Electronic Supplementary Material (ESI) for Medicinal Chemistry Communications. This journal is © The Royal Society of Chemistry 2014

Supporting information

Naphthoquinone-based Chalcone Hybrids and derivatives: Synthesis and Potent Activity Against Cancer Cell Lines

Guilherme A. M. Jardim,^a Tiago T. Guimarães,^b Maria do Carmo F. R. Pinto,^c Bruno
C. Cavalcanti,^d Kaio M. de Farias,^d Claudia Pessoa^d Divya K. Nair,^e Irishi N. N.
Namboothiri,^{e*} and Eufrânio N. da Silva Júnior^{a*}

^aInstitute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, CEP 31270-901, Belo Horizonte-MG, Brazil. Phone: +55 31 34095720; Fax: +55 31 34095700;

^bInstituto Nacional de Câncer, Hospital do Câncer - Unidade I - Seção de Medicina Nuclear, 20230-130, Rio de Janeiro, RJ, Brazil;

°Núcleo de Pesquisas de Produtos Naturais, UFRJ, 21944-971, Rio de Janeiro, RJ, Brazil;

 ^dDepartamento de Fisiologia e Farmacologia, UFC, 60430-270, Fortaleza, CE, Brazil;
^eDepartment of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, India. Phone: +22-2576-7196; Fax: Fax: +22-2576-7152.

E-mail: eufranio@ufmg.br and irishi@iitb.ac.in

Contents

A) NMR spectra of unpublished compounds	S2
B) NMR spectra of previously published compounds	S12

Figure 1. ¹H NMR spectrum (500 MHz, CDCl₃) of compound 10.

Figure 2. ¹³C-APT NMR spectrum (125 MHz, CDCl₃) of compound 10.

Figure 3. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 11.

Figure 4. ¹³C-APT NMR spectrum (100 MHz, CDCl₃) of compound 11.

Figure 7. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 13.

S5

Figure 11. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 15.

Figure 12. ¹³C-APT NMR spectrum (100 MHz, CDCl₃) of compound 15.

Figure 14. ¹³C NMR spectrum (50 MHz, CDCl₃) of compound 30.

Figure 15. ¹H NMR spectrum (200 MHz, CDCl₃) of compound 35.

S9

Figure 17. ¹H NMR spectrum (200 MHz, CDCl₃) of compound 37.

Figure 18. ¹³C NMR spectrum (50 MHz, CDCl₃) of compound 37.

Figure 19. ¹H NMR spectrum (200 MHz, CDCl₃) of compound 39.

Figure 20. ¹³C NMR spectrum (50 MHz, CDCl₃) of compound 39.

Figure 21. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 1.

Figure 23. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 2.

Figure 24. ¹³C NMR spectrum (50 MHz, CDCl₃) of compound 2.

Figure 25. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 3.

Figure 26. ¹³C NMR spectrum (50 MHz, CDCl₃) of compound 3.

Figure 27. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 4.

Figure 28. ¹³C NMR spectrum (50 MHz, DMSO-*d*₆) of compound 4.

Figure 29. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 5.

Figure 30. ¹³C NMR spectrum (50 MHz, CDCl₃) of compound 5.

Figure 31. ¹H NMR spectrum (300 MHz, CDCl₃) of compound 6.

Figure 32. ¹³C-APT NMR spectrum (75 MHz, CDCl₃) of compound 6.

Figure 34. ¹³C NMR spectrum (125 MHz, CDCl₃) of compound 16.

Figure 35. ¹H NMR spectrum (500 MHz, CDCl₃) of compound 17.

Figure 36. ¹³C NMR spectrum (125 MHz, CDCl₃) of compound 17.

Figure 37. ¹H NMR spectrum (500 MHz, CDCl₃) of compound 18.

Figure 38. ¹³C NMR spectrum (125 MHz, CDCl₃) of compound 18.

Figure 40. ¹³C NMR spectrum (125 MHz, CDCl₃) of compound 19.

Figure 41. ¹H NMR spectrum (500 MHz, CDCl₃) of compound 20.

Figure 42. ¹³C NMR spectrum (125 MHz, CDCl₃) of compound 20.

Figure 43. ¹H NMR spectrum (500 MHz, CDCl₃) of compound 21.

Figure 44. ¹³C NMR spectrum (125 MHz, CDCl₃) of compound 21.

Figure 45. ¹H NMR spectrum (500 MHz, CDCl₃) of compound 22.

Figure 46. ¹³C NMR spectrum (125 MHz, CDCl₃) of compound 22.

Figure 47. ¹H NMR spectrum (500 MHz, CDCl₃) of compound 23.

Figure 48. ¹³C NMR spectrum (125 MHz, CDCl₃) of compound 23.

Figure 49. ¹H NMR spectrum (500 MHz, CDCl₃) of compound 24.

Figure 50. ¹³C NMR spectrum (125 MHz, CDCl₃) of compound 24.

Figure 51. ¹H NMR spectrum (500 MHz, CDCl₃) of compound 25.

Figure 52. ¹³C NMR spectrum (125 MHz, CDCl₃) of compound 25.

Figure 53. ¹H NMR spectrum (200 MHz, CDCl₃) of compound 29.

Figure 54. ¹³C NMR spectrum (50 MHz, CDCl₃) of compound 29.

philes approximate from the phile of the second of the first of the philes of the phil

180

Figure 56. ¹³C NMR spectrum (50 MHz, CDCl₃) of compound 31.

Figure 57. ¹H NMR spectrum (200 MHz, CDCl₃) of compound 33.

Figure 58. ¹³C NMR spectrum (50 MHz, CDCl₃) of compound 33.

Figure 60. ¹³C-APT NMR spectrum (75 MHz, DMSO-*d*₆) of compound 41.

Figure 61. ¹H NMR spectrum (300 MHz, DMSO-*d*₆) of compound 42.

Figure 62. ¹³C-APT NMR spectrum (75 MHz, DMSO- d_6) of compound 42.

Figure 64. ¹³C-APT NMR spectrum (75 MHz, DMSO-*d*₆) of compound 43.