Electronic Supplementary Information

Growth of SnO₂ nanosheets array on various conductive substrates as integrated electrodes for lithium-ion batteries

Lei Zhang,^a Hao Bin Wu,^a and Xiong Wen (David) Lou*^a

^{*a*} School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang

Drive, Singapore 637459. Email: xwlou@ntu.edu.sg; davidlou88@gmail.com

Webpage: http://www.ntu.edu.sg/home/xwlou/

Fig. S1 XRD pattern of Ti foil.

Fig. S2 Optical photographs of SnO_2 nanosheets double-layer grown on various substrates: Ti, Cu foil and graphite paper.

Fig. S3 TEM images of SnO₂ nanosheets scratched from graphite paper.

Fig. S4 (a) Discharge–charge voltage profiles and (b) cycling performance of SnO_2 nanosheets single-layer on Ti foil over the voltage range of 0.05–1.5 V *vs* Li/Li⁺ at the same current density of 200 mA g⁻¹.

Fig. S5 (a) Discharge–charge voltage profiles and (b) cycling performance of SnO_2 nanosheets double-layer on Ti foil over the voltage range of 0.05–1.5 V *vs* Li/Li⁺ at the same current density of 200 mA g⁻¹.

Fig. S6 FESEM images of SnO₂ nanosheets double-layer on Ti foil after cycling for 30 cycles.