## **Supporting Information**

## Preparation of porous nanocarbons with tunable morphology and pore size from copolymer templated precursors

Mingjiang Zhong,<sup>*a*</sup> Chuanbing Tang,<sup>*b*</sup> Eun Kyung Kim,<sup>*a,c*</sup> Michal Kruk,<sup>*a,d*</sup> Ewa B. Celer,<sup>*e*</sup> Mietek Jaroniec,<sup>*e*</sup> Krzysztof Matyjaszewski,<sup>*a*</sup> and Tomasz Kowalewski<sup>*a*</sup>

<sup>a</sup> Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States

<sup>b</sup> Department of Chemistry and Biochemistry, University of South Carolina, Columbia, 631 Sumter Street, Columbia, South Carolina 29208, United States

<sup>c</sup> Current address: Battery R&D, AMD PJT, LG Chem Research Park, LG Chem, 104-1, Moonji-dong, Yuseong-gu, Daejeon, 305-738, Korea

<sup>d</sup> Current address: Department of Chemistry, College of Staten Island and Graduate Center, City University of New York, 2800 Victory Boulevard, Building 6S-241, Staten Island, New York 10314, United States

<sup>e</sup> Department of Chemistry, Kent State University, Kent, Ohio 44242, United States

\*To which all correspondences should be addressed: tang4@mailbox.sc.edu, km3b@andrew.cmu.edu, tomek@andrew.cmu.edu

## **Experimental Materials and Methods**

**Materials**: Acrylonitrile (AN), *n*-butyl acrylate (BA), methyl 2-bromopropionate (MBP), N,N,N',N'',N''pentamethyldiethylenetriamine (PMDETA), 2,2'-bipyridine (bpy), CuBr, CuCl, CuBr<sub>2</sub>, anisole, dimethylformamide (DMF), dimethylsulfoxide (DMSO), tetrahydrofuran (THF), and methanol were all obtained from Sigma-Aldrich. CuCl and CuBr were purified by stirring in glacial acetic acid followed by washing with ether and dried overnight under vacuum. Monomers were passed through a basic alumina column prior to use. All other chemicals were used as received.

**Synthesis and film preparation:** The majority of diblock copolymers employed in the present research were prepared by ATRP with halogen exchange, as described in our earlier studies.<sup>1</sup> Monofunctional bromine-terminated poly(*n*-butyl acrylate) (PBA) homopolymer was synthesized as a macroinitiator to be chain-extended with polyacrylonitrile (PAN) and thus to yield the desired PAN-*b*-PBA diblock copolymer. Thin film samples of block copolymers were prepared by drop-casting copolymer solutions (10 mg/mL) in dimethylformamide onto cleaned silicon wafer substrates (*n*-type, Silicon Quest, Inc.). The films were thoroughly dried in a vacuum chamber at room temperature and then annealed at 160 °C. Typical film thickness ranged from several hundred nanometers to few micrometers, as measured by AFM. The PAN-*b*-PBA copolymers (for both thin films and bulk materials) were converted into carbonaceous materials through heating under air to 280 °C at a rate of 20 °C/min and maintaining at 280 °C for 1 h; subsequent heating under nitrogen to target temperature (600 °C) at a rate of 10 °C/min and keeping at this target temperature for certain time and finally naturally cooling to room temperature.

**Characterization:** Tapping mode atomic force microscopy (TMAFM) studies were carried out with the aid of a NanoScope III-M system (Digital Instruments, Santa Barbara, CA), equipped with a J-type vertical engage scanner. The AFM observations were performed at room temperature under air using silicon cantilevers with spring constant of 20 - 80 N/m and nominal resonance frequency of 230-410 kHz (TappingMode Etched Silicon Probes). Morphologies of carbon powders and thin films obtained through the stabilization and carbonization of PAN-*b*-PBA copolymers were studied with the aid of transmission electron microscopy (TEM) (JEOL JEM-2000 EX II with acceleration voltage 200 kV). Nitrogen adsorption measurements were carried out at -196°C on a Micrometritics ASAP 2010 volumetric gas adsorption analyzer. Prior to measurements, samples were degassed at 300 °C under vacuum overnight. Brunauer–Emmett–Teller (BET) surface areas were determined from N<sub>2</sub> adsorption isotherms at 77 K. Multipoint BET measurements were performed at relative pressures ( $P/P_0$ ) in the range of 0.05 - 0.2. The mesopore size distribution was obtained from Barett-Joyner-Halenda (BJH) method from the desorption branch.

Electronic Supplementary Material (ESI) for Materials Horizons This journal is C The Royal Society of Chemistry 2013

Table S1. Morphologies of thin films of PAN-b-PBA diblock copolymers determined from TMAFM

image.

| Sample<br>Code | Composition         | $M_{\rm w}/M_{\rm n}$ | wt%(AN) | Morphology of PAN Domains |
|----------------|---------------------|-----------------------|---------|---------------------------|
|                | $(DP_{BA}/DP_{AN})$ | (from GPC)            |         |                           |
| P1             | 202/17              | 1.17                  | 3.4     | No phase contrast         |
| P2             | 240/36              | 1.23                  | 5.8     | Spherical                 |
| P3             | 90/22               | 1.12                  | 9.2     | Spherical                 |
| P4             | 240/104             | 1.23                  | 15.2    | Cylindrical               |
| P5             | 240/124             | 1.22                  | 17.6    | Cylindrical               |
| P6             | 202/106             | 1.30                  | 17.8    | Cylindrical               |
| P7             | 90/59               | 1.22                  | 21.2    | Cylindrical/ Lamellar     |
| P8             | 90/84               | 1.20                  | 27.9    | Cylindrical/ Lamellar     |
| P9             | 40/67               | 1.10                  | 40.9    | Branched                  |
| P10            | 70/99               | 1.25                  | 36.9    | Branched                  |
| P11            | 78/114              | 1.20                  | 37.7    | Branched                  |
| P12            | 90/128              | 1.36                  | 37.1    | Branched                  |
| P13            | 90/159              | 1.25                  | 42.2    | Branched                  |
| P14            | 117/180             | 1.30                  | 38.9    | Branched                  |
| P15            | 141/245             | 1.28                  | 41.8    | Branched                  |
| P16            | 173/305             | 1.35                  | 42.2    | Branched                  |



Fig. S1  $N_2$  adsorption/desorption isotherms at -196 °C thin film and bulk CTNCs from (a)  $BA_{202}AN_{106}$ ; (b)  $BA_{78}AN_{114}$ .

## References

1. (a) C. Tang, T. Kowalewski and K. Matyjaszewski, *Macromolecules*, 2003, **36**, 1465; (b) C. Tang, T. Kowalewski and K. Matyjaszewski, *Macromolecules*, 2003, **36**, 8587.