The effect of N-methylation on transition state mimetic inhibitors of the Plasmodium protease, plasmepsin V

Michelle Gazdik, ${ }^{\text {a,b }}$ Matthew T. O’Neill, ${ }^{\text {a,b }}$ Sash Lopaticki, ${ }^{\text {a,b }}$ Kym N. Lowes, ${ }^{\text {a,b }}$ Brian J. Smith, ${ }^{\mathrm{c}}$ Alan F. Cowman, ${ }^{\text {a,b }}$ Justin A. Boddey, ${ }^{\text {a,b }}$ Brad E. Sleebs ${ }^{\text {a,b* }}$
${ }^{a}$ The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia.
${ }^{\mathrm{b}}$ Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia.
${ }^{c}$ Department of Chemistry, La Trobe University, 3086, Australia.

Index

Pages 2-16 1.1 Chemistry experimental
Page $17 \quad$ 1.2 Molecular modeling experimental
Page 18-20 1.3 Biological experimental
Page 21-23 1.4 Supplementary Figures and Tables.
Page 21 Compound (1-5) dose response curves for PMV (Figure S1)
Page 21 Compound (6-7) dose response curves for PMV (Figure S2)
Page 22 Compound (1-5) dose response curves for parasite viability (Figure S3)
Page 22 Compound (6-7) dose response curves for parasite viability (Figure S4)
Page $23 \quad$ Stability of compounds 1-5 in human plasma (Table S1).
Page $24 \quad$ 1.5 HPLC traces of compounds 1-7
Page 25 1.6 Abbreviations
Page $25 \quad$ 1.7 References

1. Experimental

1.1 Chemistry

Analytical thin-layer chromatography was performed on Merck silica gel $60 \mathrm{~F}^{254}$ aluminum-backed plates and were visualized by fluorescence quenching under UV light or by KMnO_{4} staining. Flash chromatography was performed with silica gel 60 (particle size $0.040-0.063 \mu \mathrm{~m}$). NMR spectra were recorded on a Bruker Avance DRX 300 or a Varian 600 MHz at 298 K unless specified with the solvents indicated. Chemical shifts are reported in ppm on the δ scale and referenced to the appropriate solvent peak. MeOD contains $\mathrm{H}_{2} \mathrm{O}$. Infrared spectra were obtained on a Bruker Tensor 27 FT-IR spectrometer at a resolution of $4 \mathrm{~cm}^{-1}$ and absorptions are given in wavenumbers $\left(\mathrm{cm}^{-1}\right)$. HRMS were acquired by Jason Dang at the Monash Institute of Pharmaceutical Sciences Spectrometry Facility using an Agilent 1290 infinity 6224 TOF LCMS. Column used was RRHT $2.1 \times 50 \mathrm{~mm} 1.8 \mu \mathrm{~m}$ C18. Gradient was applied over the 5 min with the flow rate of $0.5 \mathrm{~mL} / \mathrm{min}$. For MS: Gas temperature was $325^{\circ} \mathrm{C}$; drying gas $11 \mathrm{~L} / \mathrm{min}$; nebulizer 45 psig and the fragmentor 125 V . LCMS were recorded on a Waters ZQ 3100 using a 2996 Diode Array Detector. LCMS conditions used to assess purity of compounds were as follows, column: XBridge TM C18 $5 \mu \mathrm{~m} 4.6 \times 100 \mathrm{~mm}$, injection volume $10 \mu \mathrm{~L}$, gradient: $10-100 \%$ B over 10 min (solvent A: water 0.1% formic acid; solvent B : $\mathrm{AcCN} 0.1 \%$ formic acid), flow rate: $1.5 \mathrm{~mL} / \mathrm{min}$, detection: $100-600 \mathrm{~nm}$. All final compounds were analyzed using a Agilent HP1100 high performance liquid chromatograph. HPLC conditions used to assess purity of final compounds were as follows, column: Phenomenex Gemini C18, $2.0 \times 50 \mathrm{~mm}$; injection volume $10 \mu \mathrm{~L}$; gradient: $0-100 \%$ Buffer B over 6 min (buffer A: 0.1% formic acid in autoclaved MilliQ water; buffer B: 0.1% formic acid in 100% acetonitrile), flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, detection: 214 nm . Unless otherwise noted, all compounds were found to be $>95 \%$ pure by this method.

The following compounds were purchased commercially and used without further purification, 2-(4-chlorophenyl)-ethylamine, Cbz-Orn(N-Boc)-OH, $\quad \mathrm{HCl} . \mathrm{NH}_{2}-\mathrm{Ala}-\mathrm{OMe}, \quad \mathrm{Cbz}-\mathrm{Arg}(N, N-\mathrm{diBoc})-\mathrm{OH}$, $\mathrm{HCl} . \mathrm{NH}_{2}$-Ala-OEt, Cbz-Orn(Phth)-OH, Boc-Ala-OH, Boc-Sta(3S,4S)-OH, N,N'-bis-Boc-1guanylpyrazole, benzyl bromide, 2-(4-chlorophenyl)- N-methylethanamine, phenylethylamine.

General Procedure A

Boc-Sta-NH($\left.\mathbf{C H}_{2}\right)_{2} \mathbf{P h}\left(\mathbf{4}^{\prime}-\mathbf{C l}\right) \mathbf{1 1}$

To a stirred solution of Boc-Sta $(3 S, 4 S)$-OH ($500 \mathrm{mg}, 1.82 \mathrm{mmol}$) in DMF $(10 \mathrm{~mL})$ was added HBTU $(826 \mathrm{mg}, 2.18 \mathrm{mmol})$ and DIPEA $(1.58 \mathrm{~mL}, 9.08 \mathrm{mmol})$. The reaction mixture was stirred for 10 min at $20^{\circ} \mathrm{C}$. An excess of 2-(4-chlorophenyl)-ethylamine ($505 \mu \mathrm{~L}, 3.63 \mathrm{mmol}$) was added and the resulting suspension was allowed to stir for 18 h at $20^{\circ} \mathrm{C}$. The reaction mixture was quenched with 10% citric acid solution and extracted with EtOAc ($2 \times 15 \mathrm{~mL}$). The combined organic layers were then washed with saturated NaHCO_{3} solution $(1 \times 20 \mathrm{~mL})$. The organic layer was washed with brine (20 mL), dried with MgSO_{4} and the solvent was concentrated in vacuo to obtain 11 as an oil ($745 \mathrm{mg}, 99 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 4.83-4.77(\mathrm{~m}$, $1 \mathrm{H}), 3.96-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.44(\mathrm{~m}, 4 \mathrm{H}), 2.84-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.23(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.50$ $(\mathrm{m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.38-1.26(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{dd}, J=6.5,2.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 172.87,156.87,137.23,132.50,130.27,130.18,129.25,128.94,128.85,79.75,70.76$, $52.31,41.79,41.56,40.74,40.50,34.95,32.89,28.48,24.93,23.17,22.19$. IR ($\left.\mathrm{cm}^{-1}\right) v 3369(\mathrm{NH})$, 2958-2874 (CH), $1681(\mathrm{C}=\mathrm{O}) . \mathrm{MS}, m / z=413.3[\mathrm{M}+\mathrm{H}]^{+}$.

General Procedure B

$\mathbf{H C l} \mathbf{N H}_{2}$ - $\mathrm{Sta}-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{\mathbf{2}} \mathbf{P h}\left(\mathbf{4}^{\prime}-\mathrm{Cl}\right) \mathbf{1 4}$

A mixture of Boc-Sta- $\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}\left(4^{\prime}-\mathrm{Cl}\right) \mathbf{1 1}(884 \mathrm{mg}, 2.14 \mathrm{mmol})$, in 4 N HCl in dioxane $(4 \mathrm{~mL})$ was allowed to stir for 1 h at $20^{\circ} \mathrm{C}$. The reaction mixture was concentrated to dryness in vacuo. The oil was triturated with $\mathrm{Et}_{2} \mathrm{O}$ and the supernatant decanted to obtain 14 as a solid ($740 \mathrm{mg}, 99 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.26(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.05-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.25-3.20(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{dd}, J=14.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dd}, J$ $=14.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.46(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\mathrm{MHz}, \mathrm{MeOD}$, rotamers) $\delta 172.88,139.20,133.03,131.55,131.31,129.54,129.33,68.20,68.07,54.97$, $54.60,41.77,41.47,40.25,35.62,25.42,25.30,22.97,22.92,22.49,22.43$. IR ($\left.\mathrm{cm}^{-1}\right) v 3272(\mathrm{NH})$, $2958(\mathrm{CH}), 1636(\mathrm{C}=\mathrm{O}) . \mathrm{MS}, m / z=313.3[\mathrm{M}+\mathrm{H}]^{+}$.

Cbz-Arg(\mathbf{N}, \mathbf{N}-diBoc)-Ala-OEt 9

General Procedure A was followed using Cbz-Arg(N,N-diBoc)-OH 8 ($200 \mathrm{mg}, 0.393 \mathrm{mmol}$) and $\mathrm{HCl} . \mathrm{NH}_{2}$-Ala-OEt ($121 \mathrm{mg}, 0.787 \mathrm{mmol}$) to obtain a crude residue. The crude residue was subjected to
silica chromatography gradient eluting with $100 \% \mathrm{DCM}$ to $10 \% \mathrm{MeOH} / \mathrm{DCM}$ to obtain $\mathbf{9}$ as an oil (239 $\mathrm{mg})$. Chemical characterisation data was identical to that previously described. ${ }^{1}$

Cbz-Arg(N, N-diBoc)-Ala-OH 10

A mixture of Cbz-Arg(N,N-diBoc)-Ala-OEt 9 ($200 \mathrm{mg}, 0.329 \mathrm{mmol}$), and LiOH hydrate ($41 \mathrm{mg}, 0.987$ $\mathrm{mmol})$ in a mixture of water $(1.3 \mathrm{~mL})$ and THF $(4 \mathrm{~mL})$ was allowed to stir for 5 min at $20^{\circ} \mathrm{C} .10 \%$ Citric acid solution was added to the reaction mixture. The solution was then extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with brine (10 mL) and dried with MgSO_{4}. The solvent was concentrated in vacuo to obtain 10 as a solid ($189 \mathrm{mg}, 99 \%$). Chemical characterisation data was identical to that previously described. ${ }^{1}$

Cbz-Arg(N, N-diBoc)-Ala-Sta-NH(CH2 $)_{2} \mathbf{P h}\left(\mathbf{4}^{\prime}-\mathrm{Cl}\right) \mathbf{1 7}$

General Procedure A was followed using Cbz-Arg($N, N-$ diBoc)-Ala-OH 10 ($60 \mathrm{mg}, 0.103 \mathrm{mmol}$) and $\mathrm{HCl} . \mathrm{NH}_{2}-\mathrm{Sta}-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}\left(4{ }^{\prime}-\mathrm{Cl}\right) \mathbf{1 4}(72 \mathrm{mg}, 0.207 \mathrm{mmol})$ to obtain a crude residue. The oil was subjected to silica chromatography gradient eluting with $100 \% \mathrm{DCM}$ to $10 \% \mathrm{MeOH} / \mathrm{DCM}$ to obtain 17 as an oil ($58 \mathrm{mg}, 64 \%$). Chemical characterisation data was identical to that previously described. ${ }^{1}$

General Procedure C

Cbz-Arg($\mathbf{N H}_{2}$)-Ala-Sta-NH(CH2 $)_{2} \mathbf{P h}\left(4{ }^{\prime}-\mathrm{Cl}\right)$.TFA 1

A mixture of $\mathrm{Cbz}-\mathrm{Arg}(N, N-\mathrm{diBoc})-\mathrm{Ala}-\mathrm{Sta}-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}\left(4^{\prime}-\mathrm{Cl}\right) 17(44 \mathrm{mg}, 0.050 \mathrm{mmol})$, in TFA (0.4 $\mathrm{mL})$ and $\mathrm{DCM}(0.4 \mathrm{~mL})$ was allowed to stir for 18 h at $20^{\circ} \mathrm{C}$. The reaction mixture was concentrated to dryness in vacuo. The oil was triturated with $\mathrm{Et}_{2} \mathrm{O}$ and the supernatant decanted to obtain $\mathbf{1}$ as a solid ($30 \mathrm{mg}, 76 \%$). ${ }^{1} \mathrm{H}$ NMR and HRMS were identical to that previously described. ${ }^{1}{ }^{13} \mathrm{C}$ NMR (75 MHz , MeOD, 325 K , rotamers) $\delta 174.93,174.75,174.22,174.07,158.78,139.37,137.99,133.17,131.38$, $129.50,129.10,128.85,71.66,71.41,67.97,56.28,56.01,52.75,51.13,50.84,42.06,41.71,41.62$, $41.33,35.80,35.60,30.38,30.22,26.25,26.11,26.01,25.91,23.64,23.58,22.44,22.28,18.12,17.99$. IR ($\left.\mathrm{cm}^{-1}\right) v 3339(\mathrm{NH}), 2957(\mathrm{CH}), 1637(\mathrm{C}=\mathrm{O})$.

Cbz-NCH3-Orn(NPhth)-OH 38

Compound $\mathbf{3 8}$ was synthesised according to previously described procedure. ${ }^{2}$

Boc-Ala-Sta-NH(CH2 $)_{2} \mathbf{P h}\left(\mathbf{4}^{\prime}-\mathrm{Cl}\right) \mathbf{3 9}$

General Procedure A was followed using Boc-L-Ala-OH (150 mg, 0.793 mmol) and $\mathrm{HCl} \cdot \mathrm{NH}_{2}$-Sta$\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}\left(4^{\prime}-\mathrm{Cl}\right) \mathbf{1 4}(346 \mathrm{mg}, 0.991 \mathrm{mmol})$ to obtain a crude residue. The crude residue was subjected to silica chromatography gradient eluting with 100% DCM to $10 \% \mathrm{MeOH} / \mathrm{DCM}$ to obtain 39 as a solid ($242 \mathrm{mg}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{MeOD}, 325 \mathrm{~K}$) $\delta 7.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.07-3.85(\mathrm{~m}, 3 \mathrm{H}), 3.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.21(\mathrm{~m}, 2 \mathrm{H})$, $1.67-1.47(\mathrm{~m}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.32(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{dd}, J=6.5,4.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{MeOD}, 325 \mathrm{~K}) \delta 175.89,173.91,157.76,139.37,133.18,131.39,129.50,80.97,71.18,52.38$, 52.15, 42.07, 41.76, 41.67, 35.75, 28.77, 25.91, 23.54, 22.48, 18.17. IR (cm^{-1}) v $3321(\mathrm{NH}), 2953$ $(\mathrm{CH}), 1691(\mathrm{C}=\mathrm{O}) . \mathrm{MS}, m / z=484.3[\mathrm{M}+\mathrm{H}]^{+}$.

Cbz-NCH $\mathbf{3}^{-} \mathbf{O r n}(\mathbf{P h t h})$-Ala-Sta-NH($\left.\mathbf{C H}_{2}\right)_{2} \mathbf{P h}\left(\mathbf{4}^{\prime} \mathbf{C l}\right) \mathbf{4 1}$

General Procedure B was followed using Boc-Ala-Sta-NH($\left.\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}\left(4^{\prime}-\mathrm{Cl}\right) 39$ ($273 \mathrm{mg}, 0.564 \mathrm{mmol}$), and 4 NHCl in dioxane $(1.5 \mathrm{~mL})$ to obtain $\mathrm{HCl} . \mathrm{NH}_{2}$-Ala- $\mathrm{Sta}-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}\left(4^{\prime}-\mathrm{Cl}\right) 40$ as a crude oil (235 $\mathrm{mg}, 99 \%$). General Procedure A was then followed using Cbz-NCH N_{3}-Orn(NPhth)-OH 38 (175 mg , 0.426 mmol), $\mathrm{HCl} \cdot \mathrm{NH}_{2}$-Ala- $\mathrm{Sta}-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}\left(4{ }^{\prime}-\mathrm{Cl}\right) 40(222 \mathrm{mg}, 0.529 \mathrm{mmol})$ and TFFH (146 mg , 0.554 mmol) (in place of HBTU), to obtain 41 as a an oil ($328 \mathrm{mg}, 99 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{MeOD}$, $325 \mathrm{~K}) \delta 7.87-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.11(\mathrm{~m}, 9 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 4.75-4.65(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.97-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.89$ $(\mathrm{s}, 3 \mathrm{H}), 2.77(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.26-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.43(\mathrm{~m}, 6 \mathrm{H}), 1.41-1.27(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}$, $J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{MeOD}, 325 \mathrm{~K}$) $\delta 174.76,173.86,172.97,169.89,139.38,137.97$, $135.34,133.40,133.15,131.39,129.51,129.49,129.10$, 128.91, 124.14, 71.19, 68.75, 59.89, 52.38, $51.19,41.91,41.76,41.68,38.25,35.77,31.11,27.0426 .22,25.93,23.54,22.47,17.99$. IR ($\left.\mathrm{cm}^{-1}\right) v$ $3307(\mathrm{NH}), 2953(\mathrm{CH}), 1708-1648(\mathrm{C}=\mathrm{O}) . \mathrm{MS}, m / z=776.3[\mathrm{M}+\mathrm{H}]^{+}$.

Cbz-NCH3 $-\mathrm{Arg}(\mathbf{N}, \mathrm{N} \text {-diBoc)-Ala-Sta-NH(CH2 })_{2} \mathbf{P h}\left(\mathbf{4}^{\prime} \mathrm{Cl}\right) 42$

A mixture of $\mathrm{Cbz}-\mathrm{NCH}_{3}$-Orn(NPhth)-Ala-Sta- $\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}\left(4^{\prime} \mathrm{Cl}\right) 41(116 \mathrm{mg}, 0.149 \mathrm{mmol})$ and hydrazine monohydrate ($15 \mu \mathrm{~L}, 0.299 \mathrm{mmol}$) in $\mathrm{EtOH}(4.5 \mathrm{~mL})$ was allowed to stir for 18 h at $20^{\circ} \mathrm{C}$. The reaction mixture was concentrated to dryness in vacuo to obtain the unprotected residue as a crude oil ($96 \mathrm{mg}, 99 \%$). The crude oil was dissolved in DCM (3 mL), THF (1 mL) and $\mathrm{Et}_{3} \mathrm{~N}(42 \mu \mathrm{~L}, 0.302$ mmol) was added. The solution was stirred vigorously for 5 min . N, N^{\prime} '-Bis-Boc-1-guanylpyrazole (94 $\mathrm{mg}, 0.302 \mathrm{mmol}$) was added and the solution was allowed to stir for 18 h at $20^{\circ} \mathrm{C}$. The reaction mixture
was concentrated to dryness in vacuo to obtain a crude residue. The crude residue was subjected to silica chromatography gradient eluting with 100% DCM to $10 \% \mathrm{MeOH} / \mathrm{DCM}$ to obtain 42 as an oil (40 $\mathrm{mg}, 20 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.46(\mathrm{~s}, 1 \mathrm{H}), 8.36-8.27(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.23$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.18-$ $5.13(\mathrm{~m}, 2 \mathrm{H}), 4.61-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.23(\mathrm{~m}, 1 \mathrm{H}), 3.99-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.55$ - 3.28 (m, 4H), $2.86(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.33-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.83$ (m, 2H), $1.77-$ $1.42(\mathrm{~m}, 22 \mathrm{H}), 1.37-1.27(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{dd}, J=6.1,3.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 325 \mathrm{~K}\right)$ $\delta 172.42,172.15,170.76,163.37,156.24,153.47,137.54,136.49,132.47,130.20,128.82,128.73$, $128.36,128.05,83.44,79.59,70.55,68.00,59.04,51.04,50.13,41.38,40.77,40.62,35.14,30.47$, 28.47, 28.23, 25.97, 25.55, 25.05, 23.13, 22.31, 18.23. IR (cm^{-1}) v $3325(\mathrm{NH}), 2956(\mathrm{CH}), 1640(\mathrm{C}=\mathrm{O})$. $\mathrm{MS}, m / z=888.4[\mathrm{M}+\mathrm{H}]^{+}$.

$\mathbf{C b z}-\mathrm{NCH}_{3}-\mathrm{Arg}\left(\mathrm{NH}_{2}\right)$-Ala-Sta-NH(CH2) $\mathbf{2} \mathbf{P h}\left(\mathbf{4}^{\prime} \mathbf{C l}\right)$.TFA 2

General Procedure C was followed using Cbz- $\mathrm{NCH}_{3}-\mathrm{Arg}\left(\mathrm{N}, \mathrm{N} \text {-diBoc)-Ala-Sta-NH(} \mathrm{CH}_{2}\right)_{2} \mathrm{Ph}\left(4{ }^{\prime} \mathrm{Cl}\right) 42$ ($30 \mathrm{mg}, 0.034 \mathrm{mmol}$), to obtain 2 as an oil ($25 \mathrm{mg}, 92 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{MeOD}$, rotamers) $\delta 7.42$ $-7.15(\mathrm{~m}, 9 \mathrm{H}), 5.24-5.09(\mathrm{~m}, 2 \mathrm{H}), 4.74-4.57(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.99-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.46-$ $3.35(\mathrm{~m}, 2 \mathrm{H}), 3.25-3.10(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.95$ (br s, 1H), $1.82-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.45-1.27(\mathrm{~m}, 4 \mathrm{H}), 1.01-0.83(\mathrm{~m}, 6 \mathrm{H})$. IR (cm^{-} $\left.{ }^{1}\right) v 3292(\mathrm{NH}), 2957(\mathrm{CH}), 1651(\mathrm{C}=\mathrm{O}) . \mathrm{MS}, m / z=688.3[\mathrm{M}+\mathrm{H}]^{+}$. HRMS found: $(\mathrm{M}+\mathrm{H}) 688.3593$; $\mathrm{C}_{34} \mathrm{H}_{50} \mathrm{ClN}_{7} \mathrm{O}_{6}$ requires $(\mathrm{M}+\mathrm{H}), 688.3589$.

Cbz-Orn(N -Boc)- NCH_{3}-Ala-OMe 23

General Procedure A was followed using Cbz-Orn(N-Boc)-OH 21 ($200 \mathrm{mg}, 0.546 \mathrm{mmol}$), and $\mathrm{HCl} . \mathrm{NH}\left(\mathrm{CH}_{3}\right)$-Ala-OMe $19(168 \mathrm{mg}, 1.09 \mathrm{mmol})$ to obtain a crude residue. The crude residue was subjected to silica chromatography gradient eluting with $100 \% \mathrm{DCM}$ to $10 \% \mathrm{MeOH} / \mathrm{DCM}$ to obtain 23 as an oil ($102 \mathrm{mg}, 40 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.39-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H})$, 5.23 (q, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 4.77-4.55(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{~s}, 2 \mathrm{H}), 2.99 \& 2.83(2 \mathrm{~s}$, $3 \mathrm{H}), 1.87-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.31(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 325 \mathrm{~K}$, rotamers) $\delta 172.38$, $171.92,156.12,136.60,128.58,128.18,128.09,108.00,79.25,67.71,67.02,52.50,52.28,50.90$, $40.44,31.21,30.15,29.30,28.53,25.60,24.01,14.16$. IR ($\left.\mathrm{cm}^{-1}\right) v 3330(\mathrm{NH}), 2975(\mathrm{CH}), 1709(\mathrm{C}=\mathrm{O})$. $\mathrm{MS}, m / z=466.4[\mathrm{M}+\mathrm{H}]^{+}$.

Cbz-Orn(N-Boc)-NCH $\left.\mathbf{3}^{-A l a-S t a-N H\left(C_{2}\right.}\right)_{2} \mathbf{P h}\left(\mathbf{4}^{\prime}-\mathrm{Cl}\right) \mathbf{3 0}$

A mixture of Cbz-Orn(N -Boc)- NCH_{3}-Ala-OMe 23 ($80 \mathrm{mg}, 0.172 \mathrm{mmol}$), and LiOH hydrate (18 mg , $0.430 \mathrm{mmol})$ in a mixture of water $(0.8 \mathrm{~mL})$ and THF (2.4 mL) was allowed to stir for 3 h at $20^{\circ} \mathrm{C}$. 10% Citric acid solution was added to the reaction mixture. The solution was extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with brine (20 mL) and dried with MgSO_{4}. The solvent was concentrated in vacuo to obtain Cbz-Orn(N-Boc)- NCH_{3}-Ala-OH 27 as a light yellow oil (77 mg, 99\%). General Procedure A was then followed using Cbz-Orn(N-Boc)- NCH_{3}-Ala-OH 27 (77 $\mathrm{mg}, 0.171 \mathrm{mmol})$, and $\mathrm{HCl} . \mathrm{NH}_{2}-\mathrm{Sta}-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}\left(4^{\prime}-\mathrm{Cl}\right) \mathbf{1 4}(101 \mathrm{mg}, 0.290 \mathrm{mmol})$ to obtain a crude residue. The crude residue was subjected to silica chromatography gradient eluting with $100 \% \mathrm{DCM}$ to $10 \% \mathrm{MeOH} / \mathrm{DCM}$ to obtain 30 as an oil ($74 \mathrm{mg}, 58 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.38-$ $7.27(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.50(\mathrm{~m}, 1 \mathrm{H}), 6.42-6.21(\mathrm{~m}, 1 \mathrm{H}), 6.04$ $-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.00(\mathrm{~m}, 2 \mathrm{H}), 5.00-4.88(\mathrm{~m}, 1 \mathrm{H}), 4.82-4.43(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.77(\mathrm{~m}, 2 \mathrm{H})$, $3.56-3.27(\mathrm{~m}, 3 \mathrm{H}), 3.19-3.04(\mathrm{~m}, 2 \mathrm{H}), 3.03-2.69(\mathrm{~m}, 7 \mathrm{H}), 2.38-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.27(\mathrm{~m}$, $19 \mathrm{H}), 0.93-0.77(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 325 \mathrm{~K}$, rotamers) $\delta 173.50,172.99,172.73$, $172.36,172.02,171.28,171.12,170.22,161.86,157.35,156.92,156.30,156.24,137.63,137.45$, $136.50,136.20,132.46,132.32,130.25,130.19,130.16,129.11,128.79,128.70,128.67,128.63$, $128.35,128.27,128.13,127.99,79.49,70.99,70.75,70.31,67.58,67.30,67.11,55.81,53.38,53.23$, $52.05,51.46,51.40,51.34,51.10,50.45,46.46,41.44,40.96,40.60,39.96,35.05,31.19,30.98,30.07$, $29.75,29.40,29.20,28.55,27.04,26.28,25.79,25.03,23.14,22.23,22.01,15.25,13.85,13.72$. IR (cm^{-} $\left.{ }^{1}\right) v 3306(\mathrm{NH}), 2956(\mathrm{CH}), 1647(\mathrm{C}=\mathrm{O}) . \mathrm{MS}, m / z=746.5[\mathrm{M}+\mathrm{H}]^{+}$.

General Procedure B was followed using Cbz-Orn(N-Boc)- NCH_{3}-Ala-Sta-NH $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}(4$ ' -Cl$) 30$ (56 $\mathrm{mg}, 0.075 \mathrm{mmol})$, and 4 N HCl in dioxane $(0.5 \mathrm{~mL})$ to obtain the unprotected residue as a crude oil. The crude oil ($45 \mathrm{mg}, 0.066 \mathrm{mmol}$) was dissolved in $\mathrm{DCM}(2 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(12 \mu \mathrm{~L}, 0.086 \mathrm{mmol})$ was added. The solution was stirred vigorously for 5 min . N, N^{\prime} '-Bis-Boc-1-guanylpyrazole ($27 \mathrm{mg}, 0.086$ mmol) was added and the solution was allowed to stir for 18 h at $20^{\circ} \mathrm{C}$. The reaction mixture was concentrated to dryness in vacuo to obtain a crude residue. The crude residue was subjected to silica chromatography gradient eluting with 100% DCM to $10 \% \mathrm{MeOH} / \mathrm{DCM}$ to obtain 33 as an oil (50 mg , $85 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 11.48(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.24-$ $7.17(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.66(\mathrm{~m}, 1 \mathrm{H}), 6.51-6.20(\mathrm{~m}, 1 \mathrm{H}), 6.01-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.14$ - $5.01(\mathrm{~m}, 2 \mathrm{H}), 5.01-4.88(\mathrm{~m}, 1 \mathrm{H}), 4.79-4.45(\mathrm{~m}, 1 \mathrm{H}), 4.03-3.79(\mathrm{~m}, 3 \mathrm{H}), 3.55-3.27(\mathrm{~m}, 4 \mathrm{H})$,
$3.04-2.70(\mathrm{~m}, 5 \mathrm{H}), 2.34-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.29(\mathrm{~m}, 28 \mathrm{H}), 0.97-0.77(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}, 325 \mathrm{~K}$, rotamers) $\delta 173.30,172.76,172.36,172.09,171.86,171.08,170.08,163.48$, $163.30,156.38,156.32,153.50,153.43,137.65,137.50,136.50,136.17,132.46,132.35,130.20$, $130.17,128.81,128.72,128.69,128.65,128.37,128.26,128.13,128.01,83.47,79.68,79.56,71.01$, $70.79,70.35,70.21,67.62,67.37,67.16,55.94,53.58,53.02,52.01,51.52,51.40,51.15,51.04,50.67$, 41.63, 41.04, 40.55, 40.30, 35.10, 31.36, 31.18, 31.04, 29.98, 29.76, 29.31, 28.43, 28.20, 25.58, 25.28, 25.06, 23.16, 23.09, 22.25, 15.19, 13.78, 13.67. IR (cm^{-1}) v $3324(\mathrm{NH}), 2956(\mathrm{CH}), 1638(\mathrm{C}=\mathrm{O}) . \mathrm{MS}$, $m / z=888.5[\mathrm{M}+\mathrm{H}]^{+}$.

$\mathbf{C b z}-\mathrm{Arg}\left(\mathrm{NH}_{2}\right)-\mathrm{NCH}_{3}$-Ala-Sta-NH(CH2$)_{2} \mathbf{P h}\left(4{ }^{\prime}-\mathrm{Cl}\right)$.TFA 3

General Procedure C was followed using Cbz-Arg($N, N-\mathrm{diBoc})-\mathrm{NCH}_{3}$ - $\mathrm{Ala}-\mathrm{Sta-NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}\left(4^{\prime}-\mathrm{Cl}\right) 33$ ($40 \mathrm{mg}, 0.045 \mathrm{mmol}$), to obtain 3 as a solid ($35 \mathrm{mg}, 97 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{MeOD}$, rotamers) δ $7.43-7.13(\mathrm{~m}, 9 \mathrm{H}), 5.16-4.90(\mathrm{~m}, 3 \mathrm{H}), 4.66-4.53(\mathrm{~m}, 1 \mathrm{H}), 4.04-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.46-3.33(\mathrm{~m}$, $2 \mathrm{H}), 3.26-3.05(\mathrm{~m}, 4 \mathrm{H}), 2.82-2.70(\mathrm{~m}, 3 \mathrm{H}), 2.31-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.27(\mathrm{~m}, 10 \mathrm{H}), 1.01-0.81$ $(\mathrm{m}, 6 \mathrm{H})$. IR $\left(\mathrm{cm}^{-1}\right) v 3306(\mathrm{NH}), 2956(\mathrm{CH}), 1634(\mathrm{C}=\mathrm{O}) . \mathrm{MS}, m / z=688.5[\mathrm{M}+\mathrm{H}]^{+}$. HRMS found: $(\mathrm{M}+\mathrm{H}) 688.3589 ; \mathrm{C}_{34} \mathrm{H}_{50} \mathrm{ClN}_{7} \mathrm{O}_{6}$ requires $(\mathrm{M}+\mathrm{H}), 688.3589$.

Boc-Sta(oxazolidine)-OBz 44

A mixture of $\operatorname{Boc}-\operatorname{Sta}(3 S, 4 S)-\mathrm{OH}(300 \mathrm{mg}, 1.09 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(196 \mathrm{mg}, 1.42 \mathrm{mmol})$ and benzyl bromide ($143 \mu \mathrm{~L}, 1.20 \mathrm{mmol}$) in DMF (2.5 mL) was allowed to stir for 3.5 h at $20^{\circ} \mathrm{C} .10 \%$ Citric acid solution was added to the reaction mixture. The solution was extracted with EtOAc ($2 \times 20 \mathrm{~mL}$). The combined organic layers were washed with saturated NaHCO_{3} solution (2 x 10 mL). The organic layer was washed with water (20 mL), dried with MgSO_{4} and the solvent was concentrated in vacuo to obtain Boc-Sta-OBz as a colourless oil ($380 \mathrm{mg}, 95 \%$). A mixture of the crude Boc-Sta-OBz (370 mg , 1.01 mmol) and PTSA ($17 \mathrm{mg}, 0.101 \mathrm{mmol}$) in anhydrous toluene $(6 \mathrm{~mL})$ was heated to reflux for 4 h . Paraformaldehyde (50 mg) was added to the refluxing solution every 20 min , allowing the solution to clear before each subsequent addition. The reaction mixture was filtered while warm through a bed of Celite and the filtrate was concentrated to dryness in vacuo to obtain a crude residue. The crude residue was subjected to silica chromatography gradient eluting with $100 \% \mathrm{DCM}$ to $10 \% \mathrm{MeOH} / \mathrm{DCM}$ to obtain 44 as an oil ($180 \mathrm{mg}, 47 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 325 \mathrm{~K}$) $\delta 7.40-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.15(\mathrm{~s}$, 2H), $5.09(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{td}, J=6.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.74(\mathrm{~m}$, $1 \mathrm{H}), 2.60(\mathrm{qd}, J=15.4,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.41-1.34(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{t}, J=$
$6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 325 \mathrm{~K}$) $\delta 170.26,153.44,135.96,128.76,128.48,128.43$, $80.59,79.60,77.82,66.76,58.85,42.49,38.92,28.60,25.21,23.25,22.53$. IR ($\left.\mathrm{cm}^{-1}\right) v 2958(\mathrm{CH})$, 1737-1701 (C=O). MS, $m / z=278.3[\mathrm{M}+\mathrm{H}]^{+}$.

Boc- $\mathrm{Sta}($ oxazolidine $)-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathbf{P h}\left(\mathbf{4}^{\prime}-\mathrm{Cl}\right) 46$

A mixture of Boc-Sta(oxazolidine)-OBz 44 ($290 \mathrm{mg}, 0.768 \mathrm{mmol}$), and LiOH hydrate ($161 \mathrm{mg}, 3.84$ $\mathrm{mmol})$ in a mixture of water $(3 \mathrm{~mL})$ and THF $(9 \mathrm{~mL})$ was allowed to stir for 18 h at $50^{\circ} \mathrm{C}$. Water (20 mL) was added to the reaction mixture. The solution was extracted with EtOAc ($2 \times 10 \mathrm{~mL}$). The aqueous layer was acidified with 10% citric acid solution and extracted with EtOAc ($2 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine $(20 \mathrm{~mL})$ and dried with MgSO_{4}. The solvent was concentrated in vacuo to obtain Boc-Sta(oxazolidine)-OH 45 as a crude oil ($219 \mathrm{mg}, 99 \%$). General Procedure A was then followed using the crude Boc-Sta(oxazolidine)-OH 45 ($200 \mathrm{mg}, 0.696 \mathrm{mmol}$), and 2-(4-chlorophenyl)-ethylamine ($193 \mu \mathrm{~L}, 1.39 \mathrm{mmol}$) to obtain a crude residue. The crude residue was subjected to silica chromatography gradient eluting with $100 \% \mathrm{DCM}$ to $10 \% \mathrm{MeOH} / \mathrm{DCM}$ to obtain 46 as a solid ($185 \mathrm{mg}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.08(\mathrm{~m}$, 2H), $6.08(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{td}, J=6.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 1 \mathrm{H})$, $3.56-3.38(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.71-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}$, $9 \mathrm{H}), 1.39-1.28(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{t}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 325 \mathrm{~K}\right) \delta 169.79,153.56$, $137.49,132.61,130.24,128.88,80.75,80.52,77.76,58.92,42.48,40.82,40.65,35.22,28.56,25.09$, 23.31, 22.49. IR (cm^{-1}) v $3262(\mathrm{NH})$, 2951-2858 (CH), $1710(\mathrm{C}=\mathrm{O}) . \mathrm{MS}, m / z=425.3[\mathrm{M}+\mathrm{H}]^{+}$.

$\mathbf{N H}\left(\mathbf{C H}_{3}\right)$-Sta- $\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathbf{P h}\left(4{ }^{\mathbf{\prime}}-\mathbf{C l}\right)$.TFA 47

To a stirred solution of Boc-Sta(oxazolidine) $-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}\left(4^{\prime}-\mathrm{Cl}\right) 46(95 \mathrm{mg}, 0.224 \mathrm{mmol})$ in DCM $(1.5 \mathrm{~mL})$, was added $\mathrm{Et}_{3} \mathrm{SiH}(140 \mu \mathrm{~L}, 0.876 \mathrm{mmol})$ and TFA $(1.5 \mathrm{~mL}, 19.6 \mathrm{mmol})$. The reaction mixture was allowed to stir for 18 h at $20^{\circ} \mathrm{C}$. The solvent was concentrated to dryness in vacuo to obtain 47 as an oil ($97 \mathrm{mg}, 98 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{MeOD}$, rotamers) $\delta 7.31-7.17$ (m, 4H), $4.09-$ $4.00(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.16-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.74-2.42(\mathrm{~m}$, $5 \mathrm{H})^{*}, 1.77-1.41(\mathrm{~m}, 3 \mathrm{H}), 1.05-0.91(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right) v 2960(\mathrm{CH}), 1671(\mathrm{C}=\mathrm{O}) . \mathrm{m} / \mathrm{z}=327.3[\mathrm{M}+$ $\mathrm{H}]^{+}$. *The N -methyl was found to under intergate by 20%.

Cbz-Orn(N-Boc)-Ala-OMe 22

General Procedure A was followed using Cbz-Orn(N-Boc)-OH 21 ($500 \mathrm{mg}, 1.36 \mathrm{mmol}$) and $\mathrm{HCl} . \mathrm{NH}_{2}-$ Ala-OMe ($381 \mathrm{mg}, 2.73 \mathrm{mmol}$) to obtain a crude residue. The crude residue was subjected to silica chromatography gradient eluting with 100% DCM to $10 \% \mathrm{MeOH} / \mathrm{DCM}$ to obtain 22 as a solid (531 $\mathrm{mg}, 86 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 325 \mathrm{~K}$) $\delta 7.32-7.17(\mathrm{~m}, 5 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{NH}$), $5.04(\mathrm{~s}, 2 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{p}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.23-2.95(\mathrm{~m}$, $2 \mathrm{H}), 1.88-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 1.31(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 325 \mathrm{~K}\right) \delta 173.01,171.75,156.42,156.30,136.45,128.43,128.02,127.91,79.11,66.89$, 54.05, 52.19, 48.05, 39.67, 30.17, 28.43, 26.04, 17.65. IR (cm^{-1}) v 3309 (NH), 2954 (CH), 1691-1656 $(\mathrm{C}=\mathrm{O}) . \mathrm{MS}, m / z=452.3[\mathrm{M}+\mathrm{H}]^{+}$.

Cbz-Arg(\mathbf{N}, \mathbf{N}-diBoc)-Ala-NCH3-Sta-NH(CH2 $)_{2} \mathrm{Ph}\left(\mathbf{4}^{\prime}-\mathrm{Cl}\right) 49$

A mixture of Cbz-Orn(N-Boc)-Ala-OMe 22 ($300 \mathrm{mg}, 0.664 \mathrm{mmol}$), and LiOH hydrate ($70 \mathrm{mg}, 1.66$ $\mathrm{mmol})$ in a mixture of water (3 mL) and THF (9 mL) was allowed to stir for 3 h at $20^{\circ} \mathrm{C} .10 \%$ Citric acid solution was added to the reaction mixture. The solution was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine (20 mL) and dried with MgSO_{4}. The solvent was concentrated in vacuo to obtain Cbz-Orn(N-Boc)-Ala-OH 26 as an oil ($288 \mathrm{mg}, 99 \%$). General Procedure A was then followed using Cbz-Orn(N-Boc)-Ala-OH 26 ($80 \mathrm{mg}, 0.183 \mathrm{mmol}$), and $\mathrm{NH}\left(\mathrm{CH}_{3}\right)-\mathrm{Sta}-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}\left(4^{\prime}-\mathrm{Cl}\right)$.TFA $47(97 \mathrm{mg}, 0.219 \mathrm{mmol})$, to obtain a crude residue. The crude residue was subjected to silica chromatography gradient eluting with $100 \% \mathrm{DCM}$ to $10 \% \mathrm{MeOH} / \mathrm{DCM}$ to obtain Cbz-Orn(N -Boc)-Ala- $\mathrm{NCH}_{3}-\mathrm{Sta}-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}\left(4^{\prime}-\mathrm{Cl}\right) 48$ as an oil. The resulting oil $(60 \mathrm{mg})$ was subsequently dissolved in 4 N HCl in dioxane (1 mL) and allowed to stir for 5 h at $20^{\circ} \mathrm{C}$. The reaction mixture was concentrated to dryness in vacuo. The oil was triturated with $\mathrm{Et}_{2} \mathrm{O}$ and decanted off to obtain $\mathrm{Cbz}-\mathrm{Orn}\left(\mathrm{NH}_{2} \cdot \mathrm{HCl}\right)-\mathrm{Ala}-\mathrm{NCH}_{3}-\mathrm{Sta}-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}\left(4{ }^{\prime}-\mathrm{Cl}\right)$ as a solid $(50 \mathrm{mg}, 91 \%)$. The solid was dissolved in $\mathrm{DCM}(2 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(13 \mu \mathrm{~L}, 0.095 \mathrm{mmol})$ was added. The solution was stirred vigorously for 5 min . N, N '-Bis-Boc-1-guanylpyrazole ($30 \mathrm{mg}, 0.095 \mathrm{mmol}$) was added and the solution allowed to stir for 18 h at $20^{\circ} \mathrm{C}$. The reaction mixture was concentrated to dryness in vacuo to obtain a crude residue. The crude residue was subjected to silica chromatography gradient eluting with 100% DCM to $10 \% \mathrm{MeOH} / \mathrm{DCM}$ to obtain 49 as an oil ($30 \mathrm{mg}, 46 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 11.57-11.38(\mathrm{~m}, 1 \mathrm{H}), 8.54-8.29(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.04(\mathrm{~m}$, $2 \mathrm{H}), 7.03-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.76-6.49(\mathrm{~m}, 1 \mathrm{H}), 6.17-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.17-4.93(\mathrm{~m}, 2 \mathrm{H}), 4.65-3.80$ $(\mathrm{m}, 5 \mathrm{H}), 3.54-3.25(\mathrm{~m}, 4 \mathrm{H}), 3.11-2.61(\mathrm{~m}, 5 \mathrm{H})^{*}, 2.35-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.05(\mathrm{~m}, 28 \mathrm{H}), 0.99-$
$0.76(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 325 \mathrm{~K}\right.$, rotamers) $\delta 174.00,172.51,172.37,172.02,156.49$, $153.43,137.71,137.64,137.48,136.53,136.34,132.57,132.43,130.26,130.21,128.87,128.81$, 128.73, 128.67, 128.44, 128.38, 128.26, 128.22, 128.15, 128.05, 83.59, 83.38, 79.87, 79.53, 70.78, $70.69,67.44,67.33,67.20,55.91,55.16,51.48,51.22,50.42,49.60,46.17,41.18,40.90,40.69,40.63$, $40.49,40.35,37.45,35.18,31.41,29.32,28.46,28.25,28.09,26.52,25.78,25.25,25.06,24.87,23.33$, 23.24, 23.19, 22.37, 22.23, 18.09, 17.92. IR (cm^{-1}) v $3323(\mathrm{NH}), 2957(\mathrm{CH}), 1639(\mathrm{C}=\mathrm{O}) . \mathrm{MS}, m / z=$ $888.4[\mathrm{M}+\mathrm{H}]^{+}$. *The N-methyl was found to under intergate by 20%.

$\mathbf{C b z}-\mathrm{Arg}\left(\mathrm{NH}_{2}\right)$-Ala- NCH_{3} - $\mathrm{Sta-NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}\left(4{ }^{\prime}-\mathrm{Cl}\right)$.TFA 4

General Procedure C was followed using Cbz- $\mathrm{Arg}(N, N-\mathrm{diBoc})$-Ala- $\mathrm{NCH}_{3}-\mathrm{Sta}-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}\left(4^{\prime}-\mathrm{Cl}\right) 49$ ($20 \mathrm{mg}, 0.023 \mathrm{mmol}$), to obtain 4 as an oil ($18 \mathrm{mg}, 99 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{MeOD}$, rotamers) $\delta 7.43$ $-7.12(\mathrm{~m}, 9 \mathrm{H}), 5.19-4.99(\mathrm{~m}, 2 \mathrm{H}), 4.43-3.81(\mathrm{~m}, 3 \mathrm{H}), 3.50-3.35(\mathrm{~m}, 2 \mathrm{H}), 3.25-3.11(\mathrm{~m}, 2 \mathrm{H})$, $2.89-2.67(\mathrm{~m}, 5 \mathrm{H})^{*}, 2.34-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.24(\mathrm{~m}, 10 \mathrm{H}), 1.05-0.78(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{IR}\left(\mathrm{cm}^{-1}\right) v 3291$ (NH), $2963(\mathrm{CH}), 1651(\mathrm{C}=\mathrm{O}) . \mathrm{MS}, m / z=688.3[\mathrm{M}+\mathrm{H}]^{+}$. HRMS found: $(\mathrm{M}+\mathrm{H}) 688.3565$; $\mathrm{C}_{34} \mathrm{H}_{50} \mathrm{ClN}_{7} \mathrm{O}_{6}$ requires $(\mathrm{M}+\mathrm{H}), 688.3589$. *The N-methyl was found to under intergate by 20%.

Boc-Sta-NCH $\mathbf{3}^{\left(\mathbf{C H}_{2}\right)_{2} \mathbf{P h}\left(\mathbf{4}^{\prime}-\mathrm{Cl}\right) \mathbf{1 2}}$

General Procedure A was followed using Boc-Sta(3S,4S)-OH ($160 \mathrm{mg}, 0.581 \mathrm{mmol}$), and 2-(4-chlorophenyl)- N-methylethanamine ($197 \mathrm{mg}, 1.16 \mathrm{mmol}$), to obtain 12 as a solid ($122 \mathrm{mg}, 50 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.33-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.07(\mathrm{~m}, 2 \mathrm{H}), 4.78(\mathrm{dd}, J=21.3,9.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.05-3.97 \& 3.75-3.68(2 \mathrm{~m}, 1 \mathrm{H}), 3.66-3.40(\mathrm{~m}, 4 \mathrm{H}), 2.95 \& 2.87(2 \mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.47-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.39-1.22(\mathrm{~m}$, $1 \mathrm{H}), 1.00-0.87(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 325 \mathrm{~K}$, rotamers) $\delta 173.38,173.15,156.30$, $137.53,136.45,133.09,132.58,130.35,130.26,130.00,129.42,129.17,128.86,79.13,70.13,69.98$, $52.55,51.46,49.73,42.25,37.33,36.52,36.09,34.23,33.57,33.28,28.61,28.59,25.02,23.16,23.12$, 22.51, 22.42. IR $\left(\mathrm{cm}^{-1}\right) v 3339(\mathrm{NH}), 2956(\mathrm{CH}), 1702-1624(\mathrm{C}=\mathrm{O}) . \mathrm{MS}, m / z=427.4[\mathrm{M}+\mathrm{H}]^{+}$.

Cbz-Arg(N, N-diBoc)-Ala-Sta-NCH $\mathbf{N}_{\mathbf{3}}\left(\mathrm{CH}_{2}\right)_{2} \mathbf{P h}\left(4{ }^{\prime}-\mathrm{Cl}\right) 18$

General Procedure B was followed using Boc-Sta- $\mathrm{NCH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}\left(4^{\prime}-\mathrm{Cl}\right) \mathbf{1 2}(82 \mathrm{mg}, 0.192 \mathrm{mmol})$, and 4 N HCl in dioxane $(0.5 \mathrm{~mL})$ to obtain $\mathrm{HCl} . \mathrm{NH}_{2}-\mathrm{Sta}^{-} \mathrm{NCH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}\left(4{ }^{\prime}-\mathrm{Cl}\right) 15$ as an oil $(53 \mathrm{mg}, 76 \%)$. General Procedure A was then followed using Cbz-Arg(N, N-diBoc)-Ala-OH 10 ($54 \mathrm{mg}, 0.093 \mathrm{mmol}$) and $\mathrm{HCl} . \mathrm{NH}_{2}-\mathrm{Sta}-\mathrm{NCH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}\left(4{ }^{\prime}-\mathrm{Cl}\right) \mathbf{1 5}(37 \mathrm{mg}, 0.102 \mathrm{mmol})$ to obtain a crude residue. The crude
residue was subjected to silica chromatography gradient eluting with $100 \% \mathrm{DCM}$ to $10 \% \mathrm{MeOH} / \mathrm{DCM}$ to obtain 18 as an oil ($53 \mathrm{mg}, 64 \%$). ${ }^{1} \mathrm{H}$ NMR and MS data was identical to that previously described. ${ }^{1}$ ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 325 \mathrm{~K}$, rotamers) $\delta 173.24,173.07,172.88,172.76,172.03,171.93,171.88$, $171.84,171.51,171.41,163.39,156.49,156.42,153.43,153.38,137.58,137.53,136.66,136.51$, $136.47,132.94,132.90,132.47,130.48,130.25,130.23,129.09,129.07,128.81,128.65,128.30$, 128.27, 128.20, 83.39, 79.55, 70.16, 70.00, 69.96, 69.81, 67.27, 67.20, 55.28, 55.01, 51.41, 51.34, $51.22,51.03,50.98,50.00,49.94,49.71,49.61,41.78,41.73,41.60,40.38,37.30,37.26,36.43,36.11$, $36.05,34.12,34.06,33.57,33.53,33.24,33.20,31.38,28.45,28.42,28.23,28.17,25.03,23.24,23.21$, 23.13, 22.49, 22.36, 22.24, 18.64, 18.59, 18.45. IR (cm^{-1}) v $3293(\mathrm{NH}), 2955(\mathrm{CH}), 1637(\mathrm{C}=\mathrm{O})$.

Cbz-Arg($\mathbf{N H}_{2}$)-Ala-Sta- $\mathrm{NCH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathbf{P h}\left(\mathbf{4}^{\prime}\right.$ - $\left.\mathbf{C l}\right)$.TFA 5

General Procedure C was followed using Cbz-Arg(N,N-diBoc)-Ala-Sta-NCH ${ }_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}\left(4{ }^{\prime}-\mathrm{Cl}\right) \mathbf{1 8}$ (40 $\mathrm{mg}, 0.045 \mathrm{mmol}$), to obtain 5 as an oil ($25 \mathrm{mg}, 70 \%$). The data was identical to that previously described. ${ }^{1}$

Cbz-Orn(N-Boc)-Val-OMe 24

A modified General Procedure A was followed using Cbz-Orn(N-Boc)-OH ($600 \mathrm{mg}, 1.64 \mathrm{mmol}$), and $\mathrm{HCl} . \mathrm{NH}_{2}$-Val-OMe ($412 \mathrm{mg}, 2.46 \mathrm{mmol}$). Once the coupling reaction was complete, it was quenched with 10% citric acid solution. The precipitate that formed was filtered off to give 24 as a solid (780 mg , 99%). The data was identical to that previously described. ${ }^{1}$

Boc-Sta-NH(CH2) $\mathbf{2}_{2} \mathrm{Ph} 13$

A modified General Procedure A was followed using Boc-Sta($3 S, 4 S$)-OH ($200 \mathrm{mg}, 0.726 \mathrm{mmol}$), and phenylethylamine $(182 \mu \mathrm{~L}, 1.45 \mathrm{mmol})$. Once the coupling reaction was complete, it was quenched with 10% citric acid solution. The precipitate that formed was filtered off to give $\mathbf{1 3}$ as a solid (273 mg , $99 \%)$. The data was identical to that previously described. ${ }^{1}$

HCl. NH_{2}-Sta-NH(CH2 $)_{2}$ Ph 16

General Procedure B was followed using Boc-Sta-NH $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph} 13(300 \mathrm{mg}, 793 \mathrm{mmol})$, to obtain 16 as a solid ($247 \mathrm{mg}, 99 \%$). The data was identical to that previously described. ${ }^{1}$

Cbz-Orn(\boldsymbol{N}-Boc)-Val-Sta-NH(CH2 $)_{2} \mathbf{P h} 31$

A mixture of Cbz-Orn(N-Boc)-Val-OMe 24 ($400 \mathrm{mg}, 0.834 \mathrm{mmol}$), and LiOH hydrate ($87 \mathrm{mg}, 2.09$ $\mathrm{mmol})$ in a mixture of water $(4 \mathrm{~mL})$ and THF (12 mL) was allowed to stir for 3 h at $20^{\circ} \mathrm{C} .10 \%$ Citric acid solution was added to the reaction mixture. The solution was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic layers were washed with brine (30 mL) and dried with MgSO_{4}. The solvent was concentrated in vacuo to obtain Cbz-Orn(N-Boc)-Val-OH 28 as an oil ($385 \mathrm{mg}, 99 \%$). General Procedure A was then followed using Cbz-Orn(N-Boc)-Val-OH 28 ($370 \mathrm{mg}, 0.795 \mathrm{mmol}$), and $\mathrm{HCl} . \mathrm{NH}_{2}-\mathrm{Sta}-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph} 13(300 \mathrm{mg}, 0.954 \mathrm{mmol})$ to obtain a crude residue. The crude residue was subjected to silica chromatography gradient eluting with $100 \% \mathrm{DCM}$ to $10 \% \mathrm{MeOH} / \mathrm{DCM}$ to obtain 31 as an oil ($220 \mathrm{mg}, 38 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 7.39-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.25-7.07(\mathrm{~m}$, $4 \mathrm{H}), 6.97-6.70(\mathrm{~m}, 1 \mathrm{H}), 6.57-6.30(\mathrm{~m}, 1 \mathrm{H}), 5.81-5.62(\mathrm{~m}, 1 \mathrm{H}), 5.17-4.94(\mathrm{~m}, 2 \mathrm{H}), 4.91-4.70$ $(\mathrm{m}, 1 \mathrm{H}), 4.32-4.01(\mathrm{~m}, 2 \mathrm{H}), 4.01-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.62-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.26-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.86-$ $2.72(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.02(\mathrm{~m}, 4 \mathrm{H}), 1.95-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.27(\mathrm{~m}, 15 \mathrm{H}), 0.97-0.77(\mathrm{~m}, 12 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 173.28,172.69,156.74,156.55,138.82,138.65,136.23$, 128.86, 128.72, 128.69, 128.37, 128.34, 128.15, 128.09, 126.65, 70.74, 70.58, 67.26, 67.14, 60.24, $59.14,54.86,54.57,51.54,51.40,41.47,41.02,40.82,40.71,40.16,39.85,35.53,35.45,30.35,30.12$, $29.83,29.68,28.58,28.57,24.89,23.33,23.30,22.11,21.98,19.64,18.32 . \operatorname{IR}\left(\mathrm{cm}^{-1}\right) v 3288(\mathrm{NH})$, $2962(\mathrm{CH}), 1640(\mathrm{C}=\mathrm{O}) . \mathrm{MS}, m / z=726.5[\mathrm{M}+\mathrm{H}]^{+}$.

Cbz-Arg(N, N-diBoc)-Val-Sta-NH(CH2 $)_{2} \mathbf{P h} 34$

General Procedure B was followed using Cbz-Orn(N-Boc)-Val-Sta-NH(CH2) $)_{2} \mathrm{Ph} 31$ (220 mg , 0.303 mmol), and 4 N HCl in dioxane (3.5 mL) to obtain $\mathrm{Cbz}-\mathrm{Orn}\left(\mathrm{NH}_{2} \cdot \mathrm{HCl}\right)-\mathrm{Val}-\mathrm{Sta}-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}$ as a crude oil ($199 \mathrm{mg}, 99 \%$). The crude residue ($40 \mathrm{mg}, 0.060 \mathrm{mmol}$) was dissolved in $\mathrm{DCM}(1 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}$ $(11 \mu \mathrm{~L}, 0.079 \mathrm{mmol})$ was added. The solution was stirred vigorously for $5 \mathrm{~min} . N, N$ '-Bis-Boc-1guanylpyrazole ($24 \mathrm{mg}, 0.079 \mathrm{mmol}$) was added and the solution was allowed to stir for 18 h at $20^{\circ} \mathrm{C}$. The reaction mixture was concentrated to dryness in vacuo to obtain a crude residue. The crude residue was subjected to silica chromatography gradient eluting with $100 \% \mathrm{DCM}$ to $10 \% \mathrm{MeOH} / \mathrm{DCM}$ to obtain 34 as an oil ($45 \mathrm{mg}, 86 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rotamers) $\delta 11.46(\mathrm{~s}, 1 \mathrm{H}), 8.44-8.30$ $(\mathrm{m}, 1 \mathrm{H}), 7.37-6.98(\mathrm{~m}, 12 \mathrm{H}), 6.90-6.69(\mathrm{~m}, 1 \mathrm{H}), 6.38-6.09(\mathrm{~m}, 1 \mathrm{H}), 5.13-4.83(\mathrm{~m}, 2 \mathrm{H}), 4.38-$ $4.17(\mathrm{~m}, 2 \mathrm{H}), 4.03-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.53-3.27(\mathrm{~m}, 4 \mathrm{H}), 2.84-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.17$ $-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.21(\mathrm{~m}, 26 \mathrm{H}), 0.99-0.79(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 325 \mathrm{~K}$, rotamers) $\delta 172.50,172.32,172.15,172.06,171.62,171.32,163.42,156.75,156.50,156.38,153.42$,
$139.15,139.13,136.34,128.85,128.81,128.66,128.64,128.33,128.28,128.16,128.04,126.53$, $126.51,83.36,79.56,77.36,70.65,70.55,67.31,67.17,59.86,59.44,55.65,55.05,51.43,41.28,41.17$, $40.82,40.74,40.45,40.29,35.82,35.78,31.37,30.68,30.34,29.90,28.96,28.44,26.18,25.52,25.05$, $25.02,23.24,23.20,22.21,22.13,19.60,19.57,18.28,18.11$. IR ($\left.\mathrm{cm}^{-1}\right) v 3287(\mathrm{NH}), 2961(\mathrm{CH}), 1636$ $(\mathrm{C}=\mathrm{O}) . \mathrm{MS}, m / z=868.5[\mathrm{M}+\mathrm{H}]^{+}$.

Cbz-Arg($\mathbf{N H}_{2}$)-Val-Sta-NH($\left.\mathbf{C H}_{2}\right)_{2}$ Ph.TFA 6

General Procedure C was followed using Cbz- $\left.\operatorname{Arg}(N, N-d i B o c)-V a l-S t a-N H\left(\mathrm{CH}_{2}\right)\right)_{2} \mathrm{Ph} 34(35 \mathrm{mg}, 0.040$ mmol), to obtain 6 as an oil ($30 \mathrm{mg}, 97 \%$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , MeOD, rotamers) $\delta 7.46-7.10$ (m , $10 \mathrm{H}), 5.17-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.38-4.08(\mathrm{~m}, 2 \mathrm{H}), 4.04-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.47-3.34(\mathrm{~m}, 2 \mathrm{H}), 3.26-3.10$ $(\mathrm{m}, 2 \mathrm{H}), 2.86-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.65-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.90-1.46(\mathrm{~m}$, $6 \mathrm{H}), 1.40-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.05-0.78(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, MeOD, rotamers) $\delta 174.73$, $174.51,174.01,173.97,173.60,173.47,158.61,158.48,158.40,140.50,138.05,137.97,129.89$, $129.60,129.37,129.18,128.97,128.80,127.47,127.19,71.65,71.49,71.41,71.25,67.83,60.95$, $60.82,60.68,60.54,56.38,56.26,55.91,55.77,52.98,52.82,52.70,52.55,42.25,42.13,42.09,41.97$, $41.69,41.61,41.54,41.28,41.06,40.97,40.86,36.72,36.55,36.52,36.38,31.74,31.60,31.42,31.28$, $30.36,30.24,30.11,26.38,26.26,26.00,25.90,25.79,23.80,23.76,23.71,22.31,22.28,22.13,22.10$, 20.00, 19.96, 19.90, 19.86, 18.71, 18.67, 18.62, 18.58. IR (cm^{-1}) v $3268(\mathrm{NH}), 2964(\mathrm{CH}), 1637(\mathrm{C}=\mathrm{O})$. MS, $m / z=668.4[\mathrm{M}+\mathrm{H}]^{+}$. HRMS found: $(\mathrm{M}+\mathrm{H}) 668.4133 ; \mathrm{C}_{35} \mathrm{H}_{53} \mathrm{~N}_{7} \mathrm{O}_{6}$ requires $(\mathrm{M}+\mathrm{H})$, 668.4136.

Cbz-Orn(N-Boc)-NCH3-Val-OMe 25

General Procedure A was followed using Cbz-Orn(N-Boc)-OH 21 ($200 \mathrm{mg}, 0.546 \mathrm{mmol}$), and $\mathrm{HCl} . \mathrm{NH}\left(\mathrm{CH}_{3}\right)$-Val-OMe $20(149 \mathrm{mg}, 0.819 \mathrm{mmol})$ to obtain a crude residue. The crude residue was subjected to silica chromatography gradient eluting with $100 \% \mathrm{DCM}$ to $10 \% \mathrm{MeOH} / \mathrm{DCM}$ to obtain 25 as an oil ($200 \mathrm{mg}, 74 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{MeOD}, 325 \mathrm{~K}$) $\delta 7.43-7.21(\mathrm{~m}, 5 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 4.77$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.55(\mathrm{~m}, 3 \mathrm{H}), 3.18-2.82(\mathrm{~m}, 5 \mathrm{H}), 2.25(\mathrm{~s}, 1 \mathrm{H}), 1.89-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.45$ $(\mathrm{d}, J=3.0 \mathrm{~Hz}, 9 \mathrm{H}), 1.12-0.72(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{MeOD}, 325 \mathrm{~K}$) $\delta 175.38,172.42,158.46$, $138.22,129.43,128.97,128.78,108.92,79.99,67.69,63.87,52.32,40.92,32.29,30.01,28.81,28.41$, 27.08, 20.21, 19.28. IR $\left(\mathrm{cm}^{-1}\right) v 3307(\mathrm{NH}), 2968(\mathrm{CH}), 1703(\mathrm{C}=\mathrm{O}) . \mathrm{MS}, m / z=494.4[\mathrm{M}+\mathrm{H}]^{+}$.

Cbz-Orn(N-Boc)-NCH $\mathbf{3}_{3}$-Val-Sta-NH($\left.\mathbf{C H}_{2}\right)_{2} \mathbf{P h} 32$

A mixture of Cbz-Orn(N-Boc) $-\mathrm{NCH}_{3}$-Val-OMe 25 ($170 \mathrm{mg}, 0.344 \mathrm{mmol}$), and LiOH hydrate (87 mg , $2.07 \mathrm{mmol})$ in a mixture of water $(1.7 \mathrm{~mL})$ and THF (5.1 mL) was allowed to stir for 18 h at $20^{\circ} \mathrm{C}$. 10% Citric acid solution was added to the reaction mixture. The solution was extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with brine (20 mL) and dried with MgSO_{4}. The solvent was concentrated in vacuo to obtain Cbz-Orn(N-Boc)- NCH_{3}-Val-OH 29 as an oil (163 mg , 99%). General Procedure A was then followed using Cbz-Orn(N-Boc)- NCH_{3}-Val-OH 29 (90 mg , $0.188 \mathrm{mmol})$, and $\mathrm{HCl} . \mathrm{NH}_{2}-\mathrm{Sta}-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph} 16(118 \mathrm{mg}, 0.375 \mathrm{mmol})$ to obtain a crude residue. The crude residue was subjected to silica chromatography gradient eluting with $100 \% \mathrm{DCM}$ to 10% $\mathrm{MeOH} / \mathrm{DCM}$ to obtain 32 as an oil ($68 \mathrm{mg}, 50 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.39-7.10(\mathrm{~m}, 10 \mathrm{H}$), $4.99(\mathrm{q}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.59(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-4.45(\mathrm{~m}, 1 \mathrm{H}), 4.04-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.50-$ $3.34(\mathrm{~m}, 2 \mathrm{H}), 3.15-2.97(\mathrm{~m}, 5 \mathrm{H}), 2.74(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.34-2.15(\mathrm{~m}, 3 \mathrm{H}), 1.77-1.48(\mathrm{~m}, 6 \mathrm{H})$, $1.43(\mathrm{~s}, 9 \mathrm{H}), 1.36-1.27(\mathrm{~m}, 1 \mathrm{H}), 0.99-0.80(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{MeOD}, 325 \mathrm{~K}$) $\delta 175.97$, $173.82,171.55,158.73,158.51,140.52,137.98,129.75,129.50,129.42,129.02,128.68,127.29,80.06$, $71.52,67.86,64.38,53.05,52.38,41.93,41.70,40.83,36.51,31.34,29.59,28.81,27.37,27.27,26.05$, 23.61, 22.32, 19.83, 19.02. IR $\left(\mathrm{cm}^{-1}\right) v 3305(\mathrm{NH}), 2961(\mathrm{CH}), 1632(\mathrm{C}=\mathrm{O}) . \mathrm{MS}, m / z=740.6[\mathrm{M}+\mathrm{H}]^{+}$.

Cbz-Arg(N, N-diBoc)-NCH $\mathbf{3}_{3}$-Val-Sta-NH($\left.\mathbf{C H}_{2}\right)_{2} \mathbf{P h} 35$

General Procedure B was followed using Cbz-Orn(N-Boc)- $\mathrm{NCH}_{3}-\mathrm{Val}-\mathrm{Sta}-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph} 32$ (54 mg, 0.073 mmol), and 4 N HCl in dioxane $(0.5 \mathrm{~mL})$ to obtain the unprotected residue as a crude oil (49 mg , 99%) The crude oil ($43 \mathrm{mg}, 0.064 \mathrm{mmol}$) was dissolved in $\mathrm{DCM}(0.9 \mathrm{~mL}) \mathrm{Et}_{3} \mathrm{~N}(11.5 \mu \mathrm{~L}, 0.083$ mmol) was added. The solution was stirred vigorously for 5 min . N, N '-Bis-Boc-1-guanylpyrazole (26 $\mathrm{mg}, 0.083 \mathrm{mmol}$) was added and the solution was allowed to stir for 18 h at $20^{\circ} \mathrm{C}$. The reaction mixture was concentrated to dryness in vacuo to obtain a crude residue. The crude residue was subjected to silica chromatography gradient eluting with 100% DCM to $10 \% \mathrm{MeOH} / \mathrm{DCM}$ to obtain 35 as an oil (48 $\mathrm{mg}, 86 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.40-7.13(\mathrm{~m}, 10 \mathrm{H}), 5.14-4.93(\mathrm{~m}, 2 \mathrm{H}), 4.66-4.49(\mathrm{~m}$, $2 \mathrm{H}), 4.09-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.38(\mathrm{~m}, 3 \mathrm{H}), 3.15 \& 3.02(2 \mathrm{~s}, 3 \mathrm{H}), 2.87-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.17$ $(\mathrm{m}, 3 \mathrm{H}), 1.83-1.41(\mathrm{~m}, 25 \mathrm{H}), 1.37-1.27(\mathrm{~m}, 1 \mathrm{H}), 1.02-0.81(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}, \mathrm{MeOD}$, $325 \mathrm{~K}) \delta 175.85,173.82,171.53,164.57,158.72,157.60,154.26,140.53,137.99,129.76,129.50$, $129.43,129.01,128.67,127.30,105.52,84.56,80.41,71.51,67.87,64.40,52.99,52.38,41.92,41.71$, $41.11,36.52,31.37,29.52,28.64,28.28,27.27,26.62,26.05,23.61,22.32,19.84,19.02$. IR $\left(\mathrm{cm}^{-1}\right) v$ $3331(\mathrm{NH}), 2961(\mathrm{CH}), 1635(\mathrm{C}=\mathrm{O}) . \mathrm{MS}, m / z=882.7[\mathrm{M}+\mathrm{H}]^{+}$.

Cbz-Arg($\mathbf{N H}_{2}$)-NCH3-Val-Sta-NH(CH2 $)_{2}$ Ph.TFA 7

General Procedure C was followed using Cbz-Arg($N, N-\mathrm{diBoc})-\mathrm{NCH}_{3}-\mathrm{Val}-\mathrm{Sta}-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph} 35(40 \mathrm{mg}$, 0.045 mmol), to obtain 7 as an oil ($35 \mathrm{mg}, 97 \%$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , MeOD, rotamers) $\delta 7.41-7.10$ $(\mathrm{m}, 10 \mathrm{H}), 5.13-4.91(\mathrm{~m}, 2 \mathrm{H}), 4.69-4.49(\mathrm{~m}, 2 \mathrm{H}), 4.39-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.45-3.34(\mathrm{~m}, 2 \mathrm{H}), 3.27-$ $3.07(\mathrm{~m}, 5 \mathrm{H}), 2.84-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.47-2.13(\mathrm{~m}, 3 \mathrm{H}), 1.83-1.42(\mathrm{~m}, 6 \mathrm{H}), 1.36-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.04$ $-0.78(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{MeOD}$, rotamers) $\delta 175.47,175.31,173.89,172.03,171.60$, $171.51,171.16,163.02,162.79,158.74,158.66,140.47,140.32,137.92,129.91,129.59,129.43$, 129.33, 129.19, 128.98, 128.82, 128.64, 128.58, 128.36, 127.45, 127.22, 71.60, 71.44, 67.88, 67.70, $64.25,63.90,52.88,52.78,52.43,52.28,52.20,42.22,42.08,42.02,41.97,41.89,41.79,41.45,37.89$, $36.69,36.53,36.42,31.41,31.14,29.45,27.69,27.36,27.29,26.38,26.07,25.96,25.89,25.77,23.82$, 23.71, 22.21, 21.73, 19.75, 19.12, 18.99. IR (cm^{-1}) v $3337(\mathrm{NH}), 2963(\mathrm{CH}), 1635(\mathrm{C}=\mathrm{O}) . \mathrm{MS}, m / z=$ $682.6[\mathrm{M}+\mathrm{H}]^{+}$. HRMS found: $(\mathrm{M}+\mathrm{H}) 682.4285 ; \mathrm{C}_{36} \mathrm{H}_{55} \mathrm{~N}_{7} \mathrm{O}_{6}$ requires $(\mathrm{M}+\mathrm{H})$, 682.4292 .

1.2 Modeling

A model of P. falciparum PMV (PfPMV) in complex with 1 was constructed from a homology model described previously. That model used the X-ray crystal structures of Plasmepsin II from P. falciparum (2BJU), ${ }^{3}$ Plasmepsin from P. vivax (1QS8), ${ }^{4}$ human BACE-1 (2VIE), ${ }^{5}$ and the secreted aspartic protease $(3 \mathrm{PVK})^{6}$ as templates. The initial homology model was refined using molecular dynamics (MD). The structure of the ligand in this model was converted into that of $\mathbf{1}$, and the model further refined with MD. MD simulations were performed using the GROMACS (v4.5.5) program ${ }^{7}$ employing the OPLS-aa force field. ${ }^{8}$ The system was solvated in a box of water (TIP4P). Ionizable residues were fixed in their charged state, and the system neutralized and the ionic concentration adjusted to 0.1 M by including Na^{+}and Cl^{-}ions. Protein and ligand with water and ions were coupled separately to a thermal bath at 300 K using velocity rescaling ${ }^{9}$ applied with a coupling time of 0.1 ps , and the pressure was coupled to an isotropic barostat using a time constant of 1 ps and compressibility of $4.5 \times 10^{-5} \mathrm{bar}^{-1}$. All simulations were performed with a single non-bonded cutoff of $10 \AA$ and applying a neighbor-list update frequency of 10 steps (20fs). The particle-mesh Ewald method ${ }^{10}$ was used to account for longrange electrostatics, applying a grid width of $1.2 \AA$ and a fourth-order spline interpolation. Bond lengths were constrained using the LINCS algorithm. ${ }^{11}$ The system was initially minimized prior to MD simulation, followed by positional restrained MD, with all protein non-hydrogen atoms restrained to their original positions for 0.1 ns . This was followed by 1 ns of unrestrained MD.

1.3 Biology

Plasmepsin V fluorogenic PEXEL cleavage assays.

Plasmepsin V fluorogenic PEXEL cleavage assays were performed as described previously. ${ }^{1,12}$ Briefly, PMV-agarose was prepared by purification of HA-tagged P. falciparum PMV from transgenic P. falciparum parasite lysates using affinity chromatography with goat anti-HA agarose. The digest was obtained as described above and was used at a final assay concentration of $0.2 \mu \mathrm{~L} / 20 \mu \mathrm{~L}$. The KAHRP PEXEL peptide substrate DABCYL-RNKRTLAQKQ-E-EDANS was obtained commercially and used at a final assay concentration at the enzyme $\mathrm{Km}(5-10 \mu \mathrm{M})$. The end-point for all assays was set within the linear range of activity (approximately 2 h). Tween- 20 was used at 0.005% final assay concentration. Final assay buffer concentration was as follows: 25 mM Tris $\mathrm{HCl}, 25 \mathrm{mM}$ MES (pH 6.4). A nine-point $1 / 2$ serial dilution of compounds was generated using DMSO as a vehicle (final assay concentration of 1%). Assay reaction was incubated for 120 min at $37^{\circ} \mathrm{C}$ and read using a fluorescence plate reader (Ex 340 nm , Em 495 nm). IC_{50} values were determined using a nonlinear regression four-parameter fit analysis, using GraphPad Prism software, where two of the parameters were constrained to 0 and 100%. It is noted that the fluorogenic PEXEL cleavage assay is conducted in heterogenous conditions, whereby plasmepsin V is bound to a Sepharose-bead. Under these conditions, achieving homogeneity between assay points is relatively difficult and results in compound IC_{50} curves with variable Hill slope coefficients. This is a reflection of the technical nature of the assay rather than an inherent change of the inhibition mechanism.

HepG2 cytotoxicity assay.

The cytotoxicity assays were performed as described by Sleebs et al. ${ }^{1,12}$ Briefly, HepG2 cells were cultured in Dulbecco's Modified Eagles Medium (DME) supplemented with 10\% heat inactivated fetal calf serum (FCS) in a humidified incubator at $37^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$. Eleven-point compound titration assays were performed by treating cells $\left(1 \times 10^{4}\right)$ for 48 h in 96 -well plates. Cytotoxicity was determined using CellTiter Glo (Promega) and calculated as a percentage of DMSO control. Etoposide was used as a control compound, and obtained an IC_{50} of $9.8 \mu \mathrm{M}$.

Parasite viability assays.

Parasite viability assays were performed as described by Sleebs et al. ${ }^{1,12}$ P. falciparum 3D7 were cultured in human O^{+}erythrocytes at 4% hematocrit in RPMI 1640 medium supplemented with 25 mM HEPES, pH 7.4, 0.2% sodium bicarbonate, and 0.5% Albumax II (Invitrogen) in culture gas (5\% CO_{2},
$5 \% \mathrm{O}_{2}, 90 \% \mathrm{~N}$) at $37^{\circ} \mathrm{C}$. Early ring-stage P. falciparum 3D7 parasites were obtained by sorbitol synchronization and treated in 96-well plates with compounds dissolved in ethanol (not greater than 2\% final to limit toxicity) or DMSO (not greater than 0.2% final to limit toxicity) in nine-point titrations for 72 h at $37^{\circ} \mathrm{C}$ in culture gas. Parasitemia was then determined by flow cytometry and expressed relative to vehicle-treated controls. Parasitemia was qualitatively assessed by Giemsa smears.

Parasite PEXEL processing assay, immunoblot, and densitometry.

Parasite viability assays were performed as described by Sleebs et al. ${ }^{1,12}$ Transgenic P. falciparum expressing PfEMP3-GFP from the CRT promoter were generated previously ${ }^{13}$ and treated with compounds as described previously. ${ }^{12}$ Briefly, $30-34 \mathrm{~h}$ old trophozoites were purified from uninfected erythrocytes by passing through a Vario Macs magnet column (Miltenyi Biotech) and treated with inhibitor for 5 h at $37^{\circ} \mathrm{C}$ in culture gas. Parasites were treated with 0.1% saponin and pellets solubilized in $4 \times$ Laemmli sample buffer before protein separation via SDS-PAGE. Proteins were transferred to nitrocellulose using an iBlot (Invitrogen), blocked in 10% skim milk/PBS-T and probed with mouse anti-GFP (Roche; 1:1000), rabbit anti-HSP70 (1:4000), or rabbit anti-Aldolase (1:1000) antibodies followed by horseradish peroxidase-conjugated secondary antibodies (Silenius; 1:2000) and visualized using enhanced chemiluminescence (Amersham). Densitometry of blots exposed within the linear range were scanned at 400 dpi using a GS-800 calibrated densitometer (Bio-Rad) and quantified in Quantity One v4.6.3 software (Bio-Rad).

Compound stability assays.

Stability in pancreatin

Pancreatin (Porcine pancreas; Sigma Aldrich catalogue \# P7545, Lot \# 061M1822V; compose of a mixture of enzymes including trypsin, chymotrypsin, aminopeptidases, carboxypeptidases, lipase and amylase) was prepared in phosphate buffer ($0.1 \mathrm{M}, \mathrm{pH} 7.4$) to a concentration of $50 \mathrm{mg} / \mathrm{mL}$. Aliquots of pancreatin solution were spiked with acetonitrile/water solutions of each test compound to a nominal compound concentration of $5000 \mathrm{ng} / \mathrm{mL}$. The spiked pancreatin solution was vortex mixed and aliquots $(50 \mu \mathrm{~L})$ were transferred into fresh micro centrifuge tubes and maintained at $37^{\circ} \mathrm{C}$. At various time points over the 24 hour incubation period, duplicate samples were taken and snap-frozen in dry ice. All samples were stored frozen at $-80^{\circ} \mathrm{C}$ until analysis by LCMS. Samples were analyzed using a Waters Micromass Xevo G2 QTOF coupled to a Waters Acquity UPLC. Detection was positive electrospray ionisation under MSE mode; the column Ascentis Express RP amide column ($50 \times 2.1 \mathrm{~mm}, 2.7 \mu \mathrm{~m}$); LC
conditions used: gradient cycle time: 4 min ; injection vol: $3 \mu \mathrm{~L}$; flow rate: $0.4 \mathrm{~mL} / \mathrm{min}$; mobile phase acetonitrile-water gradient with 0.05% formic acid. The positive control, Leucine enkephalin, degraded rapidly indicating the presence of proteinase activity in the pancreatin preparation used.

Stability in human serum

Human plasma (pooled, $\mathrm{n}=3$ donors) was separated from whole blood procured from the Australian Red Cross Blood Service. Plasma was stored frozen at $-80^{\circ} \mathrm{C}$ and thawed in a $37^{\circ} \mathrm{C}$ water bath on the day of the experiment. Aliquots of human plasma were spiked with acetonitrile/water solutions of each test compound to a nominal compound concentration of $5000 \mathrm{ng} / \mathrm{mL}$. The spiked plasma was vortex mixed and aliquots $(50 \mu \mathrm{~L})$ were transferred into fresh micro centrifuge tubes and maintained at $37^{\circ} \mathrm{C}$. At various time points over the 55 hours incubation period, duplicate samples were taken and snapfrozen in dry ice. All samples were stored frozen at $-20^{\circ} \mathrm{C}$ until analysis by LCMS. LCMS analysis used is the same as for the stability in pancreatin. The positive control, Leucine enkephalin, degraded rapidly indicating the presence of proteinase activity in the human plasma used.
Minimal degradation of compounds $\mathbf{1 - 5}$ was observed in human plasma at $37^{\circ} \mathrm{C}$, over 55 hrs , indicating that that they are not susceptible to hydrolytic enzymes present in plasma (Table S1).

1.4 Supplementary Figures

Figure S1. Dose response curves of compounds 1-5. A 9-point dilution in three independent fluorogenic substrate (wtKAHRP) cleavage experiments of each compound was incubated with P. falciparum (Pf) PMVHA isolated from parasites. Error bars represent \pm SEM.

Figure S2. Dose response curves of compounds 6 and 7. A 9-point dilution in three independent fluorogenic substrate (wtKAHRP) cleavage experiments of each compound was incubated with P. falciparum (Pf) PMVHA isolated from parasites. Error bars represent \pm SEM.

Figure S3. Dose response curves of compounds 1-5 against P. falciparum 3D7. Data shown are the mean \pm SEM of three replicate experiments measuring parasitemia relative to vehicle-treated controls by flow cytometry following exposure to compounds in 7-point dilution series for 72 h .

Figure S4. Dose response curves of 6 and 7 against P. falciparum 3D7. Data shown are the mean \pm SEM of three replicate experiments measuring parasitemia relative to vehicle-treated controls by flow cytometry following exposure to compounds in 7-point dilution series for 72 h .

Table S1. Stability of compounds $\mathbf{1 - 5}$ incubated at $37^{\circ} \mathrm{C}$ in human plasma.

Sampling time (hrs)	$\mathbf{1}$	$\mathbf{y y y y y}$	\% Remaining a		
$\mathbf{0}$	100	100	100	100	100
7	107	110	98	86	99
$\mathbf{2 4}$	103	111	93	84	92
35	103	104	98	85	95
$\mathbf{4 8}$	105	97	95	90	106
$\mathbf{5 5}$	100	92	98	95	92

${ }^{\text {a }}$ Data presented are averages of duplicate measurements and expressed as percentages relative to the average concentration of the initial time point; the maximum variability of duplicate measurements determined as the deviation from the mean were within 12%.

1.5 HPLC traces of compounds 1-7

Compound 1, 1 mM , sig=214 nm

Compound 2, 1 mM , sig=214 nm

Compound 3, 1 mM , sig=214 nm

Compound 4, 1 mM , sig=214 nm

Compound 5, 1 mM , sig=214nm

Compound 6, 1 mM , sig=214 nm

Compound 7, 1 mM , sig=214 nm

1.6 Abbreviations

DCM	dichloromethane
DIPEA	N, N-diisopropylethylamine
DMF	N, N-dimethylformamide
PfEMP3	Plasmodium falciparum erythrocyte membrane protein 3
GFP	green fluorescent protein
HBTU	2 -(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate
PTSA	p-toluenesulfonic acid
Sta	statine
TFA	trifluoroacetic acid
TFFH	fluoro- $N, N, N^{\prime}, N^{\prime}$-tetramethylformamidinium hexafluorophosphate
THF	tetrahydrofuran

1.7 References

1. B. E. Sleebs, M. Gazdik, M. T. O'Neill, P. Rajasekaran, S. Lopaticki, K. Lackovic, K. N. Lowes, B. J. Smith, A. F. Cowman and J. A. Boddey, J. Med. Chem., 2014, 57, 7644-7662.
2. A. B. Hughes and B. E. Sleebs, Helv. Chim. Acta, 2006, 89, 2611-2637.
3. L. Prade, A. F. Jones, C. Boss, S. Richard-Bildstein, S. Meyer, C. Binkert and D. Bur, J. Biol. Chem. , 2005, 280, 23837-23843.
4. N. K. Bernstein, M. M. Cherney, C. A. Yowell, J. B. Dame and M. N. James, J. Mol. Biol. , 2003, 329, 505-524.
5. B. Clarke, E. Demont, C. Dingwall, R. Dunsdon, A. Faller, J. Hawkins, I. Hussain, D. MacPherson, G. Maile, R. Matico, P. Milner, J. Mosley, A. Naylor, A. O’Brien, S. Redshaw, D. Riddell, P. Rowland, V. Soleil, K. J. Smith, S. Stanway, G. Stemp, S. Sweitzer, P. Theobald, D. Vesey, D. S. Walter, J. Ward and G. Wayne, Bioorg. Med. Chem. Lett. , 2008, 18, 1017-1021.
6. J. Behnen, H. Koster, G. Neudert, T. Craan, A. Heine and G. Klebe, ChemMedChem, 2012, 7, 248-261.
7. B. Hess, C. Kutzner, D. van der Spool and E. Lindahl, J. Chem. Theory Comput. , 2008, 4, 435437.
8. W. L. Jorgensen and J. Tirado-Rives, J. Am. Chem. Soc., 1998, 110, 1657-1666.
9. G. Bussi, D. Donadio and M. Parrinello, J. Chem. Phys., 2007, 126, 014101.
10. U. Essman, L. Perela, M. L. Berkowitz, T. Darden, H. Lee and L. G. Pedersen, J. Chem. Phys. , 1995, 103, 8577-8592.
11. B. Hess, J. Chem. Theory Comput., 2008, 4, 116-122.
12. B. E. Sleebs, S. Lopaticki, D. S. Marapana, M. T. O'Neill, P. Rajasekaran, M. Gazdik, S. Gunther, L. W. Whitehead, K. N. Lowes, L. Barfod, L. Hviid, P. J. Shaw, A. N. Hodder, B. J. Smith, A. F. Cowman and J. A. Boddey, PLoS Biol., 2014, 12, e1001897.
13. J. A. Boddey, A. N. Hodder, S. Gunther, P. R. Gilson, H. Patsiouras, E. A. Kapp, J. A. Pearce, T. F. de Koning-Ward, R. J. Simpson, B. S. Crabb and A. F. Cowman, Nature, 2010, 463, 627631.
