Supporting Information File

Topotactic reduction of oxide nanomaterials:

unique structure and electronic properties of reduced TiO₂ nanoparticles

Satoshi Tominaka,^{*a,b} Hideki Yoshikawa,^c Yoshitaka Matsushita,^d and Anthony K. Cheetham^{*b}

10

^aInternational Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan. Email: TOMINAKA.Satoshi@nims.go.jp

^bDepartment of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK. Email: akc30@cam.ac.uk

¹⁵ ^cSurface Chemical Analysis Group, Nano Characterization Unit, Advanced Key Technologies Division, NIMS, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047, Japan.

^dMaterials Analysis Station, NIMS, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047, Japan.

20

25

30

35

40

Contents

S1.	Experimental details
-----	----------------------

- S2. X-ray total scattering data
- S3. Atomic structures of Ti₂O₃ particles
- S4. Atomic structures of TiO₂ nanoparticles
- S5. Atomic structure of TiO₂ nanoparticles reduced by CaH₂, "TiO_x-NP"
- S6. Atomic structure of TiO₂ nanoparticles reduced by NaH₄
- S7. Angle-resolved HX-PES of TiO_x -SC
- S8. Discussion on impurities of TiO_x-SC
- S9. EELS without peak deconvolution
- S10. Optical absorption
- S11. Thermogravimetric analyses
- S12. Conductivity measurements "TiO_x-SC"

S1. Experimental details

Materials. "TiO_x-NP" was synthesized by reducing rutile TiO₂ nanoparticles (Ltd., TTO-51(N), 10-30 nm in diameter; Ishihara Sangyo Kaisha) with CaH₂ (\geq 90%, Aldrich) as reported previously.¹ "TiO_x-SC" was ⁵ synthesized by reducing mirror-polished, (100)-oriented rutile TiO₂ single crystals (Furuuchi Chemical) as reported previously.² Before the reduction treatment, as-purchased mirror-polished, 0.5 mm thick single crystals were coated with a polymer film, cut into 5 mm × 5 mm pieces using a DISCO DAD3220 dicing saw (Tokyo, Japan), and then cleaned by rinsing with acetone and oxygen plasma treatment. The clean crystal was annealed in air at 1000 °C to decrease defects. The reduced products were cleaned with 0.1 M NH₄Cl/CH₃OH and ¹⁰ distilled water. "Ti₂O₃" was purchased from Sigma-Aldrich (titanium(III) oxide, 99.9%). In addition, rutile TiO₂ nanoparticles and rutile TiO₂ nanorods (FTL-100, Ishihara Sangyo) were also reduced by NaBH₄ (Reagent Grade from Kanto Chemical) as reported previously.³

Pair distribution function analyses. The X-ray total scattering data were collected on a curved ¹⁵ imaging plate using (*i*) Mo K α ($\lambda = 0.7107$ Å) at 50 kV, 40 mA for 22 h (RINT RAPID-S, Rigaku) with a 0.3 mm φ collimator, and (*ii*) synchrotron X-ray ($\lambda = 0.65298$ Å) at BL15XU SPring-8. The synchrotron X-ray is perfectly polarized with a perpendicular-to-parallel ratio of 0.001. The laboratory instrument has a larger detection angle (>150°), which results in high-resolution pair distribution functions ($2\pi/Q_{max}$).

The total scattering data were treated using the PDFgetX2 program,⁴ through the background ²⁰ subtraction, the X-ray polarization correction, the self-absorption correction and the Compton scattering correction. The corrected total structure functions ($Q_{max} = 17.0 \text{ Å}^{-1}$ for Mo K α , $Q_{max} = 13.1 \text{ Å}^{-1}$ for synchrotron X-ray) were converted into PDFs by Fourier transform. The PDFs were analyzed by curve fitting using PDFgui,⁵ in the interatomic distance up to 30 Å with a spherical particle model.⁶

Rietveld refinements. The diffraction data were analyzed by the Rietveld refinements using the GSAS program⁷ within the EXPGUI interface⁸ with the Shifted Chebyschev background function and the Type 4 profile function. The high-resolution data collected using synchrotron X-ray ($\lambda = 0.65298$ Å) was used for TiO_x-NP, and the data collected using Mo *K*a ($\lambda = 0.7093$, 0.7136 Å) were used for Ti₂O₃ and TiO₂. For the TiO_x-NP refinements, three different crystal models were tested: (1) corundum structure in space group *R*3*c*, (2) ilmenite-³⁰ type structure in *R*3, where all the cation sites are occupied with Ti³⁺ ions, and (3) LiNbO₃-type structure in *R*3*c*, where all the cation sites are occupied with Ti³⁺ ions. For the Ti₂O₃ refinements, a model consisting of three

crystal phases of corundum Ti_2O_3 , γ - Ti_3O_5 and Ti_3O_5 was used.

HX-PES. The occupied states including valence band and core-level electrons were analyzed by hard ³⁵ X-ray photoelectron spectroscopy (HX-PES) using synchrotron X-ray at BL15XU SPring-8 at a beam energy of 5.95 keV. This can analyze elemental states underneath the surface native oxide. The detectable depths for both Ti 2p and O 1s were estimated as ~21 nm, which was three times as deep as the calculated inelastic mean free path of the photoelectrons.⁹ The data were collected on a R4000 semi-spherical analyzer (VG Scienta, Tokyo, Japan) with the pass energy of 200 eV under vacuum (<10⁻⁶ Pa). The Fermi level was calibrated using a ⁴⁰ polycrystalline Au standard sample. The X-ray beam intensity was adjusted to avoid peak shifts originating from charging. The spectra were corrected through the background subtraction with the Shirley method, the Savitzky-Golay smoothing process, and intensity normalization based on the peak areas of Ti 2p, O 1s or valence bands.

The compositions of TiO_x -NP, TiO_x -SC and Ti_2O_3 were determined from the integrated intensities of ⁴⁵ and the relative sensitive factor of Ti 2*p* and O 1*s* peaks. The sensitive factor was determined from the spectra of a (100)-oriented TiO₂ single crystal. The compositions of TiO_x-NP, TiO_x-SC and Ti₂O₃ are Ti_{1.64}O₃, Ti_{2.03}O₃ and Ti_{2.02}O₃, respectively.

EELS. The electron energy-loss spectra (EELS) were measured using a JEM-2100F transmission ⁵⁰ electron microscope (TEM) (JEOL, Tokyo, Japan) at 200 kV in the diffraction mode with a 1 mm aperture. For this measurement, the cross-sectional TEM samples were prepared through the focused-ion beam process and the micro-sampling process using an FB-2100 FIM system (Hitachi High-Technologies, Tokyo, Japan). The

EELS of TiO_x -SC and the TiO_2 single crystal were measured along the direction parallel to the *b*-axis of the unreacted TiO_2 .

The energy-loss near-edge structures (ELNES) of Ti *L*-edge and O *K*-edge were analyzed via the model-based deconvolution processes using the EELSModel3.0 program.¹⁰ In the model, a power law ⁵ background and hydrogenic cross-sections of Ti *L*-edge and O K-edge were used. Then, the low-loss spectrum obtained at the same conditions was convoluted as the core-loss spectrum using the FFT function in order to simulate the influence of peak broadening and multiple scattering. The fitted plots were interpolated with a cubic spline approximation. The energy-scales were calibrated by setting the O *K*-edge peak of the unreacted TiO₂ region at 531.0 eV.¹¹

10

40

Optical absorption. The optical absorption spectra were calculated on the basis of the Kubelka–Munk theory from diffuse reflectance spectra measured using a V-570 UV-vis-NIR spectrometer (JASCO, Tokyo, Japan) with an ISN-470 integrating sphere detector in the wavelength range from 2000 to 220 nm. The nanoparticles were diluted with dry KCl to be 1 wt%, while the Ti₂O₃ particles were used without this process. ¹⁵ The optical constants of TiO_x-SC were measured by spectroscopic ellipsometry using M-2000U (J. A. Woollam Japan, Tokyo, Japan) at the incidence angle of 80° in the wavelength range from 250 to 1000 nm. Optical absorption coefficient, α , was calculated from the extinction coefficient, k.

Thermogravimetric analyses. The compositions were determined by thermogravimetric analyses ²⁰ scanned at 1 °C min⁻¹ in 200 mL min⁻¹ air flow (SII EXSTAR6000). The samples were dried under vacuum just before the measurement.

Scanning electron microscope observations. The nanoparticles samples were observed using a Hitachi S4800 scanning electron microscope at 10 kV. The nanoparticles were dispersed in pure water using ²⁵ ultrasonication, dried on a TEM grid, and then observed without any surface coating.

Conductivity measurements. The temperature dependence of the resistance was measured from 8 to 300 K at *ca*. 1.2×10^{-5} Pa using a four probe method (bias: ± 0.5 V) with a GRAIL 10-408040LV cryogenic electrical characteristic measurement system (Nagase Techno-Engineering, Tokyo, Japan) and a 4200-SCS ³⁰ semiconductor characterization system (Keithley Instruments, Tokyo, Japan).

The reduced single crystals were carefully cut into $2 \text{ mm} \times 5 \text{ mm}$ pieces using a DISCO DAD3220 dicing saw (Tokyo, Japan) after protecting the surface with a polymer film. Then, four Au lines 100 µm wide (100 nm thick with a 10 nm Ti adhesion layer) were deposited by electron beam evaporation through a Si stencil mask. The width and length of the conduction pathway was defined by the mask.

The thickness of the reduced region was measured by cross-sectional transmission electron microscope (TEM) observation using a JEM-2100F microscope (JEOL, Tokyo Japan) at 200 kV. The cross-sectional TEM samples were prepared using the focused-ion beam and microsampling method on an FB-2100 FIB system (Hitachi High-Technologies, Tokyo, Japan).

3

Electronic Supplementary Material (ESI) for Materials Horizons This journal is © The Royal Society of Chemistry 2013 Total scattering data

TiO₂ nanoparticles & reduced ones

S2. X-ray total scattering data

Fig. S1 Comparison of PDFs for rutile TiO₂ nanoparticles, those reduced under different conditions, and Ti₂O₃. (a) X-ray total scattering patterns collected on an imaging plate using a Mo K α irradiation. (b) Reduced structure functions (scale, 20). (c, d) Pair distribution functions (scale, 20 Å⁻²).

Electronic Supplementary Material (ESI) for Materials Horizons This journal is © The Royal Society of Chemistry 2013 Total scattering data TiO₂ nanoparticles reduced by CaH₂ Comparison of data obtained using Mo Ka and synchrotron

 $_{5}$ Fig. S2 Comparison of TiO_x-NP's PDFs collected using a synchrotron X-ray and a Mo K α irradiation. (a) X-ray total scattering patterns. (b) Reduced structure functions. (c, d) PDFs.

Electronic Supplementary Material (ESI) for Materials Horizons This journal is © The Royal Society of Chemistry 2013 Total scattering data TiO₂ nanorods reduced by NaBH₄

Fig. S3 Comparison of PDFs for rutile TiO₂ nanorods and those reduced using NaBH₄. (a) X-ray total scattering patterns. With increase of temperature, broad scattering peaks (*) are observed. (b) Reduced structure functions (scale, 20). (c, d) PDFs (scale, 20 Å⁻²).

Fig. S4 Simulated PDFs. (a) Ti_2O_3 in *R3c* (ICSD no. 9646), rutile TiO_2 in *P4₂/mnm* (ICSD no. 9161), anatase TiO_2 in *I4₁/amd* (ICSD no. 9852). (b) Ti_4O_7 in *I*1 (ICSD no. 48131) and Ti_6O_{11} in *I*1 (ICSD no. 35121). (c) γ - Ti_3O_5 in *I*12/c1 (ICSD no. 35148) and Ti_3O_5 in *C*12/m1 (ICSD no. 26492). (d) TiO in *Fm3m* (ICSD no. 56612). ¹⁰ U_{iso} for Ti is 0.005 and U_{iso} for O is 0.01.

Rietveld refinements

10

S3. Atomic structures of Ti₂O₃ particles

Table S1 Crystal structure data of Ti₂O₃ refined by the Rietveld method. $R_{wp} = 4.11\%$, GOF $\psi = 1.65$.

Phase	I	П	ш
Crystal phase	Ti ₂ O ₃ (corundum)	γ-Ti ₃ O ₅	Ti ₃ O ₅
Space group	R3c	<i>I</i> 12/ <i>c</i> 1	C12/m1
Symmetry	Trigonal	Monoclinic	Monoclinic
Composition	Ti ₂ O ₃	Ti ₃ O ₅	Ti ₃ O ₅
Phase fraction ^{<i>a</i>} (%)	79	11	10
<i>a</i> / Å	5.14966(9)	9.873(6)	9.739(5)
b / Å	<i>= a</i>	5.1384(19)	3.8085(13)
<i>c</i> / Å	13.6235(4)	7.123(7)	9.176(6)
β (°)	90	110.09(5)	93.63(5)
$U_{\rm iso,Ti}$ / Å ²	0.00450(7)	0.00450(7)	0.00450(7)
$U_{\rm iso,O}$ / Å ²	0.0084(5)	0.0084(5)	0.0084(5)
Ti1(x, y, z)	0.0, 0.0, 0.34489(5)	0.3743(9), 0.498(6), 0.1472(16)	0.1463(20), 0.0, 0.0036(20)
Ti2 (x, y, z)	-	0.0, 0.5, 0.0	0.7728(17), 0.0, 0.1353(17)
Ti3 (x, y, z)	-	-	0.1269(18), 0.0, 0.5785(19)
O1 (x, y, z)	0.3043(4), 0.0, 0.25	0.808(4), 0.555(6), 0.682(9)	0.553(5), 0.0, 0.397(5)
O2 (x, y, z)	-	0.663(4), 0.339(6), 0.607(7)	0.215(6), 0.0, 0.420(5)
O3 (x, y, z)	-	0.0, 0.529(15), 0.25	0.557(5), 0.0, -0.128(5)
O4 (x, y, z)	-	-	0.677(5), 0.0, 0.165(5)
O5 (x, y, z)	-	-	0.974(4), 0.0, -0.316(4)
Ti–O	2.0316(15)		
Ti–O	2.0448(10)		
Ti–Ti	2.5855(14)		
Ti–Ti	2.98979(16)		
Particle size ^b / Å	937	937	263

^{*a*} calculated from refined values of unit cell fractions. ^{*b*} calculated from (18000*K* λ)/(π*LX), where LX is the Lorentzian isotropic crystallite size s broadening term, λ is the wavelength (0.7107), and K is the Scherrer constant (1.0).

Fig. S5 Rietveld refinements of powder X-ray diffraction pattern of Ti₂O₃.

8

Electronic Supplementary Material (ESI) for Materials Horizons This journal is © The Royal Society of Chemistry 2013 Commercially available Ti₂O₃

5

PDF refinements in different *r* ranges (10 Å pitch)

Fitting range $R_{-}(\%)$	0.01–10 Å 14 4984	10–20 Å 11 7751	20–30 Å 12 4752	30–40 Å 17 0372	40–50 Å 30 1115	0.01–50 Å 20.0656	XRD GOF 1 65
Space group	R3c	R3c	R3c	R3c	R3c	R3c	R3c
Composition	Ti_2O_3	Ti_2O_3	Ti_2O_3	Ti_2O_3	Ti_2O_3	Ti_2O_3	Ti_2O_3
a / Å	5.15485 (2.6e-007)	5.15734 (1.1e-007)	5.15611 (1.1e-007)	5.1579 (8.6e-008)	5.16226 (9.2e-008)	5.15858	5.14966(9)
<i>b</i> / Å	=a	=a	=a	=a	=a	= a	= a
<i>c</i> / Å	13.6292	13.6385	13.6419	13.6337	13.6605	13.6419	13.6235(4)
	(1.8e-006)	(5.5e-007)	(5.4e-007)	(6.2e-007)	(5.7e-007)	(1.7e-007)	
$U_{\rm iso,Ti}$ / Å ²	0.0005928	0.00105206	0.00303307	0.00531482	0.00408152	0.00266715	0.00450(7)
	(4.6e-008)	(3.6e-008)	(4.4e-008)	(5e-008)	(6e-008)	(1.5e-008)	
$U_{\rm iso,O}$ / Å ²	0.0112448	0.00911542	0.0103457	0.0118549	0.0348195	0.0099816	0.0084(5)
	(1.9e-007)	(1.6e-007)	(2.1e-007)	(2.3e-007)	(7.1e-007)	(6.8e-008)	
Particle diameter / Å	a	a	a	a	a	111.55	_
^{<i>a</i>} Fixed to 111.55 Å.							

Table S2 Atomic structure data obtained by PDF refinements for Ti2O3

Fig. S6 PDF refinements of Ti_2O_3 . (a) Refinements at every 10 Å. (b) Refinement in the range from 0 to 50 Å. Experimental PDF plots (blue dots) with calculated ones based on corundum Ti_2O_3 (red line). Their difference is ¹⁰ at the bottom (green curve).

Rietveld refinements

10

S4. Atomic structures of TiO₂ nanoparticles

~ .			
Sample	TiO ₂ nanoparticles	TiO_2 nanorods	
Refinement	Diffraction (Rietveld)	Diffraction (Rietveld)	
$R_{\rm wp}(\%), \psi$	3.94, GOF 1.64	4.42, 1.82	
Fitting range	10–80° (2 <i>θ</i>)	$8-80^{\circ}(2\theta)$	
Space group	P42/mnm	P42/mnm	
a / Å	4.59106(23)	4.59218(12)	
<i>c</i> / Å	2.95334(22)	2.95806(12)	
$U_{\rm iso,Ti}$ / Å ²	0.02249(16)	0.02062(15)	
$U_{\rm iso,O}$ / Å ²	0.0201(6)	0.0275(6)	
Ti(x)	0.0	0.0	
Ti(y)	0.0	0.0	
Ti(z)	0.0	0.0	
O(x)	0.30559(31)	0.30754(32)	
O(y)	0.30559(31)	0.30754(32)	
O(z)	0.0	0.0	
Particle size ^a / Å	120	795	

Table S3 Atomic structure data refined by the Rietveld method for rutile TiO₂ nanoparticles and nanorods.

^{*a*} calculated from (18000*K* λ)/(π*LX), where LX is the Lorentzian isotropic crystallite size broadening term, λ is the s wavelength (0.7107), and K is the Scherrer constant (1.0).

Fig. S7 Rietveld refinement of powder X-ray diffraction pattern of rutile TiO₂ nanoparticles.

Fig. S8 Rietveld refinement of powder X-ray diffraction pattern of rutile TiO₂ nanorods.

Electronic Supplementary Material (ESI) for Materials Horizons This journal is © The Royal Society of Chemistry 2013

Rutile TiO₂ nanoparticles

PDF refinements in different r ranges (10 Å pitch)

Fable S	54 At	omic	structure	data	obtained	bv	PDF	refinements	for	rutile	TiO	nano	particle
Lance	JH I M	onne	suucture	uuuu	obtained	U y	1 D1	rennemento	101	ruune	1102	mano	particle

Fitting range $R_{w}(\%)$	0.01–10 Å 12.1719	10–20 Å 12.3814	20–30 Å 14.0815	30–40 Å 18.5736	40–50 Å 21.8566	0.01–50 Å 17.1866	XRD GOF 1.64
Space group	$P4_2/mnm$	P4 ₂ /mnm	P4 ₂ /mnm	$P4_2/mnm$	P4 ₂ /mnm	P4 ₂ /mnm	P4 ₂ /mnm
Composition	TiO ₂	TiO ₂	TiO ₂	TiO ₂	TiO ₂	TiO ₂	TiO ₂
a / Å	4.60256	4.59494	4.59585	4.59775	4.59742	4.59641	4.59106(23)
	(5.6e-007)	(2.2e-007)	(1.9e-007)	(2.4e-007)	(2.8e-007)	(9.1e-008)	
<i>c</i> / Å	2.95814	2.95832	2.95581	2.95607	2.95523	2.9573	2.95334(22)
	(6.6e-007)	(2.7e-007)	(2.6e-007)	(2.4e-007)	(2.6e-007)	(9.8e-008)	
$U_{\rm iso,Ti}$ / Å ²	0.00703396	0.0105657	0.0107031	0.0149928	0.0170883	0.00901257	0.02249(16)
	(7.7e-008)	(2.1e-007)	(1.6e-007)	(4.1e-007)	(5.4e-007)	(5.2e-008)	
$U_{\rm iso,O}$ / Å ²	0.00728996	0.0168989	0.0184911	0.0122696	0.0110863	0.0119734	0.0201(6)
	(2.8e-007)	(5.6e-007)	(9.4e-007)	(9e-007)	(1.1e-006)	(2.1e-007)	
Particle diameter / Å	a	a	a	a	a	76.7789	_

Fig. S9 PDF refinement of TiO_2 nanoparticles. (a) Refinements at every 10 Å. (b) Refinement in the range from 0 to 50 Å. Experimental PDF plots (blue dots) with calculated ones based on rutile TiO_2 (red line). Their difference is at the bottom (green curve).

Electronic Supplementary Material (ESI) for Materials Horizons This journal is © The Royal Society of Chemistry 2013

Rutile TiO₂ nanorods

5

PDF refinements in different r ranges (10 Å pitch)

Fitting range	0.01–10 Å	10–20 Å	20–30 Å	30–40 Å	40–50 Å	0.01–50 Å	XRD
$R_{\rm w}(\%)$	11.9346	10.5244	14.3483	17.6302	26.707	18.1291	GOF 1.82
a / Å	4.60194	4.59869	4.598	4.59998	4.60081	4.59959	4.59218(12)
	(5.6e-007)	(1.6e-007)	(1.2e-007)	(1.4e-007)	(1.3e-007)	(5.8e-008)	
<i>c</i> / Å	2.96158	2.96286	2.96068	2.96207	2.96241	2.96304	2.95806(12)
	(6.1e-007)	(2.1e-007)	(1.7e-007)	(1.2e-007)	(1.1e-007)	(5.8e-008)	
$U_{\rm iso,Ti}$ / Å ²	0.00496118	0.00829168	0.00884875	0.0127743	0.0231604	0.00697025	0.02062(15)
	(6.7e-008)	(1.5e-007)	(3.8e-007)	(5.8e-007)	(1.1e-006)	(3.4e-008)	
$U_{\rm iso,O}$ / Å ²	0.00773422	0.0166404	0.0166269	0.0200465	0.0137994	0.0138693	0.0275(6)
	(3.2e-007)	(4.9e-007)	(1.1e-006)	(1.2e-006)	(1e-006)	(2.2e-007)	
Particle diameter /	$^{\prime}$ Å $-^{a}$	a	a	a	a	119.835	-
^a Fixed to 119 835	Å						

Table S5 Atomic structure data of TiO2 nanorods obtained by PDF refinements.

Fig. S10 PDF refinement of TiO₂ nanorods. (a) Refinements at every 10 Å. (b) Refinement in the range from 0 to 50 Å. Experimental PDF plots (blue dots) with calculated ones based on rutile TiO₂ (red line). Their ¹⁰ difference is at the bottom (green curve).

S5. Atomic structure of TiO₂ nanoparticles reduced by CaH₂, "TiO_x-NP"

As is often the way with crystalline particles, crystal structures of TiO_x -NP were analyzed by X-ray diffraction, and the Bragg peaks are assignable to a corundum structure. Considering the relatively low reaction ⁵ temperature, Ti deficiency may be ordered. Thus, the crystal structure in three rhombohedral space groups of corundum (*R*3*c*), ilmenite-type (*R*3) and LiNbO₃-type structure (*R*3*c*), assuming ordering of Ti deficiency in one of two Ti sites in the latter two structures as illustrated in Fig. S11.

Judging from the goodness-of-fit values (*R*3*c*, 1.44; *R*3, 1.37; *R*3*c*, 1.58), ilmenite-type structure having ordered Ti deficiency in a Ti site is more reasonable than the corundum structure having uniform distribution of

¹⁰ Ti deficiency. The Ti occupancy in the ilmenite-type structure is 61%, which corresponds to 81% of Ti occupancy in the whole structure, and reasonably corresponds to the composition determined by TGA. Unless there are phases undetectable by X-ray diffraction, this analysis is considered to be correct, but the conventional diffraction technique should not be trusted blindly for nanomaterials.

Fig. S11 Illustration representing the difference of Ti sites among Ti_2O_3 in R3c (a), in R3 (b) and R3c (c).

Electronic Supplementary Material (ESI) for Materials Horizons This journal is © The Royal Society of Chemistry 2013 Rutile TiO₂ nanoparticles reduced by CaH₂ Crystal structure refined by the Rietveld method in three rhombohedral space groups

5

Table S6 Atomic structure data for TiO_x-NP refined by the Rietveld method. I–III, occupancy is fixed to be 1.0. IV–VI, occupancy of Ti1 was refined.

Refinement no.	I	II	III	IV	V	VI
Crystal type	Corundum	Ilmenite	LiNbO ₃	Corundum	Ilmenite	LiNbO ₃
Space group	R3c	<i>R</i> 3	R3c	R3c	<i>R</i> 3	R3c
Ideal composition	Ti_2O_3	Ti_2O_3	Ti_2O_3	Ti_2O_3	Ti_2O_3	Ti_2O_3
Refined composition	Ti ₂ O ₃	Ti_2O_3	Ti ₂ O ₃	Ti _{1.81} O ₃	Ti _{1.61} O ₃	Ti _{1.76} O ₃
$R_{wp}(\%)$	5.73	5.94	6.10	5.21	4.95	5.73
$GOF = \psi$	1.58	1.64	1.68	1.44	1.37	1.58
a / Å	5.0591(5)	5.0563(6)	5.0638(6)	5.0528(5)	5.0569(5)	5.0638(6)
b / Å	= a	=a	=a	=a	=a	=a
<i>c</i> / Å	13.7312(19)	13.7525(19)	13.7633(20)	13.7306(17)	13.7590(16)	13.7707(19)
$U_{ m iso,Ti}$ / ${ m \AA}^2$	0.00487(13)	0.00288(12)	0.00186(11)	0.00848(14)	0.00370(10)	0.00265(11)
$U_{ m iso,O}$ / ${ m \AA}^2$	$U_{ m iso,Ti}$ $ imes$ 2	$U_{ m iso,Ti} imes 2$	$U_{ m iso,Ti} imes 2$	$U_{ m iso,Ti} imes 2$	$U_{ m iso,Ti} imes 2$	$U_{ m iso,Ti} imes 2$
Occupancy, Ti1	1.0	1.0	1.0	0.8068(16)	0.6112(29)	0.758(4)
Occupancy, Ti2	_ <i>a</i>	1.0	1.0	_ ^a	1.0	1.0
Ti1(<i>z</i>)	0.34044(12)	0.33952(25)	0.31826(26)	0.34021(12)	0.34117(27)	0.31692(28)
Ti2(z)	_ ^{<i>a</i>}	0.15844(25)	0.0	a	0.16039(17)	-0.00123(13)
O(x)	0.3331(9)	0.3279(10)	0.3293(21)	0.3335(7)	0.3102(7)	0.3262(12)
O (<i>y</i>)	0.0	-0.0121(18)	-0.0009(18)	0.0	-0.0456(8)	0.0038(24)
O(z)	0.25	0.2478(13)	0.2348(9)	0.25	0.2486(4)	0.23865(25)
Nearest neighbour di	stance					
Ti1–O	1.9853(21), 2.093(4)	1.968(13), 2.109(12)	2.027(12), 2.050(10)	1.9842(17), 2.0916(29)	1.850(5), 2.121(5)	1.964(8), 2.088(7)
Ti2–O	a	1.999(10), 2.089(12)	1.936(11), 2.175(10)	a	2.085(5), 2.133(4)	1.999(11), 2.130(6),
Ti1–Ti1 /Å	2.4837(34), 2.9274(4)	2.9242(5)	_	2.4773(33), 2.9234(4)	2.9276(6)	-
Ti1–Ti2 /Å	_ a	2.490(5)	2.501(4), 2.9309(4)	_ <i>a</i>	2.487(4)	2.504(5), 2.9310(5)
Ti2–Ti2 /Å	<i>a</i>	2.9280(6)	_	<i>a</i>	2.9247(4)	-
a Ti(1) = Ti(2).						

Electronic Supplementary Material (ESI) for Materials Horizons This journal is © The Royal Society of Chemistry 2013

Rutile TiO₂ nanoparticles reduced by CaH₂

Crystal structure refined by the Rietveld method in three rhombohedral space groups

Fig. S12 Rietvelt refinements of the powder XRD patterns of TiO_x -NP: corundum structure in space group *R*3 *c* without (a) and with (b) Ti occupancy refinement; ilmenite-type structure in *R*3 without (c) and with (d) Ti occupancy refinement; and LiNbO₃-type structure in *R*3*c* without (e) and with (f) Ti occupancy refinement.

Electronic Supplementary Material (ESI) for Materials Horizons This journal is © The Royal Society of Chemistry 2013 Rutile TiO₂ nanoparticles reduced by CaH₂ Atomic structure analyzed by the PDF refinements (summary)

Table S7 Atomic structure data of TiOx-NP ar	nalyzed by the PDF refinements within 30 Å.
--	---

Model $R_{\rm w}(\%)$	Ti ₂ O ₃ only 38.5597	Ti ₂ C 3	$D_3 + TiO_2$ 5.0502	Ti ₂ O ₃ 23.	+ Ti ₄ O ₇ 5052	Ti ₂ O 27	3 + Ti ₅ O ₉ 7.0113	Ti_2O_3 24.	+ Ti ₆ O ₁₁ 3367
Phase	Ti ₂ O ₃	Ti ₂ O ₃	TiO ₂	Ti ₂ O ₃	Ti ₄ O ₇	Ti ₂ O ₃	Ti ₅ O ₉	Ti ₂ O ₃	Ti ₆ O ₁₁
Space group	R3c	R3c	$P4_2/mnm$	R3c	<i>I</i> t	R3c	P1	R3c	It
a / Å	5.07236	5.08358	4.6937	5.09391	5.42228	5.09047	5.47004	5.08719	5.46333
	(7e-007)	(8.1e-007)	(3.8e-006)	(7.3e-007)	(5e-006)	(7.9e-007)	(4.1e-006)	(7.5e-007)	(6.9e-006)
b / Å	=a	=a	=a	=a	7.34652	=a	7.3341	=a	7.30065
					(6.4e-006)		(5e-006)		(7.4e-006)
<i>c</i> / Å	13.8088	13.7733	2.97789	13.7947	20.1786	13.7926	8.88012	13.8231	31.992
	(2.7e-006)	(3.3e-006)	(4.2e-006)	(4.1e-006)	(1.7e-005)	(4e-006)	(7.6e-006)	(4.1e-006)	(3.6e-005)
α (°)	90	90	90	90	66.4063	90	101.637	90	67.109
					(7.1e-005)		(6.2e-005)		(0.00011)
β (°)	90	90	90	90	58.1005	90	111.53	90	57.704
, , ,					(7.6e-005)		(5.2e-005)		(8.5e-005)
γ (°)	120	120	90	120	108.257	120	108.107	120	109.001
					(6.9e-005)		(6e-005)		(9.5e-005)
$U_{\rm iso,Ti}$ / Å ²	0.0152577	0.0134509	0.0163045	0.00791217	0.00791217	0.0100485	0.0100485	0.00867751	0.00867751
,	(1.7e-007)	(2.6e-007)	(1.2e-006)	(1.3e-007)	(1.3e-007)	(1.9e-007)	(1.9e-007)	(1.1e-007)	(1.1e-007)
$U_{\rm iso,0}$ / Å ²	0.0230208	0.0219631	0.00574147	0.0164582	0.0164582	0.0152363	0.0152363	0.014101	0.014101
	(6.1e-007)	(8e-007)	(1.2e-006)	(5.3e-007)	(5.3e-007)	(5.4e-007)	(5.4e-007)	(4.4e-007)	(4.4e-007)
Particle diameter / Å	46.7782	a	_a	59.878	55.5969	52.3854	321.133	48.4561	118.717
Phase content ^b	-	0.73385	0.26615	0.530598	0.469402	0.684154	0.315846	0.564708	0.435292
^{<i>a</i>} Large enough value v	was used but it	is not meaning	gful. ^b Relative	bhase content in	terms of atom	18.			

Electronic Supplementary Material (ESI) for Materials Horizons This journal is © The Royal Society of Chemistry 2013 Rutile TiO₂ nanoparticles reduced by CaH₂ Atomic structure analyzed by the PDF refinements in different *r* ranges (10 Å pitch)

1. Ti_2O_3 / Mixed phases of Ti_2O_3 and TiO_2

Table S8 Atomic structure data of TiOx-NP analyzed by the PDF refinements (Ti2O3 or Ti2O3+TiO2).

Fitting range	0.01–10 Å	0.01–30 Å	0.01–10 Å		0.	.01–30 Å	XRD
$R_{\rm w}(\%)$	32.336	38.5597	21.	.5601	30	0.5168	GOF 1.58
<i>a</i> / Å	Ti ₂ O ₃ 5.05256 (1.4e-006)	Ti ₂ O ₃ 5.07236 (7e-007)	Ti ₂ O ₃ 5.1079 (2.7e-006)	TiO ₂ 4.74741 (4.8e-006)	Ti ₂ O ₃ 5.08354 (6.7e-007)	TiO ₂ 4.71731 (2e-006)	Ti ₂ O ₃ 5.0591(5)
b / Å c / Å	= a 13 7877	= a 13 8088	= a 13 6848	= a 2 86424	= a 13 7907	= a 2 84643	= a 13 7312(19)
80	(8.4e-006)	(2.7e-006)	(1.5e-005)	(3.8e-006)	(3.9e-006)	(2.1e-006)	15.7512(17)
$U_{\rm iso,Ti}$ / ${ m A}^2$	0.0101869 (2.3e-007)	0.0152577 (1.7e-007)	0.00557481 (2e-007)	0.00557481 (2e-007)	0.00870404 (1.7e-007)	0.00870404 (1.7e-007)	0.00487(13)
$U_{ m iso,O}$ / ${ m \AA}^2$	0.0197725	0.0230208	0.0111455	0.0111455	0.0191377	0.0191377	$U_{ m iso,Ti}$ ×2
	(1.1e-006)	(6.1e-007)	(6e-007)	(6e-007)	(5.5e-007)	(5.5e-007)	
Particle diameter / Å	a	46.7782	a	_ <i>a</i>	46.7569	41.2924	-
Phase content ^b	-	-	0.723247	0.276753	0.768443	0.231557	-

^a Large enough value was used but it is not meaningful. ^b Relative phase content in terms of atoms. ^c fixed, otherwise not converged well.

Fig. S13 PDF refinements of TiO_x -NP. (a, c) Corundum Ti_2O_3 only. (b, d) Corundum Ti_2O_3 + rutile TiO_2 . Experimental PDF plots (blue dots) with calculated ones based on corundum Ti₂O₃ (red line). Their difference is at the bottom (green curve).

Electronic Supplementary Material (ESI) for Materials Horizons This journal is $\tilde{\tilde{C}}$ The Royal Society of Chemistry 2013 Rutile TiO₂ nanoparticles reduced by CaH₂

Atomic structure analyzed by the PDF refinements in different r ranges (10 Å pitch) 2. Mixed phases of $\rm Ti_2O_3$ and $\rm Ti_4O_7$

5

Table S9 Atomic structure data of TiOx-NP analyzed by PDF refinements (Ti2O3+Ti4O7).

Fitting range $R_w(\%)$	0.0 19.9	1–10 Å 9366	10– 19.0	-20 Å 0107	20-30 Å30-40 Å0.01-30 Å18.242533.138823.5052		1–30 Å 5052			
	Ti ₂ O ₃	Ti ₄ O ₇	Ti ₂ O ₃	Ti ₄ O ₇	Ti ₂ O ₃	Ti ₄ O ₇	Ti ₂ O ₃	Ti ₄ O ₇	Ti ₂ O ₃	Ti ₄ O ₇
	R3c	Π	R3c	IΤ	R3c	Π	R3c	/I	R3c	IΤ
<i>a /</i> A	5.09084	5.36516	5.09817	5.40318	5.09056	5.48298	5.08777	5.4268	5.09391	5.42228
0	(4.1e-006)	(8.7e-006)	(1.7e-006)	(7.6e-006)	(2.5e-006)	(1.5e-005)	(8.6e-006)	(7.5e-005)	(7.3e-007)	(5e-006)
<i>b /</i> Å	= a	7.32304	= a	7.32447	= a	7.29982	= a	7.40894	= a	7.34652
		(1.1e-005)		(1.7e-005)		(1.6e-005)		(7.8e-005)		(6.4e-006)
<i>c</i> / Å	13.8557	20.2091	13.8258	20.3229	13.7772	19.9442	13.7527	19.9449	13.7947	20.1786
	(1.7e-005)	(4.9e-005)	(1e-005)	(3.2e-005)	(9e-006)	(4.7e-005)	(1.7e-005)	(0.00022)	(4.1e-006)	(1.7e-005)
α (°)	90	65.8544	90	66.4871	90	67.7144	90	66.821	90	66.4063
		(0.0002)		(0.00012)		(0.00024)		(0.0012)		(7.1e-005)
β(°)	90	58.9303	90	57.865	90	57.6709	90	58.5575	90	58.1005
1		(0.00012)		(0.00017)		(0.00018)		(0.00085)		(7.6e-005)
ν (°)	120	107.868	120	108.253	120	108,909	120	108.813	120	108.257
/ ()		(0.00018)		(0.00016)		(0.00027)		(0.00094)		(6.9e-005)
Uiso Ti	0.00484234	0.00484234	0.00785057	0.00785057	0.0121119	0.0121119	0.0299446	0.0299446	0.00791217	0.00791217
- 130,11	(1.9e-007)	(1.9e-007)	(2.8e-007)	(2.8e-007)	(8.1e-007)	(8.1e-007)	(2.3e-0.06)	(2.3e-006)	(1.3e-007)	(1.3e-007)
Uiro O	0.0187193	0.0187193	0.0177425	0.0177425	0.0185114	0.0185114	0.0734907	0.0734907	0.0164582	0.0164582
0 150,0	(9e-007)	(9e-007)	(1.3e-006	(1.3e-006)	(2.2e-006)	(2.2e-0.06)	(2.3e-0.05)	(2.3e-005)	(5.3e-007)	(5.3e-007)
Particle diameter / Å	_a	_a		_a	_a	_a	_a	_a	59.878	55.5969
Phase content	^b 0.468801	0.531199	0.527431	0.472569	0.522227	0.477773	0.518529	0.481471	0.530598	0.469402

^a Large enough value was used but it is not meaningful. ^b Relative phase content in terms of atoms

Fig. S14 PDF refinements of TiO_x -NP with a model based on Ti_2O_3 and Ti_4O_7 . (a) Refinements at every 10 Å. (b) Refinement in the range from 0 to 30 Å. Experimental PDF plots (blue dots) with calculated ones based on corundum Ti₂O₃ (red line). Their difference is at the bottom (green curve).

Electronic Supplementary Material (ESI) for Materials Horizons This journal is © The Royal Society of Chemistry 2013 Rutile TiO₂ nanoparticles reduced by CaH₂

5

Atomic structure analyzed by the PDF refinements in different *r* ranges (10 Å pitch) 3. Mixed phases of Ti_2O_3 and Ti_5O_9

Table S10 Atomic structure data of TiOx-NP analyzed by PDF refinements (Ti2O3+Ti5O9).

Fitting range $R_w(\%)$	0.01– 25.47	10 Å	10– 17.0	-20 Å 6408	20- 17.	-30 Å 248	30- 34.	-40 Å 1553	0.01– 27.01	-30 Å 13
	Ti ₂ O ₃	Ti ₅ O ₉	Ti ₂ O ₃	Ti ₅ O ₉	Ti ₂ O ₃	Ti ₅ O ₉	Ti ₂ O ₃	Ti ₅ O ₉	Ti ₂ O ₃	Ti ₅ O ₉
	R3c	Pİ	R3c	Pİ	R3c	<i>P</i> 1	R3c	Pİ	R3c	P1
<i>a /</i> Å	5.09547	5.36831	5.10229	5.41901	5.08932	5.48782	5.09681	5.41178	5.09047	5.47004
	(3.4e-006)	(1.6e-005)	(2e-006)	(1.1e-005)	(1.8e-006)	(1.3e-005)	(4.2e-006)	(2.2e-005)	(7.9e-007)	(4.1e-006)
<i>b /</i> Å	= a	7.20117	= a	7.22065	=a	7.20001	= a	7.25401	=a	7.3341
		(1.8e-005)		(1.3e-005)		(1.3e-005)		(2.9e-005)		(5e-006)
<i>c</i> / Å	13.8546	8.94069	13.8285	8.86	13.7986	8.86622	13.7691	8.93187	13.7926	8.88012
	(1.7e-005)	(2.3e-005)	(7.7e-006)	(1.2e-005)	(9e-006)	(1.1e-005)	(1.3e-005)	(3.9e-005)	(4e-006)	(7.6e-006)
α (°)	90	101.06	90	99.793	90	100.472	90	100.974	90	101.637
		(0.00018)		(0.00011)		(0.00014)		(0.00032)		(6.2e-005)
β (°)	90	112.845	90	111.906	90	110.684	90	110.496	90	111.53
,		(0.00016)		(0.00014)		(0.00016)		(0.00036)		(5.2e-005)
γ (°)	120	105.035	120	107.1	120	108.442	120	107.788	120	108.107
		(0.00022)		(0.00018)		(0.00023)		(0.00021)		(6e-005)
$U_{\rm iso,Ti}$ / Å ²	0.00518022	0.00518022	0.00897196	0.00897196	0.0139736	0.0139736	0.0323806	0.0323806	0.0100485	0.0100485
,	(2.8e-007	(2.8e-007	(3.5e-007)	(3.5e-007)	(7.6e-007)	(7.6e-007)	(3.4e-006)	(3.4e-006)	(1.9e-007)	(1.9e-007)
$U_{\rm iso,O}$ / Å ²	0.0187193	0.0187193	0.032252	0.032252	0.0197495	0.0197495	0.0295374	0.0295374	0.0152363	0.0152363
,.	(9e-007)	(9e-007)	(2.1e-006)	(2.1e-006)	(2.6e-006)	(2.6e-006)	(6e-006)	(6e-006)	(5.4e-007)	(5.4e-007)
Particle	a	a	_a	a	_a	a	_a	a	52.3854	321.133
diameter / Å										
Phase content	^b 0.577732	0.422268	0.668019	0.331981	0.74403	0.25597	0.874019	0.125981	0.684154	0.315846

^{*a*} Large enough value was used but it is not meaningful. ^{*b*} Relative phase content in terms of atoms.

Fig. S15 PDF refinements of TiO_x -NP with a model based on Ti_2O_3 and Ti_5O_9 . (a) Refinements at every 10 Å. (b) Refinement in the range from 0 to 30 Å. Experimental PDF plots (blue dots) with calculated ones based on corundum Ti_2O_3 (red line). Their difference is at the bottom (green curve).

Electronic Supplementary Material (ESI) for Materials Horizons This journal is © The Royal Society of Chemistry 2013 Rutile TiO₂ nanoparticles reduced by CaH₂

5

Atomic structure analyzed by the PDF refinements in different *r* ranges (10 Å pitch) 4. Mixed phases of Ti_2O_3 and Ti_6O_{11}

Fitting range $R_w(\%)$	0.0 19.	1–10 Å 654	10- 20.	-20 Å 8037	20- 21.	-30 Å 2726	30- 36.	-40 Å 9974	0.01- 24.33	-30 Å 367
	Ti ₂ O ₃	Ti ₆ O ₁₁	Ti ₂ O ₃	Ti ₆ O ₁₁	Ti ₂ O ₃	Ti ₆ O ₁₁	Ti ₂ O ₃	Ti ₆ O ₁₁	Ti ₂ O ₃	Ti_6O_{11}
	R3c	<i>I</i> f	R3c	<i>I</i> f	R3c	It	R3c	<i>I</i> t	R3c	<i>I</i> t
a / Å	5.08366	5.46154	5.10337	5.48502	5.08668	5.43378	5.09411	5.4559	5.08719	5.46333
	(2.4e-006)	(1.8e-005)	(1.8e-006)	(1.2e-005)	(1.9e-006)	(1.3e-005)	(4.1e-006)	(3.2e-005)	(7.5e-007)	(6.9e-006)
<i>b</i> / Å	= a	7.18497	= a	7.34093	= a	7.32638	= a	7.4226	= a	7.30065
		(1.8e-005)		(1.6e-005)		(1.7e-005)		(4.9e-005)		(7.4e-006)
<i>c /</i> Å	13.8431	32.1316	13.7793	31.2816	13.8082	32.0522	13.7688	31.7812	13.8231	31.992
	(1.7e-005)	(0.00017)	(1.1e-005)	(6.9e-005)	(1.1e-005)	(8.8e-005)	(1.8e-005)	(0.00013)	(4.1e-006)	(3.6e-005)
α (°)	90	65.9036	90	67.5806	90	66.6423	90	67.0794	90	67.109
		(0.00025)		(0.00021)		(0.00028)		(0.00062)		(0.00011)
β (°)	90	56.6565	90	57.6094	90	58.0146	90	57.9224	90	57.704
		(0.00024)		(0.00013)		(0.00016)		(0.00053)		(8.5e-005)
γ (°)	120	106.095	120	108.927	120	108.833	120	108.989	120	109.001
• • • •		(0.00028)		(0.00021)		(0.00026)		(0.0005)		(9.5e-005)
$U_{\rm iso,Ti}$ / Å ²	0.0040007	0.00867751	0.010541	0.010541	0.0125195	0.0125195	0.0221519	0.0221519	0.00867751	0.00867751
	(1.6e-007)	(1.1e-007)	(2.2e-007)	(2.2e-007)	(5e-007)	(5e-007)	(1.5e-006)	(1.5e-006)	(1.1e-007)	(1.1e-007)
$U_{\rm iso,O}$ / Å ²	0.0127748	0.014101	0.0098811	0.0098811	0.0154135	0.0154135	0.0180794	0.0180794	0.014101	0.014101
	(6.5e-007)	(4.4e-007)	(6.6e-007)	(6.6e-007)	(1.8e-006)	(1.8e-006)	(3e-006)	(3e-006)	(4.4e-007)	(4.4e-007)
Particle	a	a	_a	_a	a	a	a	a	48.4561	118.717
diameter / Å										
Phase content	^b 0.564708	0.435292	0.502637	0.497363	0.581336	0.418664	0.774804	0.225196	0.564708	0.435292

^a Large enough value was used but it is not meaningful. ^bRelative phase content in terms of atoms.

Fig. S16 PDF refinements of TiO_x -NP with a model based on Ti_2O_3 and Ti_6O_{11} . (a) Refinements at every 10 Å. (b) Refinement in the range from 0 to 30 Å. Experimental PDF plots (blue dots) with calculated ones based on corundum Ti_2O_3 (red line). Their difference is at the bottom (green curve).

Fig. S17 Powder XRD patterns calculated from the crystal structures refined by the PDF method. **Ti**₂**O**₃: the corundum structure obtained from the commercially available Ti₂O₃. **Ti**₂**O**₃-**NP**: the corundum structure ⁵ obtained from the TiO₂ nanoparticles reduced by CaH₂. **Ti**₄**O**₇: the Magneli phase Ti₄O₇ (ICSD no. 35121). **Ti**₄**O**₇-**NP**: the Magneli phase Ti₄O₇ obtained from the TiO₂ nanoparticles reduced by CaH₂. **Ti**₆**O**₁₁ the Magneli phase Ti₆O₁₁ (ICSD no. 48131). **Ti**₆**O**₁₁-**NP**: the Magneli phase Ti₆O₁₁ obtained from the TiO₂ nanoparticles reduced by CaH₂. **Ti**₆**O**₁₁ obtained from the TiO₂ nanoparticles reduced by CaH₂. **Ti**₆**O**₁₁ the Magneli phase Ti₆O₁₁ (ICSD no. 48131). **Ti**₆**O**₁₁-**NP**: the Magneli phase Ti₆O₁₁ obtained from the TiO₂ nanoparticles reduced by CaH₂. FWHM of peak shape is set to be 0.2° in 2 θ .

Fig. S18 PDFs calculated from crystal structures refined by the PDF method.

Crystal structure refined by the PDF method

S6. Atomic structure of TiO₂ nanoparticles reduced by NaH₄

Fitting range	0.01 10 Å	2	10.20 Å		20, 30 Å	5	30, 40 Å		0.01 30 Å	
$R_{\rm w}(\%)$	22.2455		22.441		20–30 A 29.014		41.6525		27.8073	
	Ti ₂ O ₃	Ti ₄ O ₇	Ti ₂ O ₃	Ti ₄ O ₇	Ti ₂ O ₃	Ti ₄ O ₇	Ti ₂ O ₃	Ti ₄ O ₇	Ti ₂ O ₃	Ti ₄ O ₇
	R3c	<i>I</i> t	R3c	<i>I</i> t	R3c	<i>I</i> 1	R3c	It	R3c	<i>I</i> 1
a / Å	5.0459	5.53704	5.09307	5.44896	5.06235	5.47261	5.06253	5.50474	5.05816	5.48301
	(9.6e-006)	(3.4e-005)	(3.1e-006)	(6.7e-006)	(4.5e-006)	(1.4e-005)	(3.5e-006)	(9.4e-006)	(1.9e-006)	(5.1e-006)
<i>b</i> / Å	= a	7.19729	=a	7.44498	= a	7.42805	= a	7.41792	=a	7.28713
		(2.2e-005)		(1.1e-005)		(2e-005)		(1.1e-005)		(5.4e-006)
c / Å	14.0668	20.698	13.8363	20.0907	13.7486	20.1399	13.6499	20.3002	13.8919	20.4355
	(5.9e-005)	(7.5e-005)	(1.5e-005)	(2.9e-005)	(2.5e-005)	(6.8e-005)	(1.5e-005)	(3.7e-005)	(8.3e-006)	(2.2e-005)
α (°)	90	67.156	90	66.8745	90	66.8459	90	66.9489	90	67.3395
		(0.00045)		(0.00013)		(0.00028)		(0.00012)		(8.2e-005)
β (°)	90	57.1351	90	57.8397	90	57.9004	90	57.5472	90	57.1325
		(0.00042)		(0.00012)		(0.00023)		(0.00016)		(7e-005)
y (°)	120	108.543	120	108.841	120	108.777	120	108.753	120	108.597
		(0.00028)		(0.00014)		(0.00028)		(0.00011)		(7.6e-005)
$U_{\rm iso,Ti}$ / ${\rm \AA}^2$	0.00918728	0.00918728	0.0101075	0.0101075	0.0122871	0.0122871	0.0123018	0.0123018	0.0120645	0.0120645
	(2.5e-007)	(2.5e-007)	(1.9e-007)	(1.9e-007)	(7.8e-007)	(7.8e-007)	(7e-007)	(7e-007)	(1.4e-007)	(1.4e-007)
$U_{\rm iso,O}$ / ${\rm \AA}^2$	0.0127393	0.0127393	0.0185292	0.0185292	0.0124742	0.0124742	0.0177094	0.0177094	0.0110315	0.0110315
	(9.5e-007)	(9.5e-007)	(1.2e-006)	(1.2e-006)	(1.7e-006)	(1.7e-006)	(1.9e-006)	(1.9e-006)	(3.8e-007)	(3.8e-007)
Phase content	^b 0.295899	0.704101	0.418987	0.581013	0.41647	0.58353	0.850953	0.149047	0.310909	0.689091

Table S12 Atomic structure data of TiO_2 nanoparticles reduced by $NaBH_4$ at 375°C analyzed by PDF refinements

^b Relative phase content in terms of atoms.

5

Fig. S19 PDF refinements of TiO_2 nanoparticles reduced using NaBH₄ at375°C with a model based on Ti_2O_3 and Ti_4O_7 . (a) Refinements at every 10 Å. (b) Refinement in the range from 0 to 30 Å. Experimental PDF plots ¹⁰ (blue dots) with calculated ones based on corundum Ti_2O_3 (red line). Their difference is at the bottom (green curve).

S7. Angle-resolved HX-PES of TiO_x-SC

Since the spectra collected at a low takeoff angle of 30° are identical to those at 88.5°, the influence ⁵ of surface re-oxidization is negligible.

Fig. S20 Angle-resolved HX-PES of TiO_x -SC. The data were collected at a different takeoff angle of 88.5° (blue) and 30.0 (red): (a) Ti 2*p*, (b) O 1*s*, and (c) valence band.

S8. Discussion on impurities of TiO_x-SC

The influence of impurities such as OH species was considered to be negligible, judged from the ¹⁵ faint peak around 13 eV attributable to those species.¹² The OH species were judged to be in a form of Ca(OH)₂ in view of the presence of negligible amount of Ca species. This confirmation is important for the following discussion, because OH species are one of the possible origins of the Ti³⁺ sites and might be generated by insertion of H atoms from the hydride.

20

10

10

S9. EELS without peak deconvolution

Fig. S22 Raw EELS with subtraction of background based on a power law. (a) Ti *L*-edge. (b) O *K*-edge.

S10. Optical absorption

TiO_x-SC and TiO_x-NP are black, but single crystalline Ti₂O₃ was reported to be purple.¹³ The optical absorption spectra of TiO_x-SC (Fig. d) and TiO_x-NP (Fig. b) are similar to that of Ti₂O₃: The absorption above 3.5 eV is assignable to the transition from the valence band to the conduction band. The small peak around 3.0 eV is assignable to a transition from a_{1g} band to $e_g^{\sigma*}$ band. The leftmost peak around 1.4 eV is assignable to the transition from a_{1g} band to its a_{1g}^* band, which is considered to be located between e_g^{π} and $e_g^{\sigma*}$. This $a_{1g} - a_{1g}^*$ transition was reported to be <1.2 eV, but that of TiO_x-SC and TiO_x-NP is 1.4 eV. This shift is not consistent with the prediction from structure analyses. The spectrum of Ti₂O₃ particle is far different from the reported Ti₂O₃ spectrum, probably due to influence of specular reflectance. This did not get better even by manual grinding using a pestle and mortar.

The e_g^{π} band is considered to be located just above the Fermi level, because the valence band maximum energies (Fig. 2b, inset) are the same as the optical bandgap of ~3.5 eV. More precisely, from O 1s HX-PES 15 peaks (531.07 eV for TiO_x-SC, 530.94 eV for TiO_x-NP and 531.02 eV for Ti₂O₃ in Fig. 2b) and O *K*-edge EELS peaks (531.30 eV, 531.35, 531.35 eV in Fig. 2d), the e_g^{π} band peaks in TiO_x-SC, TiO_x-NP and Ti₂O₃ are estimated to be at ~0.27, ~0.41 and ~0.33 eV above E_F .

Fig. S23 Optical absorption spectra. (a, b) Kubelka–Munk (K–M) functions of powder samples: Ti_2O_3 , TiO_2 and TiO_x -NP. The K–M functions were calculated from UV-vis-NIR spectra measured in the diffuse reflectance mode. (c) Optical constants, extinction coefficient *k* and refractive index *n*, of TiO_x -SC.

5

10

S11. Thermogravimetric analyses

The weight loss below ~120°C was assigned to the removal of solvent adsorbed on the surface, and thus the weight was normalized for the dried state. The compositions of TiO_x -NP and Ti_2O_3 are $TiO_{1.83}$ and $TiO_{1.53}$.

Fig. S24 Thermogravimetric analysis in air: (a) TiO_x -NP. (b) TiO_2 nanorods reduced by NaBH₄ at 375°C, (c) 405°C and (d) 420°C. (e) Ti_2O_3 . (f) Compositions of TiO_2 nanorods reduced by NaBH₄ at a different temperature, on the assumption that the weight increase results from oxidation of TiO_x .

S12. Conductivity measurements "TiO_x-SC"

⁵ **Fig. S25** Temperature dependence of electronic resistance measured along two different crystallographic directions. (**Blue**) (100)-oriented rutile TiO₂ single crystals reduced by CaH₂. (Circle) Along the $<001>_R$ of rutile, which equals to the $<110>_C$ direction of the corundum phase of the reduced phase. (Triangle) Along the $<010>_R$ direction of rutile, which equals to the $<001>_C$ direction of the corundum phase of the reduced phase. (**Red**) (110)-oriented rutile TiO₂ single crystals reduced by CaH₂. (Circle) Along the $<001>_R$ of rutile, which equals to the $<110>_C$ direction of the corundum phase of the reduced phase. (**Red**) (110)-oriented rutile TiO₂ single crystals reduced by CaH₂. (Circle) Along the $<001>_R$ of rutile, which equals to the $<110>_C$ direction of the corundum phase of the reduced phase. (Triangle) Along the $<110>_R$ direction of rutile.

Electronic Supplementary Material (ESI) for Materials Horizons This journal is © The Royal Society of Chemistry 2013 Reference

References

- 1. S. Tominaka, Y. Tsujimoto, Y. Matsushita and K. Yamaura, Angew. Chem. Int. Edit., 2011, 50, 7418-7421.
- ⁵ 2. S. Tominaka, *Inorg. Chem.*, 2012, **51**, 10136-10140.
- 3. S. Tominaka, Chem. Commun., 2012, 48, 7949-7951.
- 4. X. Qiu, J. W. Thompson and S. J. L. Billinge, J. Appl. Cryst., 2004, 37, 678-678.
- 5. C. L. Farrow, P. Juhas, J. W. Liu, D. Bryndin, E. S. Bozin, J. Bloch, T. Proffen and S. J. L. Billinge, *Journal of Physics-Condensed Matter*, 2007, **19**, art. no. 335219.
- ¹⁰ 6. R. C. Howell, T. Proffen and S. D. Conradson, *Physical Review B*, 2006, 73, art. no. 094107.
 - 7. A. C. Larson and R. B. V. Dreele, Los Alamos National Laboratory Report LAUR, 2000, 86-748.
 - 8. B. H. Toby, J. Appl. Cryst., 2001, 34, 210-213.
 - 9. M. P. Seah and W. A. Dench, Surf. Interface Anal., 1979, 1, 2–11.
 - 10. J. Verbeeck and S. Van Aert, Ultramicroscopy, 2004, 101, 207-224.
- ¹⁵ 11. L. A. Grunes, R. D. Leapman, C. N. Wilker, R. Hoffmann and A. B. Kunz, *Phys. Rev. B*, 1982, **25**, 7157-7173.
 - 12. S. Krischok, O. Hofft, J. Gunster, J. Stultz, D. W. Goodman and V. Kempter, Surf. Sci., 2001, 495, 8-18.
- 13. S. S. M. Lu, F. H. Pollak and P. M. Raccah, Phys. Rev. B, 1978, 17, 1970-1975.

20