36d**): The reaction mixture was heated for 7 h. Yield: 22% as a yellowish solid; mp 165-168 °C (with decomposition). ¹H NMR (500 MHz, acetone) δ 8.91 (t, J = 2.1 Hz, 1H), 8.81 (t, J = 2.1 Hz, 1H), 8.79 (d, J = 2.1 Hz, 2H), 8.60 (d, J = 2.1 Hz, 2H), 5.97 (s, 2H), 4.92 (s, 2H); ¹³C NMR (126 MHz, acetone) δ 153.30, 148.77, 148.42, 142.02, 137.93, 129.53, 128.79, 118.78, 117.80, 49.11, 35.28. Anal. Calcd for C₁₅H₁₀N₈O₈S: C, 38.97; H, 2.18; N, 24.24; S, 6.94. Found: C, 38.87; H, 2.52; N, 23.94; S, 7.01.

1-(4-chlorobenzyl)-5-[(3,5-dinitrobenzyl)sulfanyl]-1H-tetrazole (**36***f*): The reaction mixture was heated for 5 h. Yield: 14% as a white solid; mp 130-131 °C. ¹H NMR (500 MHz, acetone) δ 8.81 (t, J = 2.1 Hz, 1H), 8.76 (d, J = 2.1 Hz, 2H), 7.37 (d, J = 8.5 Hz, 2H), 7.27 (d, J = 8.5 Hz, 2H), 5.57 (s, 2H), 4.87 (s, 2H). ¹³C NMR (126 MHz, acetone) δ 153.58, 149.28, 142.95, 134.97, 133.60, 130.63, 130.32, 129.81, 118.61, 50.78, 36.12. Anal.Calcd for C₁₅H₁₁ClN₆O₄S: C, 44.29; H, 2.73; N, 20.66; S, 7.88. Found: C, 44.6; H, 2.88; N, 20.67; S, 7.63.

1-(3,4-dichlorobenzyl)-5-[(3,5-dinitrobenzyl)sulfanyl]-1H-tetrazole (**36***g*): The reaction mixture was heated for 5 h. Yield: 15% as a white solid; mp 121-124 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.95 (t, *J* = 2.0 Hz, 1H), 8.65 (d, *J* = 2.0 Hz, 2H), 7.45 (d, *J* = 8.2 Hz, 1H), 7.33 (d, *J* = 2.0 Hz, 1H), 7.08 (dd, *J* = 8.2, 2.0 Hz, 1H), 5.35 (s, 2H), 4.69 (s, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 152.15, 148.56, 140.41, 133.89, 133.55, 132.16, 131.29, 130.03, 129.30, 127.30, 118.52, 50.00, 35.66. Anal.Calcd for C₁₅H₁₀Cl₂N₆O₄S: C, 40.83; H, 2.28; N, 19.05; S, 7.27. Found: C, 41.19; H, 2.68; N, 18.78; S, 7.26.

2-Alkyl-5-(alkylsulfanyl)-2H-tetrazoles (37-40).

5-(*Benzylsulfanyl*)-2-(3,5-*dinitrobenzyl*)-2*H*-*tetrazole* (**37***d*): Yield: 55% as a white solid; mp 116-117 °C. ¹H NMR (300 MHz, acetone) δ 8.97 (t, *J* = 2.1 Hz, 1H), 8.76 (d, *J* = 2.1 Hz, 2H), 7.56 – 7.33 (m, 2H), 7.29 – 7.10 (m, 3H), 6.27 (s, 2H), 4.44 (s, 2H); ¹³C NMR (75 MHz, acetone) δ 165.02, 149.66, 138.66, 138.00, 130.16, 129.78, 129.24, 128.28, 119.79, 55.61, 36.50. Anal. Calcd for C₁₅H₁₂N₆O₄S: C, 48.38; H, 3.25; N, 22.57; S, 8.61. Found: C, 48.53; H, 3.39; N, 22.71; S, 8.57.

2-(4-Nitrobenzyl)-5-(4-nitrobenzyl)sulfanyl-2H-tetrazole (**38c**): Yield: 52% as a white solid; mp 131-132 °C. ¹H NMR (300 MHz, acetone) δ 8.26 (d, J = 8.7 Hz, 2H), 8.11 (d, J = 8.7 Hz, 2H), 7.72 – 7.62 (m, 4H), 6.06 (s, 2H), 4.57 (s, 2H); ¹³C NMR (75 MHz, acetone) δ 164.06, 149.07, 148.09, 146.30, 141.70, 131.03, 130.53, 124.74, 124.21, 56.45, 35.64. Anal. Calcd for C₁₅H₁₂N₆O₄S: C, 48.38; H, 3.25; N, 22.57; S, 8.61. Found: C, 48.45; H, 3.32; N, 22.77; S, 8.84.

5-[(4-Nitrobenzyl)sulfanyl]-2-(3,5-dinitrobenzyl)-2H-tetrazole (**38d**): Yield: 53% as a light beige solid; mp 111-112 °C. ¹H NMR (300 MHz, acetone) δ 8.95 (t, J = 2.0 Hz, 1H), 8.75 (d, J = 2.0 Hz, 2H), 8.11 (d, J = 8.7 Hz, 2H), 7.70 (d, J = 8.7 Hz, 2H), 6.27 (s, 2H), 4.58 (s, 2H); ¹³C NMR (75 MHz, acetone) δ 164.37, 149.66, 148.11, 146.29, 138.56, 131.01, 130.16,

124.21, 119.81, 55.69, 35.57. Anal. Calcd for C₁₅H₁₁N₇O₆S: C, 43.17; H, 2.66; N, 23.49; S, 7.68. Found: C, 43.42; H, 2.88; N, 23.55; S, 7.82.

5-[(2,4-Dinitrobenzyl)sulfanyl]-2-methyl-2H-tetrazole (**39a**): Yield: 32% as a yellowish solid; 87-88 °C. ¹H NMR (300 MHz, acetone) δ 8.82 (d, J = 2.4 Hz, 1H), 8.50 (dd, J = 8.5, 2.4 Hz, 1H), 8.09 (d, J = 8.5 Hz, 1H), 4.89 (s, 2H), 4.33 (s, 3H); ¹³C NMR (75 MHz, acetone) δ 162.96, 149.39, 148.23, 141.00, 135.01, 128.31, 121.31, 40.14, 33.31. Anal. Calcd for C₉H₈N₆O₄S: C, 36.49; H, 2.72; N, 28.37; S, 10.82. Found: C, 36.71; H, 2.89; N, 28.02; S, 10.91.

2-Benzyl-5-[(2,4-dinitrobenzyl)sulfanyl]-2H-tetrazole (**39b**): Yield: 44% as a yellowish solid; 62-64 °C. ¹H NMR (300 MHz, acetone) δ 8.78 (d, J = 2.4 Hz, 1H), 8.37 (dd, J = 8.6, 2.4 Hz, 1H), 7.97 (d, J = 8.6 Hz, 1H), 7.38 (s, 5H), 5.83 (s, 2H), 4.86 (s, 2H); ¹³C NMR (75 MHz, acetone) δ 163.35, 149.30, 148.15, 140.86, 134.92, 134.67, 129.70, 129.42, 128.16, 121.33, 57.57, 33.43. Anal. Calcd for C₁₅H₁₂N₆O₄S: C, 48.38; H, 3.25; N, 22.57; S, 8.61. Found: C, 48.69; H, 3.37; N, 22.42; S, 8.61.

5-[(2,4-Dinitrobenzyl)sulfanyl]-2-(4-nitrobenzyl)-2H-tetrazole (**39c**): Yield: 44% as an oil. ¹H NMR (500 MHz, acetone) δ 8.78 (d, J = 2.4 Hz, 1H), 8.42 (dd, J = 8.6, 2.4 Hz, 1H), 8.26 (d, J = 8.7 Hz, 2H), 8.03 (d, J = 8.6 Hz, 1H), 7.66 (d, J = 8.7 Hz, 2H), 6.05 (s, 2H), 4.88 (s, 2H); ¹³C NMR (126 MHz, acetone) δ 163.83, 149.36, 149.10, 148.19, 141.58, 140.79, 134.98, 130.57, 128.21, 124.74, 121.30, 56.53, 33.41. HRMS (ESI+) m/z calcd for C₁₅H₁₂N₇O₆S⁺: 418.05643 (100.0%), 419.05978 (16.2%); found 418.0562 (100%), 419.0594 (17%).

5-[(2,4-Dinitrobenzyl)sulfanyl]-2-(3,5-dinitrobenzyl)-2H-tetrazole (**39d**): Yield: 42% as a white solid; mp 127-130 °C. ¹H NMR (500 MHz, acetone) δ 8.96 (t, *J* = 2.1 Hz, 1H), 8.78 (d, *J* = 2.3 Hz, 1H), 8.75 (d, *J* = 2.1 Hz, 2H), 8.44 (dd, *J* = 8.6, 2.3 Hz, 1H), 8.08 (d, *J* = 8.6 Hz, 1H), 6.26 (s, 2H), 4.89 (s, 2H).; ¹³C NMR (126 MHz, acetone) δ 163.28, 148.81, 148.55,

147.35, 139.93, 137.61, 134.15, 129.32, 127.38, 120.39, 118.97, 54.90, 32.47. Anal. Calcd for $C_{15}H_{10}N_8O_8S$: C, 38.97; H, 2.18; N, 24.24; S, 6.94. Found: C, 38.7; H, 2.44; N, 23.91; S, 7.01. *5-[(3,5-Dinitrobenzyl)sulfanyl]-2-methyl-2H-tetrazole (40a):* Yield: 58% as a light beige solid; mp 94-96 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.92 (t, J = 2.1 Hz, 1H), 8.66 (d, J = 2.1 Hz, 2H), 4.55 (s, 2H), 4.30 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 162.02, 148.45, 142.07, 129.21, 117.99, 39.82, 34.62. Anal. Calcd for C₉H₈N₆O₄S: C, 36.49; H, 2.72; N, 28.37; S, 10.82. Found: C, 36.54; H, 2.82; N, 28.46; S, 10.52.

2-Benzyl-5-[(3,5-dinitrobenzyl)sulfanyl]-2H-tetrazole (**40b**): Yield: 47% as a beige solid; mp 109-111 °C. ¹H NMR (300 MHz, acetone) δ 8.80 – 8.75 (m, 3H), 7.34 (s, 5H), 5.83 (s, 2H), 4.74 (s, 2H); ¹³C NMR (75 MHz, acetone) δ 163.34, 149.20, 143.78, 134.64, 130.24, 129.66, 129.60, 129.24, 118.31, 57.54, 34.94. Anal. Calcd for C₁₅H₁₂N₆O₄S: C, 48.38; H, 3.25; N, 22.57; S, 8.61. Found: C, 48.6; H, 3.39; N, 22.43; S, 8.7.

5-[(3,5-dinitrobenzyl)sulfanyl]-2-(4-nitrobenzyl)-2H-tetrazole (**40c**): Yield: 58% as a light beige solid; mp 130-132 °C. ¹H NMR (500 MHz, acetone) δ 8.77 (t, J = 2.1 Hz, 1H), 8.74 (d, J = 2.1 Hz, 2H), 8.22 (d, J = 8.7 Hz, 2H), 7.61 (d, J = 8.7 Hz, 2H), 6.05 (s, 2H), 4.75 (s, 2H); ¹³C NMR (126 MHz, acetone) δ 163.83, 149.20, 149.03, 143.72, 141.60, 130.39, 130.24, 124.71, 118.32, 56.51, 34.98. Anal. Calcd for C₁₅H₁₁N₇O₆S: C, 43.17; H, 2.66; N, 23.49; S, 7.68. Found: C, 43.58; H, 2.89; N, 23.14; S, 7.68.

2-(3,5-dinitrobenzyl)-5-[(3,5-dinitrobenzyl)sulfanyl]-2H-tetrazole (**40d**): Yield: 51% as a white solid; mp 156-159 °C (with decomposition). ¹H NMR (500 MHz, acetone) δ 8.95 (t, *J* = 2.1 Hz, 1H), 8.77 (t, *J* = 2.1 Hz, 1H), 8.74 (d, *J* = 2.1 Hz, 2H), 8.72 (d, *J* = 2.1 Hz, 2H), 6.27 (s, 2H), 4.77 (s, 2H); ¹³C NMR (126 MHz, acetone) δ 163.25, 148.78, 148.37, 142.86, 137.61, 129.37, 129.22, 118.94, 117.46, 54.92, 34.09. Anal. Calcd for C₁₅H₁₀N₈O₈S: C, 38.97; H, 2.18; N, 24.24; S, 6.94. Found: C, 39.04; H, 2.43; N, 24.05; S, 7.02.

2-(4-chlorobenzyl)-5-[(3,5-dinitrobenzyl)sulfanyl]-2H-tetrazole (**40f**): Yield: 52% as a white solid; mp 113-114 °C. ¹H NMR (500 MHz, acetone) δ 8.79 (t, *J* = 2.1 Hz, 1H), 8.75 (d, *J* = 2.1 Hz, 2H), 7.38 (s, 4H), 5.85 (s, 2H), 4.75 (s, 2H). ¹³C NMR (126 MHz, acetone) δ 163.52, 149.24, 143.78, 135.16, 133.51, 131.13, 130.24, 129.77, 118.32, 56.74, 34.99. Anal.Calcd for C₁₅H₁₁ClN₆O₄S: C, 44.29; H, 2.73; N, 20.66; S, 7.88. Found: C, 44.40; H, 2.85; N, 20.57; s, 8.27.

2-(3,4-dichlorobenzyl)-5-[(3,5-dinitrobenzyl)sulfanyl]-2H-tetrazole (**40g**): Yield: 40% as a white solid; mp 112-113 °C. ¹H NMR (500 MHz, acetone) δ 8.79 (t, J = 2.1 Hz, 1H), 8.76 (d, J = 2.1 Hz, 2H), 7.60 (d, J = 2.1 Hz, 1H), 7.56 (d, J = 8.3 Hz, 1H), 7.34 (dd, J = 8.3, 2.1 Hz, 1H), 5.89 (s, 2H), 4.76 (s, 2H). ¹³C NMR (126 MHz, acetone) δ 163.70, 149.24, 143.75, 135.34, 133.28, 133.04, 131.87, 131.49, 130.24, 129.43, 118.32, 56.13, 34.97. Anal.Calcd for C₁₅H₁₀Cl₂N₆O₄S: C, 40.83; H, 2.28; N, 19.05; S, 7.27. Found: C, 40.76; H, 2.45; N, 18.87; S, 7.49.

NOESY experiments

1-(3,5-dinitrobenzyl)-5-[(4-methoxybenzyl)selanyl]-1H-tetrazole (19d)

1D NOESY (19d)

							ĺ			
222-25										
Select	ive hand ce	nter. 5.80 (nom).	44			1				
th: 95.0	(Hz)	(ppm/, v	10			1				
exp100	NOESY1D									
ACQUI	SITION	DECOUPLER								
SW	8012.8	dn C13								
at	2.045	đm nnr	í .							
np	32768	SAMPLE								
ID	4000	date Aug 29 2014								
DS	32	solvent acetone								
41	1 000	LITE EXC	2							
nt	54	town 25.0								
ct	64	caip 25.0								
TRANS	MITTER	spin not used								
tn	H1	pw90 9,100								
sfrq	499.869	FLAGS								
tof	499.9	sspul y				1				
tpwr	60	il n								
pw	9.100	in n				1				
NO	ESY	dp y								
mixN	0.500	hs nn								
sweeppwr	46	PROCESSING								
sweeppw	1500.000	fn not used								
sweepsnp	sech180	DISPLAY								
celebana	FGSE	sp -1006.7					1			
seranapa	ESVID 127	wp 8012.3	****	and the second second state of the second		-				
selowrA	11	80 0				']		a a seconda ande propriatione		
selpwA	37890.0	WC 200	Territerti	co d condition.	ليتنبأنيك	hud			to da terreta	<u>nn</u>
gzlvlA	849	hzmm 40.06	14 12	10	8	6	4	2	0	
gtA	0.001000	is 33.57				-	-	-	U	ppm
selshape	B vnmr1_NO~	rfl 1007.2								
	ESY1D_127	rfp 0								
selpwrB	11	th 7								
selpwB	37890.0	ins 100.000								
gz1v1B	1273	ai cdc ph								
ges	0.001000									
gstabAB	0.000500									
arlulC	-212									
atC	0.001000									
gstab	0.000500									
hsglvl	1272									
hsgt	0.002000									
PRESAT	JRATION									
satmode	n									
wet	n									

1D NOESY (24d)

1D NOESY (33d)

GK237-1b															
Select	ive band ce	nter	: 5.90 (ppm); w	id											
th: 130.	0 (Hz)														
exp75 N	DESY1D														
ACQUI	SITION		DECOUPLER												
SW	8012.8	dn	C13												
at	2.045	đm	nnn												
np	32768		SAMPLE												
fb	4000	dat	e Aug 27 2014												
bs	32	801	vent acetone												
SS	2	fil	е екр												
đl	1.000		SPECIAL												
nt	64	tem	p 25.0												
ct	64	gai	n 30												
TRANS	MITTER	spi	n 0												
tn	H1	pw9	9,100												
sfrq	499.869		FLAGS												
tof	499.9	ssp	ul y												
tpwr	60	il	n												
pw	9.100	in	n												
NO	ESY	đp	Y												
minN	0.700	hs	nn												
sweeppwr	46		PROCESSING												
sweeppw	1500.000	1b	not used												
sweepshp	sech180	fn	not used												
DPI	FGSE		DISPLAY												
selshape	A vnmr1_NO~	sp	1916.9			1									
	ESY1D_123	wp	2852.2												
selpwrA	13	vs	16517			1									
selpwA	27690.0	8C	0	uda and a	d also an a set b a set	A								1	
gzlvlA	849	WC	200	Non-Andrews (No. 1	and the second se	and an and a second	and a surface and a surface of the s	adian Achine Single	Heating and the second	hundren hundrad	-	No When an		with the property of the set	or the second
gtA	0.001000	hzm	n 14.26	TTT											
selshape	3 vnmr1_NO~	is	33.57		· · · ·	-	· · I · ·	a c E c v	4		··· • • • •			<u>1</u>	5513
	ESY1D_123	rf1	1007.29	.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	maa
selpwrB	13	rfp	0												46-
selpwB	27690.0	th	7								1				
gzlvlB	1273	ins	100.000												
gtB	0.001000	ai	cdc ph								1				
gstabAB	0.000500										11				
GRAI	DIENT										1				
gzlvlC	-213														
gtC	0.001000														
gstab	0.000500														
hsglvl	1272										1				
hsgt	0.002000														
PRESATU	RATION										1				
satmode	n														
wet	n														
											U				

32

5-(Benzylsulfanyl)-2-(3,5-dinitrobenzyl)-2H-tetrazole (37d)

¹H NMR (**37d**)

1D NOESY (**37d**)

GK237-1a Select th: 91.0	ive band ce (Hz)	enter:	6.28 (ppm); wi	a							
exp94 N	0ESY1D										
ACQUI	SITION	D	ECOUPLER								
SW	8012.8	dn	C13								
at	2.045	dm	nnn								
np	32768		SAMPLE								
fb	4000	date	Aug 28 2014								
bs	32	solve	nt acetone								
85	2	file	екр								
d1	1.000		SPECIAL								
nt	64	temp	25.0								
ct	64	gain	30			Ŷ					
TRANSI	MITTER	spin	0								
tn	H1	pw90	9.100								
sfrq	499.869		FLAGS								
tof	499.9	sspul	У								
tpwr	60	il	n								
pw	9.100	in	n								
NO	BSY	dp	У				T.				
mixN	0.500	hs	nn								
sweeppwr	46	P	ROCESSING								
sweeppw	1500.000	1b	not used								
sweepshp	sech180	fn	not used								
DPI	FGSE		DISPLAY								
selshape	A vnmr1_NO~	sp	-1006.7		the independence of the second se	and the second states and the second states	intel Laurentinesterne	terror of the sector of the loss			-
	ESY1D_124	wp	8012.3				1		and a state state		
selpwrA	10	VB	16151	a ration da		TITIZE CELET	11011111	111111111111	multin		LILL
BelpwA	39560.0	sc		4 12	10	0	6	4	2	0	
gzivia	849	wc	200-		10	0	0	**	4	U	ppm
gtA	0.001000	hzmm	40.06								
sersnaper	BOWID 134	18	33.57								
colourp	10	TTT	1007.2								
colowP	20560 0	110	0								
azlylB	1273	inc	100 000								
gtt B	0 001000	210	100.000								
astabAB	0.000500		ac pa								
GRAI	DIENT										
gzlylC	-213						1				
atC	0.001000										
gstab	0.000500										
hsglvl	1272										
hagt	0.002000										
PRESATU	TRATION										
satmode	n										
wet	n						1				

In vitro antimycobacterial assay.

Mycobacterial strains *M.tb* CNCTC My 331/88, *M. kansasii* CNCTC My 235/80 and *M. avium* CNCTC My 330/88 from the Czech National Collection of Type Cultures (CNCTC) and the clinical isolate *M. kansasii* 6509/96 were used to evaluate the antimycobacterial activity of the prepared compounds. Basic suspensions of the mycobacterial strains were prepared according to the 1.0 McFarland standard. From the basic suspension, subsequent dilutions of each strain were made: *M.tb* 10⁻³, *M. avium* 10⁻⁵, and *M. kansasii* 10⁻⁴. The appropriate dilutions of the strains (0.1 mL) were added to each well of the microtiter plates containing the studied compounds.

The compounds were dissolved in dimethyl sulfoxide (DMSO) and added to the medium at concentrations of 1000, 500, 250, 125, 62, 32, 16, 8, 4, 2 and 1 μ mol/L. The activities were determined via the micromethod for the determination of the minimum inhibitory concentration in Sula's semisynthetic medium (SEVAC, Prague). MICs, i.e., the lowest concentration of a substance at which mycobacterial growth inhibition occurred (the concentration that inhibited >99% of the mycobacterial population), were determined after incubation at 37 °C for 7, 14, and 21 days for the *M. kansasii* strains and after 14 and 21 days for *M.tb* and *M. avium*. Isoniazid (INH) was used as a prototype drug.

In vitro antibacterial and antifungal assays.

The broth microdilution method was used for the evaluation of in vitro antibacterial and antifungal activity. The bacteria strains included 4 Gram positive cocci (*Staphylococcus aureus* ATCC 6538 (SA), Methicillin resistant *Staphylococcus aureus* H 5996/08 (MRSA), *Staphylococcus epidermidis* H 6966/08 (SE) and *Enterococcus faecalis* J 14365/08 (EF)) and 4 Gram negative rods (*Escherichia coli* ATCC 8739 (EC), *Klebsiella pneumoniae* D 11750/08 (KP), *Klebsiella pneumoniae* (a producer of extended-spectrum beta-lactamases) (ESBL) J 14368/08 (KP-E) and *Pseudomonas aeruginosa* ATCC 9027 (PA)). The compounds were dissolved in DMSO, and the final concentrations of the substances ranged from 0.488 to 500 μ M. Mueller Hinton broth was used as the culture medium. The MIC was defined as a 95% or greater reduction of growth compared with the control. The MIC values were determined after 24 and 48 h of static incubation at 35 °C. Vancomycin was used as a prototype drug for Gram positive cocci, and gentamicin was used for Gram negative rods.

The fungi strains included 5 yeasts and yeast-like organisms (*Candida albicans* ATCC 44859 (CA), *Candida tropicalis* 156(CT), *Candida krusei* E28 (CK), *Candida glabrata* 20/I (CG), *Trichosporon asahii* 1188 (TA)) and 3 molds (*Aspergillus fumigatus* 231 (AF), *Absidia corymbifera* 272 (AC), and *Trichophyton mentagrophytes* 445 (TM)). The procedure was performed in RPMI 1640 medium buffered to pH 7.0 with 0.165 mol of 3-morpholinopropane-1-sulfonic acid. The concentration range was the same as that used for the aforementioned bacteria. The MIC for yeasts and yeasts-like organisms was defined as an 80% or greater (IC₈₀), and for molds 50% or greater (IC₅₀), reduction of the fungal growth compared with the control. The MIC values were determined after 24 and 48 h of incubation at 35 °C. For *T. mentagrophytes*, the final MICs were determined after 72 and 120 h of incubation. Amphotericin B and fluconazole were used as prototype drugs.

In vitro cell proliferation/viability assessment.

The standard MTT assay (Sigma Aldrich) was used according to the manufacturer's protocol to evaluate the effects of the studied compounds on the viability of CHO-K1 cells (Chinese hamster ovary, ECACC, Salisbury, UK). The cells were cultured according to the conditions recommended by ECACC (Ham's F12 with 2 mM glutamine and 10% (v/v) fetal bovine serum) and seeded at a density of 8,000 cells per well, under standard conditions, i.e., at 37 °C under 5% CO₂. The tested compounds were dissolved in DMSO and added to the growth medium with a final concentration of DMSO below 0.5% (v/v). The cells were incubated with the compounds or vehicle alone for 24 h. Then, the medium was replaced by 10 µM MTT and the cells were allowed to convert MTT into the colored formazan product for approximately 3 h. Thereafter, the MTT-containing medium was removed and the crystals of formazan were dissolved in DMSO (100 µL). The cell viability was measured as the amount of formazan produced by mitochondria and was assessed spectrophotometrically at 570 nm with 650 nm reference wavelength on Synergy HT (BioTek, USA). Cells treated with 0.1% Triton X-100 solution for at least 15 minutes were used as a toxic control. The half maximal inhibitory concentration (IC₅₀) was then calculated using non-linear regression of at least four concentration points (in triplicate, values of the toxic controls were subtracted from each sample's absorbance) using GraphPad Prism 5 software. The final IC₅₀ value is reported as the mean and SEM of 2-4 independent measurements.

Ames Fluctuation test

The mutagenic activity of the selected substances was detected using the commercial available Muta-ChromoPlateTM Bacterial strain Kit (ebpi, Mississauga, Ontario, Canada), which is the 96-well micro-plate version of the *Salmonella typhimurium* Ames Test. The test was performed and evaluated according to the manufacturer's instructions. The final concentration of tested substances was 50 μ M (the highest concentration that enables full solubility and that showed limited cytotoxicity in mammalian cell lines). *Salmonella typhimurium* tester strains TA 98 (detection of frame shift mutagens) and TA 100 (detection of base-exchange mutations) were used. The substances were dissolved in DMSO and the final amounts of DMSO in the whole reaction mixture was 0,1%. The following standard direct-acting mutagens were used as positive controls: sodium azide for use with the strain TA100 (final amount 0.5 μ g, 25ng/mL) and 2-nitrofluorene for use with the strain TA98 (final amount 30 μ g; 1.5 ng/mL). A blank plate as a sterility control and plates without any tested compounds for each strain were used as a spontaneous mutation control (background control).

Results

Table S3: Evaluation of mutagenicity in Ames fluctuation assay performed with selected substances on *Salmonella typhimurium* TA100 and TA98 strains

Substance tested	Ames fluctuation as	say
	TA100	TA98
Sodium azide	+	n.d.
2-nitrofluorene	n.d.	+
18b	-	+
23b	-	+
36b	-	-
40b	-	+
36c	-	+
40c	-	+
36f	-	+
40f	-	+

- negative mutagenicity

+ positive mutagenicity

n.d. not determined

Statistical significance of mutagenicity for all the positive substances was at the level of 0.001.

Using the Ames fluctuation assay, except the **36b**, all the tested chemicals displayed statistically significant mutagenic effects on the strain TA98 as indicated by the number of reverse-mutated colonies. Thus, the selected chemical agents seem to act as frame-shift mutagens although we observed significant difference in potency (a number of reverse-mutated colonies) to induce reverse mutation by tested substances. On the other hand, none of the selected substances revealed genotoxic effect in strain S. typhimurium TA100.

References

- M. Iwaoka, T. Katsuda, H. Komatsu and S. Tomoda, J. Org. Chem., 2005, 70, 321-327.
- 2. D. Plano, Y. Baquedano, D. Moreno-Mateos, M. Font, A. Jimenez-Ruiz, J. A. Palop and C. Sanmartin, *Eur. J. Med. Chem.*, 2011, **46**, 3315-3323.
- 3. C. L. Jackson, Justus Liebigs Ann., 1875, 179, 1-20.
- 4. P. T. Meinke and G. A. Krafft, J. Am. Chem. Soc., 1988, **110**, 8671-8679.
- 5. T. Otsubo, F. Ogura, H. Yamaguchi, H. Higuchi and S. Misumi, *Synth. Commun.* 1980, **10**, 595-601.
- H. M. Meshram, P. B. Thakur, B. M. Babu and V. M. Bangade, *Tetrahedron Lett.*, 2012, 53, 1780-1785.
- 7. D. N. Harpp, B. T. Friedlander and R. A. Smith, *Synthesis-Stuttgart*, 1979, 181-182.
- 8. C. L. Jackson and F. C. Whitmore, J. Am. Chem. Soc., 1915, 37, 1915-1934.
- C. C. Palsuledesai, S. Murru, S. K. Sahoo and B. K. Patel, *Org. Lett.*, 2009, **11**, 3382-3385.
- G. Karabanovich, J. Roh, T. Smutný, J. Němeček, P. Vicherek, J. Stolaříková, M. Vejsová, I. Dufková, K. Vávrová, P. Pávek, V. Klimešová and A. Hrabálek, *Eur. J. Med. Chem.*, 2014, **82**, 324-340.
- S. Vorona, T. Artamonova, Y. Zevatskii and L. Myznikov, *Synthesis-Stuttgart*, 2014, 46, 781-786.
- 12. V. Aureggi and G. Sedelmeier, Angew. Chem. Int. Ed., 2007, 46, 8440-8444.