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Detailed steps to obtain the equations as presented in the main manuscript 

 

According to the law of mass action 

 

NP + nP  PnNP           (1) 

 

the dissociation equilibrium coefficient KD (or also called the apparent dissociation coefficient) of 

Equation (1), in which one nanoparticle (NP) reacts with n proteins (P) to form a protein-NP 

complex (PnNP), is expressed as  

 

KD = 
           

       
 = 

    

   
          (2) 

 

Hereby c(NP), c(P), and c(PnNP) are the concentrations of free (naked) NPs without attached 

protein, of unbound protein, and of the protein-NP complex, respectively. kon and koff are the on-

and off-rates. Thus, the total amount c0(NP) of NPs which are in the solution comprises the free 

NPs and the protein-NP complexes. In the same way the total amount of proteins in solution c0(P) 

is given by the free proteins and by the proteins bound to the NPs, whereby each NP binds n 

proteins to form one protein-NP complex PnNP: 

 

c0(NP) = c(NP) + c(PnNP)         (3) 

 

c0(P) = c(P) + nc(PnNP)         (4) 

 

c0(NP) and c0(P) can also be regarded as NP and protein concentrations before the reaction 

between them started, respectively. c(NP) and c(P) are the concentrations of naked, protein-free 

NPs and free proteins, respectively, after NPs and proteins have been brought into contact and an 
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equilibrium according to Equation (1) has been reached. One can now calculate the ratio of the 

number N of NPs with saturated protein shell (i.e. the amount of complexes PnNP) to the total 

number Nmax of NPs: 

 

 

    
 = 

       

       
  
      
→     

       

              
 = 

 
     

        
   

 = 
 

  
     

        
 
  
      
→      

 

  
  

      
 
 =  

      

         
  (5) 

 

The Hill parameter n hereby describes the cooperativity. n > 1 indicates cooperative binding, i.e., 

if NPs are already saturated with proteins, it is easier for the following NPs to become saturated. 

In other words, it is easier for several NPs to collectively become saturated with proteins than for 

single NPs to become independently saturated. In contrast, n < 1 refers to anti-cooperative 

binding, so that protein saturation of some NPs lowers the tendency for other NPs to become 

saturated with proteins. In the context of this simplified model of the reaction between proteins 

and NPs introduced with Eq. (5), the interpretation of the Hill coefficient can be subject to 

discussion, as the coverage state of a NP is not supposed to influence, other than through the law 

of mass action, the coverage state of another second NP. Despite this argument, Eq. (5) 

nevertheless provides a useful model for protein binding to NPs, if the involved parameters are 

suitably reinterpreted, as will be described in the following.  

 

In Equation (5) we so far assumed a scenario in which, in equilibrium, N NPs are saturated with 

proteins (i.e., these NPs form complexes PnNP), and (Nmax-N) NPs are naked (i.e., with no 

protein attached). Of course, the scenario where NPs can only be naked or saturated does not 

reflect the reality, where NPs can also be partially covered by proteins. To describe the reaction 

between NPs and proteins exactly, we should consider the Adair scheme, where each partially 

covered state of the NPs is considered. However, for a large number of binding sites per NP, this 

scheme becomes very fast very complicated and we instead choose here to consider a second 

scenario, in which all NPs have the same (partially) coverage state. In other word, all NPs have 

an average number of N proteins per NP (i.e., there are no naked, protein-free NPs). In this 

scenario, Nmax would be the maximum number of binding sites for proteins per NP. In the 

following, we show that the fraction of saturated NPs N/Nmax from the first scenario is equivalent 

to the fraction N/Nmax in this second scenario. The first scenario considers the ratio x of the 

number of saturated NPs (i.e. Nmax proteins per NP) to the total number of NPs, x = N/Nmax. The 

ratio of the number of NPs without protein shell (i.e., 0 proteins per NP) is then given by (1-x) = 

(Nmax-N)/Nmax. Thus, the total amount of proteins attached to the NPs is equal to the proteins on 

the saturated NPs and on the bare NPs: xNmax + (1-x)0 = 
 

    
Nmax + 

      

    
 0 = N. In the 

second scenario all NPs have N proteins attached and there are no "naked" NPs, which leads to 

the same total number of proteins per total number of NPs as in the first scenario. In the 

following we will continue our discussion according to the interpretation of the second scenario. 

Thus, N/Nmax can be interpreted as the fraction of occupied protein sites on the NP surface. 
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Equation (5) suggests also reinterpretation of n. In a modern view, n is not the stoichiometric 

factor, and it can also have fractional numbers (instead of only integer values). According to the 

Hill model, n is the so-called Hill coefficient. This coefficient n describes the cooperativity of 

binding ligands (in our case proteins) to their substrate (in our case the surface of NPs). n > 1 

describes cooperative binding. Adhesion of proteins already present on the NP surface is 

enhanced if more proteins bind next to them. n < 1 refers to anti-cooperative binding. Adhesion 

of proteins already present on the NP surface is suppressed if more proteins bind next to them. n 

= 1 describes non-cooperative binding. Each protein binds individually to the NP surface and 

does not recognize the proteins that are already bound there. 

 

Instead of the dissociation constant KD, often, the concentration at which half of protein coverage 

is achieved (i.e. the protein concentration producing half occupation of the NP surface) K'D is 

considered. Let us assume half of the NPs are saturated with proteins at a concentration of free 

proteins c1/2(P): 

 

 
 

 
 = 

 

    
 
      
→     

    
     

    
        

  2    
 (P) =     

             
 (P) = KD  c1/2 =   

   
 := K'D (6) 

 

Thus, Equation (5) can be rewritten as 
 

    
 
        
→       

      

         
  

 = 
 

   
   
    

   
 .   (7) 

 

Now, we consider a situation (according to the interpretation with the second scenario) in which, 

in equilibrium, N proteins are bound to each NP on average. Thus, all NPs have on average N 

proteins bound per NP:  

 

c0(NP) = c(PNNP).          (8) 

 

However, there might also be free proteins (= ligands; c(P)) in solution. Thus the total amount of 

proteins is 

 

c0(P) = c(P) + Nc(PNNP)  
      
→      c(P) + Nc0(NP)  

      
→     c(P) + 

    

   
   
    

   
 c0(NP)   (9) 

 

If the concentration of free proteins is much smaller than the concentration of half saturation, 

according to Equation (9) one gets: 

 

c0(P) 
       
→      c(P) + 

    

   
   
    

   
 c0(NP) 

            
→          c(P) + 

    

 
   
    

   
 c0(NP)  

          = c(P) +  
    

   
        c0(NP)         (10) 

 

Electronic Supplementary Material (ESI) for Materials Horizons
This journal is © The Royal Society of Chemistry 2013



4 
 

On the other hand, if the concentration of free proteins is much bigger than the concentration of 

half saturation, then all NPs are saturated with proteins and additional free proteins remain in 

solution, see also Figure S1. 

 

c0(P) 
       
→      c(P) + 

    

   
   
    

   
 c0(NP) 

           
→          c(P) + 

    

    
 c0(NP) = c(P) + Nmax c0(NP)  

                  
                  
→                 c(P)          (11) 

 

According to Equation (10), at very low protein concentrations c(P), a significant part of the 

proteins is bound to the surface of NPs: c0(P)-c(P)   
    

   
       c0(NP). On the other hand, at 

very high protein concentrations c(P), basically all proteins are free proteins, cf. Equation (11), as 

the absolute amount of proteins which is bound to NPs (c0(P)-c(P)  0) is small, due to the fact 

that NPs cannot exist at very high concentrations c0(NP) well above the mM regime. In other 

words, since all NPs are already saturated with protein, all of the excess of added protein will 

remain free, cf. Figure S1. 

 

Equation (9) is very useful, as experimentally, c0(P) is the easily accessible protein concentration, 

i.e., the concentration of protein which has been added to solution, and not c(P), the concentration 

of protein which remains free in solution, after an equilibrium according to Equation (1) has been 

reached. It can be used to calculate the fraction of proteins which is bound to NPs (i.e., the ratio 

of the amount of bound proteins to the total amount of proteins): 

 

 
          

     
  
      
→      

    

   
   
    

   
 
      

     
         (12) 

 

In Equation (9) the total protein concentration c0(P) is given as a function f depending on the 

concentration of free protein: c0(P) = f(c(P)). Equation (9), however, also provides an implicit 

equation which allows for calculating c(P) in dependence on c0(P) as inverse function f
-1

: c(P) = 

f
-1

(c0(P)). In general, the inverse function can be calculated only numerically (Figure S1 shows 

that, in order to do this, the c(P) and c0(P) axes simply need to be switched), but not analytically. 

However, in some special cases, an analytical solution is also possible (such as for n = 0.5, 1, 2). 

In the case of n= 1, Equation (9) is simplified to  

 

c0(P) 
       
→      c(P) + 

    

   
   
    

   
 c0(NP) 

    
→    c(P) + 

    

  
   
    

 
 c0(NP)     (13) 
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Figure S1. a, c, f) Direct graphical representation of Equation (9) in which c0(P) is displayed in dependence of c(P). 

for   
   1 nM, 100 nM, 10 µM, and 1 mM with the following additional parameters: a) Nmax= 40, c0(NP)= 1 µM, 

n=1, c) Nmax= 40, c0(NP)= 1 µM, n=2, and e) Nmax= 40, c0(NP)= 1 nM, n=1. b, d, e) display the corresponding 

inverse functions, c(P) versus c0(P), with the same parameters. The dotted/dashed red lines (parallel to the c(P) 

axes) are guides to the eye and represent c0(P)= Nmax·c0(NP). The dotted/dashed pink lines (parallel to the c0(P) 
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axes) represents guides to the eyes for c(P)= Nmax·c0(NP). The dotted grey lines represent the diagonals c0(P)= c(P), 

which can be hardly seen because they are beneath the graphs for   
   1 mM. 

 

By restructuring some terms it is possible to express Equation (12) as a quadratic equation: 

 

c0(P) = c(P) + 
    

  
   
    

 
 c0(NP)    c0(P) = c(P) + 

         

         
 c0(NP)  

 (        )c0(P) = (        )c(P) +           c0(NP)  

            [              
       ]  [        

 ]      (14) 

 

Equation (13) is a quadratic equation of the form x
2
+bx+c=0 for which the solution is   

   √     

 
. In the present case, only the "+" is a physically correct solution. Thus, Equation (14) 

can be solved and therefore, in the case of n = 1, we get the dependence of c(P) on c0(P) as 

analytical expression: 

 

     
 

 
[                     

   √(              
       )

 
            

  ] (15) 

 

 
 

Figure S2. Graphical representation of Equations (13) and (15) for the parameters Nmax= 40, c0(NP)= 1 µM, n=1, 

and   
   1 nM, 100 nM, 10 µM, and 1 mM. The solid lines (with the corresponding black axes) represent c0(P) 

versus c(P), and the dashed lines (with the corresponding red axes) represent c(P) versus c0(P). 
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For the present example (n = 1), Figure S2 displays Equation (13) and (15) for different   
  

values. The results are the same as in Figure S1, but now obtained analytically and not 

numerically. However, as already mentioned, in general no analytical solution is possible and 

thus, c(P) in dependence on c0(P) has to be numerically derived from the implicit Equation (9). 

 

In the special case n = 1, also Equation (12) can be solved analytically in dependence on c0(P), by 

putting Equation (15) into Equation (12). Some results are displayed in Figure S3. 

 

 
 

Figure S3. Fraction of the proteins which are bound to the NPs (c0(P)-c(P))/c0(P)) in dependence on the 

free protein concentration c(P) (solid lines, corresponding to the black axes), and in dependence on the 

total protein concentration c0(P) (dashed lines, corresponding to the red axes), according to Equations 

(12) and (15), using the parameters Nmax = 40, c0(NP) = 1 M, n = 1. The protein concentrations at half 

saturation K'D were varied: K'D = 1 nM, 100 nM, 10 M, and 1 mM. 

 

The same concept as described above can now be applied also for two different types of proteins 

P(1) and P(2): 

 

NP + n(1)P(1)  Pn(1)NP   KD(1) = 
       

          

          
 ; K'D(1) =        

       (16) 

NP + n(2)P(2)  Pn(2)NP   KD(2) = 
       

          

          
 ; K'D(2) =        

       

 

In case NPs which are saturated with protein species P(1) are brought into contact with free 

protein ligands P(2), an exchange (ligand exchange) can take place: 
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Pn(1)NP  + n(2)P(2)  Pn(2)NP + n(1)P(1)  with KD = 
 
                     

            
          

 = 
     

     
  (17) 

 

If the NPs are incubated with both protein species at the same time, then both of them can bind to 

the NP surface. For reasons of simplicity, according to the first scenario, we are considering here 

only NPs with either P(1) or P(2), but not mixtures of both proteins on the same NP, though they 

certainly exist (as we will later use them in the second scenario): 

 

NP + n(1)P(1) + n(2)P(2)  Pn(1)NP + Pn(2)NP       (18) 

 

Following the strategy of Equation (5) we can then determine how many NPs will be covered 

with P(1) and with P(2). Following the first scenario from above, the total amount of NPs is given 

by free NPs, NPs saturated with protein species P(1), and NPs saturated with protein species P(2): 

 

c0(NP) = c(NP) + c(Pn(1)NP) + c(Pn(2)NP)        (19) 

 

Thus, the ratio of number N(1) of NPs with saturated shell of protein P(1) to the total number of 

NPs Nmax can be expressed as: 

 

    

    
 = 

          

       
 
       
→      

          

 (       )   (       )      
 = 

 

   
 (       )

          
 

     

          

  

        = 
 

   
 (       )

          
 
     

     
 

     

          

 = 
 

   
     

 
          

 
 
          

     
 

     

 
          

 

       = 
 

   
     

 
          

 (   
 
          

     
)

  
       
→      

 

   (
      

       
)

    

 (  ( 
       

      
)

    

)

   (20) 

 

Equation (20) can also be interpreted according to the second scenario in which, in average, each 

NP has its Nmax available binding sites covered with N(1) proteins of species P(1) and N(2) proteins 

of species P(2). Knowing how many proteins are bound per NP on average, one can calculate the 

hydrodynamic radius rh of one protein-NP complex. In case N proteins are adsorbed per NP, the 

volume V(N) of the NP with the protein corona is  

 

V(N) = VNP + NVP.          (21) 

 

Hereby, VP is the volume of one protein (which can be estimated from protein databases) and  

 

VNP = V(0) = 
  

 
  

             (22)  
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is the volume of one NP without attached proteins (i.e., without proteins in solution). Thus, the 

hydrodynamic radius rh(N) of one NP with N adsorbed proteins is 

 

rh(N) = √
 

  
    

 
 = √

 

  
          

 
 = √       

 

  
    

 
     (23) 

 

with rNP = rh(0) being the hydrodynamic radius of one plain NP without adsorbed proteins. Using 

Equation (7), this becomes 

 

rh(c(P)) = √   
   

 

  
      

 

   
 
  

    
   

   
 

  ,      (24) 

 

where c(P) is the concentration of free protein, which however can be expressed in terms of the 

added concentration of protein c0(P), which is the concentration experimentally accessible. Thus, 

in order to calculate rh(c0(P)) in Equation (24), c(P) has to be expressed in terms of c0(P) via the 

implicit Equation (9). Only in some special cases (such as n = 1), an analytical solution can be 

directly given by inserting Equation (15) in Equation (24), cf. Figure S4. 

 

 
 

Figure S4. Hydrodynamic radius rh of NPs in terms of c(P) (black line), and c0(P) (red line), according to 

Equation (24) with the parameters Nmax = 40, n = 1, c0(NP) = 1 µM, rNP = 4 nm,     

 
   

   with    

      (idealized globular proteins were considered in this example) and K'D = 1 M. 
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