Supplementary Information

Development of Highly Effective Three-component Cytoprotective Adjuncts for Cisplatin Cancer Treatment: Synthesis and In Vivo Evaluation in S180-bearing Mice

Yuji Wang^{a, b}, Lei Wei,^a Ming Zhao^a*, Shenghui Mei^a, Meiqing Zheng^a, Yifan Yang^a, Hong Wang^a, Gong Chen^b*, and Shiqi Peng^a*

1. Experimental

1.1. General

All the synthetic reactions were carried out under N₂ protection (1 bar). ¹H spectra were recorded on Bruker AMX-300 and AMX-500 spectrometers in D₂O with tetramethylsilane as an internal standard. IR spectra were recorded with a Perkin-Elmer 983 instrument. FAB/MS was determined on VG-ZAB-MS and TOF-MS was recorded on MDS SCIEX QSTAR. Melting points were measured on a XT5 hot stage microscope (Beijing key electro-optic factory). All L-amino acids and α -D-glucose were purchased from China Biochemical Corp. TLC plates were prepared with Qingdao silica gel GF254. Column chromatography was conducted with Qingdao silica gel H60 or Sephadex-LH20. All solvents were distilled and dried before use. Optical rotations were measured on a Jasco P-1020 Polarimeter at 20 °C. The statistical analysis of all the biological data was carried out by ANOVA test, p<0.05 is considered significant.

1.2 Chemical synthesis

1.2.1 General procedure for preparing *N*-(2,3,4,5,6-pentahydroxyhexyl)-*L*-amino acids (2a-s)

To a solution of NaOH (10 mmol) in 3 mL of methanol/water (1:1) was added Lamino acid **1a-s** (10 mmol) at room temperature. The mixture was stirred for 20 min and amino acid was completely dissolved. D-glucose (1.80 g, 10 mmol) was then added, and the resulting mixture was heated at 50 - 60 $^{\circ}$ C for 5 h under N₂ protection. The reaction solution was then cooled down to room temperature, and NaBH₄ (1.62 g, 30 mmol) was added, and stirred for another 96 h. The reaction mixture was then cooled to 0 °C and adjusted to pH 2.5 by aq. HCl (37%). The resulting precipitate was removed by filtration and the filtrate was partially concentrated to 0.5 mL under vacuum. To the concentrated solution was added 2.5 mL of ethanol, the resulting precipitates were removed by filtration and the filtrate was concentrated again. This procedure was repeated for 5 times and the final filtrate was dissolved in 10 mL of water. The solution was loaded on an acidic ion exchange column and eluted with 3% aqueous N-methylmorpholine solution to give the title compounds **2a-s** as colorless powder after lyophilization. Any water remaining in the synthetic products, including crystal water in the recrystalized products, was removed by drying the substances at 80 °C for 48 h under vacuum. The dried samples were used in obtaining all physical chemical (including elemental analyses) data as well as biological data

1.2.1.1. N-(2,3,4,5,6-Pentahydroxyhexyl)-*L*-aspartic acid (2a)

Yield: 15%. Mp: 171 - 173 °C (wax-like product*). $[\alpha]^{20}{}_{D} = -20.0$ (c = 2.3, H₂O), ESI/MS (m/e) 298 [M + H]⁺, IR (KBr) 3569, 3366, 3233, 2894, 2367, 1730,

1617, 1559, 1397, 1175, 1087, 826, 676, 610. Anal Calcd for C₁₀H₁₉NO₉: C 44.40, H 6.44, N 4.71; Found: C 44.58, H 6.30, N 4.86.

1.2.1.2. N-(2,3,4,5,6-Pentahydroxyhexyl)-L-glutamic acid (2b)

Yield: 21%. Mp: 151 - 153 °C(94 °C*). $[\alpha]^{20}{}_{D}$ = -45.0 (c = 2.1, H₂O), ESI/MS (m/e) 312 [M + H]⁺, IR (KBr) 3407, 3352, 3094, 2967, 2916, 1617, 1400, 1354, 1080, 1041, 741, 675, 534. Anal Calcd for C₁₁H₂₁NO₉: C 42.44, H 6.80, N 4.50; Found: C 42.60, H 6.95, N 4.38.

1.2.1.3. N-(2,3,4,5,6-Pentahydroxyhexyl)-*L*-threonine (2c)

Yield: 25%. Mp: 195 - 197 °C (219 °C*). $[\alpha]^{20}{}_{D}$ = -19.0 (c = 2.2, H₂O), ESI/MS (m/e) 284 [M + H]⁺, IR (KBr) 3421, 2975, 2939, 1612, 1571, 1415, 1385, 1084, 1045, 841, 756, 731. Anal Calcd for C₁₀H₂₁NO₈: C 42.40, H 7.47, N 4.94; Found: C 42.57, H 7.64, N 4.77.

1.2.1.4. N-(2,3,4,5,6-Pentahydroxyhexyl)-L-tyrosine (2d)

Yield: 21%. Mp: 239 - 240 °C (resin-like product*). $[\alpha]^{20}{}_{D} = -50.0$ (c = 2.0, H₂O), ESI/MS (m/e) 346 [M + H]⁺, IR (KBr) 3353, 3307, 3085, 2968, 2916, 1605, 1560, 1458, 1400, 1354, 1080, 1041, 742, 675, 534. Anal Calcd for C₁₅H₂₃NO₈: C 52.17, H 6.71, N 4.06; Found: C 52.33, H 6.90, N 3.95.

1.2.1.5. N-(2,3,4,5,6-Pentahydroxyhexyl)-*L*-serine (2e)

Yield: 24%. Mp: 195 - 197 °C (resin form*). $[\alpha]^{20}_{D} = -31.0$ (c = 2.1, H₂O),

ESI/MS (m/e) 270 [M + H]⁺, IR (KBr) 3222, 2941, 2901, 1621, 1565, 1424, 1337,

1093, 1040, 706. Anal Calcd for C₉H₁₉NO₈: C 40.15, H 7.11, N 5.20; Found: C

40.01, H 6.98, N 5.37.

1.2.1.6. N-(2,3,4,5,6-Pentahydroxyhexyl)-*L*-asparagine (2f)

Yield: 23%. Mp: 240 - 241 °C. $[\alpha]^{20}{}_{D}$ = -20.0 (c = 2.2, H₂O), ESI/MS (m/e) 297 [M + H]⁺, IR (KBr) 3407, 3353, 3095, 2968, 2916, 1687, 1400, 1354, 1080, 1041, 742, 675, 534. Anal Calcd for C₁₀H₂₀N₂O₈: C 40.54, H 6.80, N 9.46; Found: C 40.68, H 6.95, N 9.33.

1.2.1.7. N-(2,3,4,5,6-Pentahydroxyhexyl)-*L*-glutamine (2g)

Yield: 18%. Mp: 251 - 253 °C. $[\alpha]^{20}{}_{D}$ = -23.0 (c = 2.3, H₂O), ESI/MS (m/e) 311 $[M + H]^+$, IR (KBr) 3402, 3350, 3088, 2968, 2917, 1685, 1405, 1352, 1084, 1040, 743, 698. Anal Calcd for C₁₁H₂₂N₂O₈: C 42.58, H 7.15, N 9.03; Found: C 42.68, H 6.95, N 9.33.

1.2.1.8. N-(2,3,4,5,6-Pentahydroxyhexyl)glycine (2h)

Yield: 36%. Mp: 182 - 183 °C (172 - 177 °C*). [α]²⁰_D = -40.0 (c = 2.3, H₂O), ESI/MS (m/e) 240 [M + H]⁺, IR (KBr) 3532, 3242, 2963, 2897, 2365, 1627, 1561, 1402, 1378, 1061, 1037, 848, 691, 579. Anal Calcd for C₈H₁₇NO₇: C 40.17, H 7.16, N 5.86; Found: C 40.00, H 6.99, N 5.71.

1.2.1.9. N-(2,3,4,5,6-Pentahydroxyhexyl)-L-cysteine (2i)

Yield: 45%. Mp: 171 - 172 °C(resin-like product*). $[\alpha]^{20}{}_{D} = -33.0$ (c = 2.1, H₂O), ESI/MS (m/e) 286 [M + H]⁺, IR (KBr) 3275, 2975, 2936, 1607, 1567, 1417, 1391, 1082, 1036, 695, 632. Anal Calcd for C₉H₁₉NO₇S: C 37.89, H 6.71, N 4.91; Found: C 38.04, H 6.55, N 4.76.

1.2.1.10. N-(2,3,4,5,6-Pentahydroxyhexyl)-*L*-methionine (2j)

Yield: 41%. Mp: 197 - 199 °C. $[\alpha]^{20}{}_{D}$ = -57.0 (c = 2.0, H₂O), ESI/MS (m/e) 314 $[M + H]^+$, IR (KBr) 3464, 3431, 3291, 3117, 2930, 2340, 1601, 1554, 1433, 1398, 1089, 849, 692. Anal Calcd for C₁₀H₂₁NO₇S: C 40.12, H 7.07, N 4.68; Found: C 40.00, H 6.93, N 4.83.

1.2.1.11. N-(2,3,4,5,6-Pentahydroxyhexyl)-*L*-alanine (2k)

Yield: 30%. Mp 201 - 202 °C, [α]²⁰_D = -20.0 (c = 2.3, H₂O), ESI/MS (m/e) 254 [M + H]⁺, IR (KBr) 3420, 3273, 2973, 2905, 1622, 1587, 1424, 1400, 1083, 1038, 704, 668. Anal Calcd for C₉H₁₉NO₇: C 42.68, H 7.56, N 5.53; Found: C 42.86, H 7.72, N 5.70.

1.2.1.12. N-(2,3,4,5,6-Pentahydroxyhexyl)-L-phenylalanine (21)

Yield: 24%. Mp 205 - 207 °C, $[\alpha]^{20}{}_{D}$ = -60.0 (c = 2.1, H₂O), ESI/MS (m/e) 330 $[M + H]^+$, IR (KBr) 3423, 3271, 2975, 2902, 1621, 1586, 1426, 1402, 1086, 1035, 706, 665. Anal Calcd for C₁₅H₂₃NO₇: C 54.70, H 7.04, N 4.25; Found: C 54.88, H 7.19, N 4.09.

1.2.1.13. N-(2,3,4,5,6-Pentahydroxyhexyl)-*L*-leucine (2m)

Yield: 53%. Mp: 207 - 208 °C. $[\alpha]^{20}_{D}$ = -40.0 (c = 2.2, H₂O), ESI/MS (m/e) 296 $[M + H]^+$, IR (KBr) 3365, 3097, 2962, 2924, 1616, 1432, 1374, 1294, 1083, 1044, 761, 677. Anal Calcd for C₁₂H₂₅NO₇: C 48.80, H 8.53, N 4.74; Found: C 48.73, H 8.39, N 4.92.

1.2.1.14. N-(2,3,4,5,6-Pentahydroxyhexyl)-*L*-isoleucine (2n)

Yield: 42%. Mp: 228 - 230 °C. $[\alpha]^{20}_{D}$ = -12.8 (c = 2.4, H₂O), ESI/MS (m/e) 296 [M + H]⁺, IR (KBr) 3365, 3097, 2962, 2924, 1616, 1432, 1374, 1294, 1083, 1044, 761, 677. Anal Calcd for C₁₂H₂₅NO₇: C 48.80, H 8.53, N 4.74; Found: C 48.95, H 8.76, N 4.56.

1.2.1.15. N-(2,3,4,5,6-Pentahydroxyhexyl)-L-tryptophane (20)

Yield: 22%. Mp: 206 - 207°C. $[\alpha]^{20}_{D} = 10.0 (c = 2.1, H_2O)$, ESI/MS (m/e) 369

[M + H]⁺, IR (KBr) 3407, 3353, 3095, 2968, 2916, 1617, 1400, 1354, 1080, 1041,

742, 675, 534. Anal Calcd for C₁₇H₂₄N₂O₇: C 55.43, H 6.57, N 7.60; Found: C 55.25, H 6.39, N 7.76.

1.2.1.16. *N*-(2,3,4,5,6-Pentahydroxyhexyl)-*L*-valine (2p)

Yield: 19%. Mp 216 - 217 °C, $[\alpha]^{20}{}_{D}$ = -35.0 (c = 2.2, H₂O), ESI/MS (m/e) 282 [M + H]⁺, IR (KBr) 3339, 3186, 2972, 2940, 2362, 1603, 1551, 1421, 1318, 1080, 1035, 825, 695, 617. Anal Calcd for C₁₁H₂₃NO₇: C 46.97, H 8.24, N 4.98; Found: C46.98, H 8.22, N 4.96.

1.2.1.17. *N*-(2,3,4,5,6-Pentahydroxyhexyl)-*L*-lysine (2q)

Yield: 27%. Mp: 147 - 148 °C (wax-like product*). $[\alpha]^{20}_{D} = -40.0$ (c = 2.3,

H₂O), ESI/MS (m/e) 497 [M + H]⁺, IR (KBr) 3567, 3370, 3231, 2921, 2884, 1728,

1610, 1558, 1455, 1175, 1057, 1023, 829, 792, 614. Anal Calcd for C₁₈H₃₇N₂NaO₁₂:

C, 43.54; H, 7.51; N, 5.64; Found: C 43.60, H 7.52, N 5.66.

1.2.1.18. N-(2,3,4,5,6-Pentahydroxyhexyl)-*L*-arginine (2r)

Yield: 28%. Mp: 186 - 188 °C (light-yellow resin*). $[\alpha]^{20}_{D} = -65.0$ (c = 2.1,

H₂O), ESI/MS (m/e) 339 [M + H]⁺, IR (KBr) 3437, 3150, 2925, 2882, 1642, 1510,

1396, 1078, 1026, 905. Anal Calcd for C₁₂H₂₆N₄O₇: C 42.60, H 7.75, N 16.56;

Found: C 42.46, H 7.51, N 16.73.

1.2.1.19. N-(2,3,4,5,6-Pentahydroxyhexyl)-*L*-histidine (2s)

Yield: 28%. Mp: 233 - 235 °C (brownish resin*). $[\alpha]^{20}{}_{D}$ = -130.0 (c = 2.2, H₂O), ESI/MS (m/e) 320 [M + H]⁺, IR (KBr) 3443, 3337, 3125, 2910, 1618, 1448, 1398, 1112, 1057, 1016, 957, 620. Anal Calcd for C₁₂H₂₁N₃O₇: C 45.14, H 6.63, N 13.16; Found: C 45.46, H 6.67, N 13.23.

* The melting points in the brackets were from Heins et al., US Patent 4,032,676,

June 28, 1977. The ¹H NMR signals of **2a-s** were assigned in Table 1.

Table 1¹H NMR signals of **2a-s**

	a H 	с Н 	d H 	0⊦ 	f I H 	g H 	
но-	H b	OH	 OF	I H e	OF	l H h	Он

Compd.	На	Hb	Hc	Hd	He	Hf	Hg	Hh	Hi
2a	3.75 (m, J	4.15 (m, J	3.65 (m, J	3.37 (dd, J	3.28 (dd,	3.81 (dd, J	4.03 (dd, J	3.86 (dd, J	3.84 (m, J
	= 3.6 Hz,	= 4.6 Hz,	= 4.1 Hz,	= 3.5 Hz,	J = 9.0	= 3.0 Hz,	=5.0 Hz, J	= 3.0 Hz,	= 5.1Hz,
	1H)	1H)	1H)	J = 13.0	Hz, J =	J = 12.0	= 7.0 Hz,	J = 5.0	1H)
				Hz, 1H)	13.0 Hz, 1H)	Hz, 1H)	1H)	Hz, 1H)	
2b	3.63(m, J	4.12 (m, J	3.55 (t, J	3.24(dd, J	3.11 (dd, J	3.63(m, J	3.82 (dd, J	3.77 (dd, J	3.72 (m, J
	= 4.0 Hz	= 4.4 Hz,	= 4.5 Hz,	= 3.4 Hz,	= 8.7 Hz,	= 4.0 Hz	= 3.3 Hz,	= 3.5 Hz,	= 3.4 Hz,
	1H)	1H)	1H)	J = 12.7	J = 12.8	1H)	J = 5.0	J = 12.0	1H)
				Hz, 1H)	Hz, 1H)		Hz, 1H)	Hz, 1H)	
2c	3.57(d, J	4.12 (m, J	3.64 (m, J	3.81 (m, J	3.80 (m, J	3.75 (m, J	3.26 (dd, J	3.12 (dd, J	3.64 (m, J
	= 4.7 Hz,	= 4.6 Hz,	= 4.1 Hz,	= 4.5 Hz,	= 3.4 Hz,	= 3.6 Hz,	= 3.1 Hz,	= 10.1 Hz,	=4.1 Hz,
	1H)	1H)	1H)	1H)	1H)	1H)	J = 13.0	J = 13.0	1H)
							Hz, 1H)	Hz, 1H)	
2d	3.63 (m, J	4.10 (m, J	3.63 (m, J	3.80 (m, J	3.78 (m, J	3.73 (m, J	3.23 (dd, J	3.14 (dd, <i>J</i>	3.90 (t, J
	= 4.0 Hz,	= 4.7 Hz,	= 4.0 Hz,	= 4.7 Hz,	= 3.5 Hz,	= 3.5 Hz,	= 3.1 Hz,	= 3.1 Hz,	= 5.4 Hz,
	1H)	1H)	1H)	1H)	1H)	1H)	J = 13.0	J = 13.0	1H)
							Hz, 1H)	Hz, 1H)	
2e	3.88 (d, J	4.12 (m, J	3.62 (t, J	3.88 (d, J	3.75 (dd, <i>J</i>	3.82 (dd, <i>J</i>	3.26 (dd, <i>J</i>	3.14 (dd, <i>J</i>	3.80 (t, <i>J</i>
	= 5.5 Hz,	= 4.6 Hz,	= 5.5 Hz,	= 5.5 Hz,	= 1.0 Hz,	= 5.0 Hz,	= 3.0 Hz,	= 10.0 Hz,	= 2.5 Hz,
	1H)	1H)	1H)	1H)	J = 3.0	J = 12.5	J = 13.0	J = 13.0	1H)
					Hz, 1H)	Hz, 1H)	Hz, 1H)	Hz, 1H)	
2f	3.75 (t, <i>J</i>	4.14 (m, <i>J</i>	3.67 (m, J	3.81 (dd, <i>J</i>	3.79 (dd, <i>J</i>	3.72 (m, J	3.27 (dd, <i>J</i>	3.14 (dd, J)	3.83 (dd, <i>J</i>
	= 5.2 Hz,	= 4.3 Hz,	= 4.0 Hz,	= 3.2 Hz,	= 3.3 Hz,	= 3.5 Hz,	= 3.4 Hz,	= 9.1 Hz,	= 5.1 Hz,
	1H)	1H)	1H)	J = 5.2	J = 11.7	1H)	J = 12.6	J = 12.7	J = 7.2
				Hz, 1H)	Hz, 1H)	0 = 4 (11 - 1	Hz, 1H)	Hz, 1H)	Hz, 1H)
2g	3.61 (m, J	4.10 (m, J	3.71 (m, J	3.52 (t, J	3.78 (dd, J	3.74 (dd, <i>J</i>	3.26 (dd, <i>J</i>	3.12 (dd, <i>J</i>	3.80 (dd, J
	= 4.1 Hz,	= 4.4 Hz,	= 3.6 Hz,	= 5.1 Hz,	= 3.3 Hz,	= 3.4 Hz,	= 3.5 Hz,	= 9.0 Hz,	= 5.0 Hz,
	IH)	IH)	IH)	IH)	J = 5.0	J = 11.5	J = 12.3	J = 12.5	J = 7.0
	2 (5 (1 -		0.65 (1.3	2 70 (Hz, IH)	Hz, IH)	Hz, IH)	Hz, IH)	Hz, IH)
2h	3.65 (d, J	4.11(m, J)	3.65 (d, J	3.79 (m, J	3.76 (m, J	3.73 (m, J)	3.26 (dd, J	$3.13 (\mathrm{dd}, J)$	3.56 (s,
	= 5.2 Hz,	= 4.5 Hz,	= 5.2 Hz,	= 5.2 Hz,	= 3.6 Hz,	= 3.5 Hz,	= 3.5 Hz,	= 9.5 Hz,	IH)
	IH)	IH)	IH)	IH)	IH)	IH)	J = 13.0	J = 13.0	
							Hz, IH)	Hz, IH)	

2i	3.69 (m, J	4.16 (m, J	3.69 (m, J	3.81 (dd, <i>J</i>	3.86 (dd, J	3.76 (m, J	3.27 (dd, J	3.16 (dd, J	3.97 (t, J
	= 4.2 Hz,	= 4.6 Hz,	= 4.2 Hz,	= 3.0 Hz,	= 3.0 Hz,	= 4.2 Hz,	= 9.5 Hz,	= 5.0 Hz,	= 5.0 Hz,
	1H)	1H)	1H)	J = 12.0	J = 4.5	1H)	J = 13.0	J = 18.0	1H)
				Hz, 1H)	Hz, 1H)		Hz, 1H)	Hz, 1H)	
2j	3.65 (d, J	4.10 (m, J	3.50 (t, J	3.81 (m, J	3.81 (m, J	3.76 (m, J	3.23 (dd, J	3.12 (dd, J	3.79 (t, <i>J</i>
Ū	= 5.0 Hz,	= 4.5 Hz,	= 7.0 Hz,	= 4.2 Hz,	= 4.2 Hz,	= 3.5 Hz,	= 3.0 Hz,	= 10.0 Hz,	= 3.0 Hz,
	1H)	1H)	1H)	1H)	1H)	1H)	J = 13.0	J = 13.0	1H)
							Hz, 1H)	Hz, 1H)	
2k	3.70 (d, J	4.14 (m, J	3.68 (m, J	3.81 (m, J	3.81 (m, J	3.79 (m, J	3.30 (dd, J	3.22 (dd, J	3.84 (m, J
	= 5.0 Hz,	= 4.3 Hz,	= 5.6 Hz,	= 5.0 Hz,	= 5.0 Hz,	= 3.4 Hz,	= 3.4 Hz,	= 9.2 Hz,	= 5.1 Hz,
	1H)	1H)	1H)	1H)	1H)	1H)	J = 12.7	J = 12.4	1H)
							Hz, 1H)	Hz, 1H)	
21	3.66 (m, J	4.16 (m, J	3.66 (m, J	3.84 (m, J	3.81 (m, J	3.76 (d, J	3.28 (dd, J	3.16 (dd, J	4.07 (m, J
	= 5.4 Hz,	= 4.5 Hz,	= 5.4 Hz,	= 5.2 Hz,	= 3.6 Hz,	= 4.8 Hz,	= 3.5 Hz,	= 9.0 Hz,	= 5.3 Hz,
	1H)	1H)	1H)	1H)	1H)	1H)	J = 12.4	J = 12.1	1H)
							Hz, 1H)	Hz, 1H)	
2m	3.66 (m, J	4.02 (m, J	3.66 (m, J	3.81 (m, J	3.75 (m, J	3.68 (t, J	3.26 (dd, J	3.14 (dd, J	3.80 (m, J
	= 5.4 Hz,	= 4.6 Hz,	= 5.4 Hz,	= 4.7 Hz,	= 5.0 Hz,	= 6.0 Hz,	= 3.0 Hz,	= 10.0 Hz,	= 3.8 Hz,
	1H)	1H)	1H)	1H)	1H)	1H)	J = 13.0	J = 13.0	1H)
							Hz, 1H)	Hz, 1H)	
2n	3.65 (m, J	4.04 (m, J	3.55 (d, J	3.80 (m, J	3.77 (m, J	3.71 (t, J	3.26 (dd, J	3.20 (dd, J	3.83 (m, J
	= 5.3 Hz,	= 4.5 Hz,	= 4.2 Hz,	= 3.7 Hz,	= 5.1 Hz,	= 5.8 Hz,	= 3.2 Hz,	= 9.8 Hz,	= 4.8 Hz,
	1H)	1H)	1H)	1H)	1H)	1H)	J = 13.1	J = 12.6	1H)
							Hz, 1H)	Hz, 1H)	
20	3.71 (d, J	4.16 (m, J	3.71 (d, J	3.85 (m, J	3.83 (m, J	3.77 (m, J	3.27 (dd, J	3.20 (dd, J	3.90 (t, J
	= 5.3 Hz,	= 4.9 Hz,	= 5.3 Hz,	= 5.2 Hz,	= 5.3 Hz,	= 3.9 Hz,	= 3.6 Hz,	= 9.3 Hz,	= 5.0 Hz,
	1H)	1H)	1H)	1H)	1H)	1H)	J = 12.9	J = 12.9	1H)
							Hz, 1H)	Hz, 1H)	
2p	3.67 (m, J	4.03 (m, J	3.67 (m, J	3.79 (m, J	3.77 (m, J	3.65 (dd, J	3.22 (dd, <i>J</i>	3.13 (dd, J	3.80 (m, J
-	= 4.2 Hz,	= 4.9 Hz,	= 4.2 Hz,	= 4.7 Hz,	= 3.9 Hz,	= 4.5 Hz,	= 3.0 Hz,	= 10.0 Hz,	= 5.1 Hz,
	1H)	1H)	1H)	1H)	1H)	J = 16.0	J = 13.0	J = 13.0	1H)
						Hz, 1H)	Hz, 1H)	Hz, 1H)	
2q	3.74 (m, J	4.07 (m, J	3.67 (m, J	3.78 (m, J	3.78 (m, J	3.60 (d, J	3.27 (dd, J	3.15 (dd, J	3.80 (m, J
-	= 3.8 Hz,	= 4.6 Hz,	= 5.0 Hz,	= 5.2 Hz,	= 5.2 Hz,	= 4.5 Hz,	= 3.6 Hz,	= 9.2 Hz,	= 5.2 Hz,
	1H)	1H)	1H)	1H)	1H)	1H)	J = 12.6	J = 12.4	1H)
							Hz, 1H)	Hz, 1H)	
2r	3.65 (m, J	4.08 (m, J	3.65 (m, J	3.79 (m, J	3.76 (m, J	3.60 (t, J	3.29 (dd, J	3.18 (dd, J	3.82 (m, J
	= 5.2 Hz,	= 4.9 Hz,	= 5.2 Hz,	= 5.1 Hz,	= 3.9 Hz,	= 4.7 Hz,	= 3.3 Hz,	= 9.0 Hz,	= 5.0 Hz,
	1H)	1H)	1H)	1H)	1H)	1H)	J = 12.5	J = 12.6	1H)
							Hz, 1H)	Hz, 1H)	
2s	3.66 (m, J	4.11 (m, J	3.66 (m, J	3.84 (m, J	3.82 (m, J	3.78 (m, J	3.26 (dd, J	3.17 (dd, J	3.91 (t, J
	= 5.1 Hz,	= 4.7 Hz,	= 5.1 Hz,	= 5.1 Hz,	= 5.3 Hz,	= 4.2 Hz,	= 3.5 Hz,	= 9.1 Hz,	= 5.3 Hz,
	1H)	1H)	1H)	1H)	1H)	1H)	J = 12.7	J = 12.4	1H)
							Hz, 1H)	Hz, 1H)	

R	На	Hb	Hc	Hd	He	Hf
a C O OH	3.08 (dd, J=5.0 Hz, J=18.0 Hz, 1H)	3.01 (dd, <i>J</i> = 7.0 Hz, <i>J</i> = 18.0 Hz, 1H)				
b a C O O O O H	2.00 (m, <i>J</i> = 4.8 Hz, 2H)	2.26 (d, <i>J</i> = 5.0 Hz, 2H)				
OH a b	3.95 (d, <i>J</i> = 4.5 Hz, 1H)	1.24 (d, <i>J</i> = 4.7 Hz, 3H)				
а ОН	3.00 (d, <i>J</i> = 4.5 Hz, 2H)	7.02 (d, <i>J</i> = 7.0 Hz, 2H)	6.78 (d, <i>J</i> = 7.1 Hz, 2H)			
	R $a = O$ OH $b = O$ OH dH dH dH dH dH dH dH d	RHa a $3.08 (dd, J = 5.0)$ $Hz, J = 18.0 Hz, 1H$ OH b OH a OH A OH A <th>RHaHb$a$$C = 0$$3.08 (dd, J = 5.0)$$3.01 (dd, J = 7.0)$$Hz, J = 18.0 Hz, J =$</th> <th>RHaHbHc$a \\ C \\ O \\ OH$$3.08 (dd, J = 5.0 \\ Hz, J = 18.0 Hz, 1 = 18.0 \\ Hz, J = 18.0 Hz, 1 = 18.0 \\ Hz, 1H$$7.0 Hz, J = 18.0 \\ Hz, 1H$$b \\ C \\ OH$$2.00 (m, J = 4.8 \\ Hz, 2H)$$2.26 (d, J = 5.0 \\ Hz, 2H)$$b \\ OH$$3.95 (d, J = 4.5 \\ Hz, 1H)$$1.24 (d, J = 4.7 \\ Hz, 3H)$$b \\ C \\ A \\ OH$$3.00 (d, J = 4.5 \\ Hz, 2H)$$7.02 (d, J = 7.0 \\ Hz, 2H)$$b \\ C \\ Hz, 2H$$7.02 (d, J = 7.0 \\ Hz, 2H)$$6.78 (d, J = 7.1 \\ Hz, 2H)$</th> <th>RHaHbHcHd$a \\ C \\ OH \\ OH \\ OH \\ OH \\ a \\ C \\ OH \\ OH \\ a \\ C \\ OH \\ a \\ OH \\ C \\ OH \\ Hz, 2H) \\ Hz, 2H \\ Hz, 2H) \\$</th> <th>RHaHbHcHdHe$a \rightarrow C \rightarrow O \rightarrow O$</th>	RHaHb a $C = 0$ $3.08 (dd, J = 5.0)$ $3.01 (dd, J = 7.0)$ $Hz, J = 18.0 Hz, J =$	RHaHbHc $a \\ C \\ O \\ OH$ $3.08 (dd, J = 5.0 \\ Hz, J = 18.0 Hz, 1 = 18.0 \\ Hz, J = 18.0 Hz, 1 = 18.0 \\ Hz, 1H$ $7.0 Hz, J = 18.0 \\ Hz, 1H$ $b \\ C \\ OH$ $2.00 (m, J = 4.8 \\ Hz, 2H)$ $2.26 (d, J = 5.0 \\ Hz, 2H)$ $b \\ OH$ $3.95 (d, J = 4.5 \\ Hz, 1H)$ $1.24 (d, J = 4.7 \\ Hz, 3H)$ $b \\ C \\ A \\ OH$ $3.00 (d, J = 4.5 \\ Hz, 2H)$ $7.02 (d, J = 7.0 \\ Hz, 2H)$ $b \\ C \\ Hz, 2H$ $7.02 (d, J = 7.0 \\ Hz, 2H)$ $6.78 (d, J = 7.1 \\ Hz, 2H)$	RHaHbHcHd $a \\ C \\ OH \\ OH \\ OH \\ OH \\ a \\ C \\ OH \\ OH \\ a \\ C \\ OH \\ a \\ OH \\ C \\ OH \\ Hz, 2H) \\ Hz, 2H \\ Hz, 2H) \\$	RHaHbHcHdHe $a \rightarrow C \rightarrow O \rightarrow O$

	-	2.66 (m I = 4.0)					<u> </u>
Ze	HO	3.66 (m, J = 4.0 Hz, 2H)					
2f	H ₂ N O	2.58 (d, <i>J</i> = 5.2 Hz, 2H)					
2g	a b NH ₂	2.00 (m, <i>J</i> = 5.0 Hz, 1H)	2.02 (m, <i>J</i> = 5.3 Hz, 1H)	2.24 (t, <i>J</i> = 5.0 Hz, 2H)			
2h	a —H	3.56 (s, 1H)					
2i	a SH	3.08 (d, <i>J</i> = 5.0 Hz, 2H)					
2ј	a S b c	2.09 (m, 2H)	2.55 (t, <i>J</i> = 4.2 Hz, 2H)	2.13 (s, 3H)			
2k	a H ₃ C—	1.26 (d, <i>J</i> = 5.6 Hz, 3H)					
21	a d	2.93 (d, <i>J</i> = 5.3 Hz, 2H)	7.14 (d, <i>J</i> = 7.4 Hz, 2H)	7.22 (t, <i>J</i> = 7.6 Hz, 2H)	7.10 (t, <i>J</i> = 7.5 Hz, 1H)		
2m	c a b	1.70 (m, <i>J</i> = 3.7 Hz, 2H)	1.72 (m, <i>J</i> = 4.1 Hz, 1H)	0.95 (dd, <i>J</i> = 3.0 Hz, <i>J</i> = 6.0 Hz, 6H)			
2n	a c d	2.35 (m, <i>J</i> = 4.2 Hz, 1H)	1.10 (d, <i>J</i> = 3.6 Hz, 3H)	1.33 (m, <i>J</i> = 3.7 Hz, 2H)	0.92 (dd, J= 3.2 Hz, J= 6.3 Hz, 3H)		
20	a b HN f	2.93 (d, <i>J</i> = 4.9 Hz, 2H)	6.92 (s, 1H)	7.16 (t, <i>J</i> = 7.8 Hz, 1H)	7.14 (t, <i>J</i> = 7.7 Hz, 1H)	7.20 (d, <i>J</i> = 7.5 Hz, 1H)	7.22 (d, J = 7.5 Hz, 1H)
2p	b a b	2.38 (m, <i>J</i> = 4.6 Hz, 1H)	1.05 (dd, <i>J</i> = 7.0 Hz, <i>J</i> = 16.0 Hz, 6H)				
2q	a C NH ₂	1.68 (m, J = 4.4 Hz, 2H)	1.32 (m, <i>J</i> = 4.7 Hz, 2H)	1.57 (m, J = 4.9 Hz, 2H)	2.70 (t, <i>J</i> = 4.9 Hz, 2H)		
2r	a C NH b H NH2	1.66 (m, <i>J</i> = 4.6 Hz, 2H)	1.56 (m, <i>J</i> = 4.8 Hz, 2H)	2.68 (t, <i>J</i> = 4.7 Hz, 2H)			
2s	C HN b a	2.88 (d, <i>J</i> = 5.3 Hz, 2H)	6.81 (s, 1H)	7.46 (s, 1H)			

1.2.2 General procedure for preparing *N*-(2,3,4,5,6-pentahydroxyhexyl)-*N*dithiocarbamate amino acid disodium (3a-s)

To the suspension of *N*-(2,3,4,5,6-pentahydroxyhexyl)-amino acid **2a-s** (1.0 mmol) in 7 mL of water at 0 °C were added NaOH (140 mg, 4.0 mmol), CS₂ (304 mg, 4.0 mmol), and 0.4 mL of dioxane. The reaction mixture was stirred at 0°C for 24 h. The reaction mixture was then filtered and the filtrate was concentrated under vacuum. The resulting residue was recrystallized in aqueous acetone to give the title compou-nds **3a-s** as yellow powder. Any water remaining in the synthetic products, including crystal water in the recrystalized products, was removed by drying the substances at 80 °C for 48 h under vacuum. The dried samples were used in obtaining biological data.

1.2.2.1. *N*-(2,3,4,5,6-Pentahydroxyhexyl)-*N*-dithiocarbamate-*L*-aspartic acid trisodium (3a)

Yield: 86%. Mp: 90 - 91 °C. $[\alpha]^{20}{}_{D}$ = -8.6 (c = 2.8, H₂O), ESI/MS (m/e) 418 [M + H]⁺, IR (KBr) 3346, 2950, 2894, 1730, 1602, 1548, 1395,1290, 1210, 1079, 830, 690. Anal Calcd for C₁₁H₁₆NNa₃O₉S₂: C, 30.07; H, 3.67; N, 3.19; Found: C, 30.30; H, 3.81; N, 2.99.

1.2.2.2. *N*-(2,3,4,5,6-Pentahydroxyhexyl)-*N*-dithiocarbamate-*L*-glutamic acid trisodium (3b)

Yield: 97%. Mp: 87 - 88 °C. $[\alpha]^{20}{}_{D}$ = -1.3 (c = 2.8, H₂O), ESI-MS (m/e) 455 [M + H]⁺, IR (KBr) 3329, 3051, 2967, 2912, 1720, 1624, 1594, 1410, 1394, 1352, 1092,

1061, 852, 664, 528. Anal Calcd for $C_{12}H_{18}NNa_3O_9S_2$: C 31.79, H 4.00, N 3.09;

Found: C 31.61, H 4.17, N 3.32.

1.2.2.3. N-(2,3,4,5,6-Pentahydroxyhexyl)-N-dithiocarbamate-*L*-threonine

disodium (3c)

Yield: 91%. Mp: 86 - 87 °C $[\alpha]^{20}_{D}$ = -32.3 (c = 2.8, H₂O), ESI-MS (m/e) 406 [M + H]⁺. IR (KBr) 3356, 2952, 2831, 1726, 1616, 1571, 1465, 1382, 1230, 1195, 1080, 1045, 861, 721. Anal Calcd for C₁₁H₁₉NNa₂O₈S₂: C, 32.75; H, 4.75; N, 3.47; Found: C, 32.53; H, 4.61; N, 3.72.

1.2.2.4. *N*-(2,3,4,5,6-Pentahydroxyhexyl)-*N*-dithiocarbamate-*L*-tyrosine disodium (3d)

Yield: 90%. Mp: 103 - 105 °C. $[\alpha]^{20}{}_D$ = -17.6 (c = 2.2, H₂O), ESI-MS (m/e) 490 $[M + H]^+$. IR (KBr) 3302, 3055, 2972, 2863, 1600, 1498, 1402, 1362,1200, 1152, 1081, 1041, 768, 680. Anal Calcd for C₁₆H₂₀NNa₃O₈S₂: C, 39.43; H, 4.14; N, 2.87; Found: C, 39.22; H, 4.00; N, 3.11.

1.2.2.5. *N*-(2,3,4,5,6-Pentahydroxyhexyl)-*N*-dithiocarbamate-*L*-serine disodium (3e)

Yield: 90%. Mp: 103 - 105 °C. $[\alpha]^{20}{}_{D}$ = -36.4 (c = 2.5, H₂O), ESI-MS (m/e) 390 $[M + H]^+$. IR (KBr) 3390, 2940, 2860, 1610, 1550, 1420, 1355, 1220, 1148, 1063, 730. Anal Calcd for C₁₀H₁₇NNa₂O₉S₂: C, 30.85; H, 4.40; N, 3.60; Found: C, 31.04; H, 4.55; N, 3.83.

1.2.2.6. *N*-(2,3,4,5,6-Pentahydroxyhexyl)-*N*-dithiocarbamate-*L*-asparagine disodium (3f)

Yield: 88%. Mp: 93 - 95 °C. $[\alpha]^{20}_{D}$ = -9.9 (c = 2.5, H₂O), ESI-MS (m/e) 418 [M + H]⁺. IR (KBr) 3382, 2952, 2826, 1687,1605,1460, 1402, 1352, 1206, 1072, 793, 650. Anal Calcd for C₁₁H₁₈N₂Na₂O₈S₂: C, 31.73; H, 4.36; N, 6.73; Found: C, 31.51; H, 4.20; N, 6.95.

1.2.2.7. N-(2,3,4,5,6-Pentahydroxyhexyl)-N-dithiocarbamate-*L*-glutamine

disodium (3g)

Yield: 85%. Mp: 89 - 91 °C. $[\alpha]^{20}{}_{D}$ = -10.7 (c = 1.3, H₂O), ESI-MS (m/e) 431 $[M + H]^+$. IR (KBr) 3368, 3052, 2964, 2845, 1615, 1402, 1360, 1203, 1146, 1079, 1002, 752, 685. Anal Calcd for C₁₂H₂₀N₂Na₂O₈S₂: C, 33.49; H, 4.68; N, 6.51; Found: C, 33.68; H, 4.84; N, 6.76.

1.2.2.8. *N*-(2,3,4,5,6-Pentahydroxyhexyl)-*N*-dithiocarbamate-*L*-glycine disodium (5h)

Yield: 84%. Mp: 95 - 97 °C. $[\alpha]^{20}{}_{D}$ = -20.9 (c = 4.3, H₂O), ESI-MS (m/e) 360 $[M + H]^+$. IR (KBr) 3374, 2921, 2885, 2365, 1600, 1456, 1381, 1381, 1310, 1212, 1173, 1080, 969, 870, 717. Anal Calcd for C₉H₁₅NNa₂O₇S₂: C, 30.08; H, 4.21; N, 3.90; Found: C, 30.26; H, 4.35; N, 3.71.

1.2.2.9. *N*-(2,3,4,5,6-Pentahydroxyhexyl)-*N*-dithiocarbamate-*L*-cysteine disodium (3i)

Yield: 88%. Mp: 87 - 89 °C. $[\alpha]^{20}{}_{D}$ = -23.4 (c = 2.6, H₂O), ESI-MS (m/e) 407 $[M + H]^+$. IR (KBr) 3346, 2950, 2836, 1604, 1560, 1420, 1385, 1210, 1084, 1032, 749, 650. Anal Calcd for C₁₀H₁₇NNa₂O₇S₃: C 29.63, H 4.23, N 3.45; Found: C 29.42, H 4.09, N 3.64.

1.2.2.10. N-(2,3,4,5,6-Pentahydroxyhexyl)-N-dithiocarbamate-*L*-methionine

disodium (3j)

Yield: 90%. Mp: 99 - 101 °C. [α]²⁰_D = -0.8 (c = 2.9, H₂O), ESI-MS (m/e) 435 [M + H]⁺. IR (KBr) 3398, 3017, 2930, 2840, 1706, 1608, 1557, 1440, 1372, 1092, 850, 762, 682. Anal Calcd for C₁₂H₂₁NNa₂O₇S₃: C, 33.25; H, 4.88; N, 3.23; Found: C, 33.64; H, 4.73; N, 3.45.

1.2.2.11. *N*-(2,3,4,5,6-Pentahydroxyhexyl)-*N*-dithiocarbamate-*L*-alanine disodium (3k)

Yield: 94%. Mp: 93 - 94 °C. $[\alpha]^{20}{}_{D}$ = -24.4 (c = 2.6, H₂O), ESI-MS (m/e) 374 $[M+H]^+$. IR (KBr) 3315, 2927, 2829, 1590, 1420, 1396, 1365, 1302, 1257, 1176, 1075, 1011, 957, 762, 648. Anal Calcd for C₁₀H₁₇NNa₂O₇S₂: C 32.17, H 4.59, N 3.75; Found: C 32.00, H 4.43, N 3.52.

1.2.2.12. *N*-(2,3,4,5,6-Pentahydroxyhexyl)-*N*-dithiocarbamate-*L*-phenylalanine disodium (31)

Yield: 84%. Mp: 103 - 104 °C. $[\alpha]^{20}{}_{D}$ = -37.2 (c = 2.9, H₂O), ESI-MS (m/e) 450 $[M + H]^+$. IR (KBr) 3373, 2969, 2835, 1703, 1618, 1595, 1435, 1401, 1382, 1263, 1086, 1026, 785, 682. Anal Calcd for C₁₆H₂₁NNa₂O₇S₂: C 42.76, H 4.71, N 3.12; Found: C 42.97, H 4.88, N 3.35.

1.2.2.13. *N*-(2,3,4,5,6-Pentahydroxyhexyl)-*N*-dithiocarbamate-*L*-leucine disodium (3m)

Yield: 93%. Mp: 113 - 114 °C. $[\alpha]^{20}_{D}$ = -8.9 (c = 3.2, H₂O), ESI-MS (m/e) 417 $[M + H]^+$. IR (KBr) 3382, 2962, 2841, 1612, 1440, 1382, 1364, 1294, 1146, 1083,

1030, 770, 642. Anal Calcd for C₁₃H₂₃NNa₂O₇S₂: C 37.58, H 5.58, N 3.37; Found: C 37.36, H 5.42, N 3.59.

1.2.2.14. N-(2,3,4,5,6-Pentahydroxyhexyl)-N-dithiocarbamate-L-isoleucine

disodium (3n)

Yield: 88%. Mp: 109 - 111 °C. $[\alpha]^{20}{}_{D}$ = -9.2 (c = 2.6, H₂O), ESI-MS (m/e) 416 [M + H]⁺. IR (KBr) 3331, 2954, 2860, 1602, 1434, 1375, 1320, 1286, 1152, 1064, 1025, 789, 633. Anal Calcd for C₁₃H₂₃NNa₂O₇S₂: C 37.58, H 5.58, N 3.37; Found: C 37.39, H 5.41, N 3.61.

1.2.2.15. *N*-(2,3,4,5,6-Pentahydroxyhexyl)-*N*-dithiocarbamate-*L*-tryptophan disodium (30)

Yield: 89%. Mp: 106 - 108 °C. [α]²⁰_D = -24.3 (c = 2.8, H₂O), ESI-MS (m/e) 490 [M + H]⁺. IR (KBr) 3360, 2968, 2852, 1602, 1560, 1452, 1400, 1374, 1070, 1052, 750, 669. Anal Calcd for C₁₈H₂₂N₂Na₂O₇S₂: C 44.26, H 4.54, N 5.73; Found: C 44.04, H 4.38, N 5.51.

1.2.2.16. *N*-(2,3,4,5,6-Pentahydroxyhexyl)-*N*-dithiocarbamate-*L*-valine disodium (3p)

Yield: 91%. Mp: 90 - 92 °C. $[\alpha]^{20}{}_{D}$ = -46.6 (c = 2.4, H₂O), ESI-MS (m/e) 403 $[M + H]^+$. IR (KBr) 3303, 2952, 2836, 1695, 1602, 1550, 1419, 1395, 1362 1303, 1087, 1039, 827, 741, 617. Anal Calcd for C₁₂H₂₁NNa₂O₇S₂: C 35.91, H 5.27, N 3.49; Found: C 35.70, H 5.11, N 3.72.

1.2.2.17. *N*-(2,3,4,5,6-Pentahydroxyhexyl)-*N*-dithiocarbamate-*L*-lysine disodium (3q)

Yield: 78%. Mp: 82 - 84 °C. $[\alpha]^{20}{}_{D}$ = -3.5 (c = 1.7, H₂O), ESI-MS (m/e) 694 [M + H]⁺. IR (KBr) 3389, 2962, 2852, 1716, 1608, 1560, 1435, 1382, 1216, 1170, 1069, 1013, 803, 782, 659. Anal Calcd for C₂₀H₃₅N₂Na₃O₁₂S₄: C 34.68, H 5.09, N 4.04; Found: C 34.90, H 5.25, N 4.27.

1.2.2.18. N-(2,3,4,5,6-Pentahydroxyhexyl)-N-dithiocarbamate-*L*-arginine

disodium (3r)

Yield: 88%. Mp: 95 - 97 °C. $[\alpha]^{20}{}_{D}$ = -18.7 (c = 2.3, H₂O), ESI-MS (m/e) 460 [M + H]⁺. IR (KBr) 3369, 2945, 2856, 1706, 1630, 1503, 1386, 1238, 1104, 1075, 1016, 905, 759. Anal Calcd for C₁₃H₂₄N₄Na₂O₇S₂: C 34.06, H 5.28, N 12.22; Found: C 33.87, H 5.13, N 12.01.

1.2.2.19. N-(2,3,4,5,6-Pentahydroxyhexyl)-N-dithiocarbamate-L-histidine

disodium (3s)

Yield: 84%. Mp: 106 - 108 °C. $[\alpha]^{20}{}_{D}$ = -13.9 (c = 2.7, H₂O), ESI-MS (m/e) 441 $[M + H]^+$. IR (KBr) 3443, 3337, 3125, 2910, 1618, 1448, 1398, 1112, 1057, 1016, 957, 620. Anal Calcd for C₁₃H₁₉N₃Na₂O₇S₂: C 35.53, H 4.36, N 9.56; Found: C 35.75, H 4.51, N 9.79. The ¹H NMR signals of **3a-s** were assigned in Table 2.

Table 2¹H NMR signals of **3a-s**

3a	3.59 (m, J	4.10 (m, J	3.59 (m, J	3.80 (m, J	3.76 (m, J	3.71 (m, J	3.34 (dd, J	3.20 (dd, J	3.94 (m, J
	= 4.0 Hz.	= 4.5 Hz.	= 4.0 Hz.	= 4.5 Hz.	= 12.5 Hz.	= 3.5 Hz.	= 13.0 Hz.	= 13.0 Hz.	= 7.5 Hz.
	1H)	1H)	1H)	I = 3.5	I = 3.0	1H)	I = 3.0	I = 9.0	I = 4.5
	111)	111)	111)	J = J.J $U_{7} = 1U$	U_{7} 1U)	111)	J = J.0 $U_{7} = 1U$	U_{7} 1U)	U ₇ 1U)
	2.15(1.7)	2.00 (7	251 (7	$\Pi Z, \Pi H$	12, 11)	2 20 (7	$\Pi Z, \Pi I I$	$\Pi Z, \Pi H$	112, 111)
3b	3.15 (d, J	3.88 (m, J	3.51 (m, J	3.15 (d, J	3.88 (m, J	3.38 (m, J	$3.70 (\mathrm{dd}, J)$	3.60 (dd, J	3.41 (m, J
	= 9.5 Hz,	= 7.0 Hz	= 3.5 Hz,	= 9.5 Hz,	= 7.0 Hz	= 5.0 Hz,	= 5.0 Hz,	= 12.0 Hz,	= 5.5 Hz,
	1H)	1H)	1H)	1H)	1H)	1H)	J = 3.0	J = 3.0	1H)
							Hz, 1H)	Hz, 1H)	
30	3 67 (m J	4 39 (m. J	3 64 (m. J	3 84 (dd J	3 84 (dd	3 28 (d. J	3 20 (dd J	3 10 (dd J	3 79 (m. J
50	= 3.0 Hz	= 8.0 Hz	= 35 Hz	= 115 Hz	I = 11.5	= 4.0 Hz	= 135 I =	= 10.5 Hz	= 45 Hz
	1H)	1H)	1H)	I = 3.5	U 11.5 Цт I –	1.0 HZ, 1H)	25H7	I = 3.5	111,
	111)	111)	111)	J = 3.3	112, 5 - 2, 5, 11	111)	5.5 HZ,	J = 3.3	111)
				HZ, 1H)	3.5 HZ,		IH)	HZ, 1H)	
					IH)				
3d	3.53 (m, J	4.01 (m, J	3.53 (m, J	3.82 (m, J	3.67 (m, J	3.60 (m, J	3.23 (dd, <i>J</i>	$3.08 (\mathrm{dd}, J$	3.74 (m, <i>J</i>
	= 4.0 Hz,	= 4.5 Hz,	= 4.0 Hz,	= 5.0 Hz,	= 3.5 Hz,	= 3.5 Hz,	= 3.5 Hz,	= 12.5 Hz,	= 4.5 Hz,
	1H)	1H)	1H)	1H)	1H)	1H)	J = 12.5	J = 3.5	1H)
	,	,	,	,	,	,	Hz 1H)	Hz 1H)	,
30	3 48 († 1	4.08 (m I)	3.80 (m I)	3 72 (dd I	3.67 (m I)	3.60 (dd 1	3.20 (dd I	3.08 (dd I)	3.80 (m I)
Se	-55 Hz	-5011_{-5}	= 45 Hz	= 12.0 Hz	$-25 II_{-2}$	-5011_{-5}	= 12.0 Uz	-125 Hz	= 45 Hz
	- 3.3 HZ,	- 3.0 HZ,	- 4.3 HZ,	- 12.0 HZ,	- 2.3 HZ,	- 5.0 HZ,	- 12.0 HZ,	- 12.3 HZ,	- 4.3 HZ,
	IH)	IH)	IH)	J = 5.5	IH)	J = 3.0	J = 4.0	J = 5.0	IH)
				Hz, 1H)		Hz, 1H)	Hz, 1H)	Hz, 1H)	
3f	3.59 (m, J	3.98 (m, J	3.52 (m, J	3.72 (dd, <i>J</i>	3.68 (dd, J	3.62 (t, J	3.22 (dd, <i>J</i>	3.10 (dd, J	3.76 (dd, <i>J</i>
	= 3.5 Hz,	= 3.5 Hz,	= 4.0 Hz,	= 5.0 Hz,	= 11.0 Hz,	= 4.5 Hz,	= 12.0 Hz,	= 12.5 Hz,	= 7.0 Hz,
	1H)	1H)	1H)	J = 3.5	J = 2.5	1H)	J = 3.5	J = 8.5	$J = 5.0^{\circ}$
	,	,	,	Hz 1H)	Hz 1H)	,	Hz 1H)	Hz 1H)	Hz 1H)
3a	3.38 (m I)	3.92 (m I)	3.34 (m I)	3.59 (m I)	3.51 (m I)	3 22 († I	3 26 (dd 1	3.12 (dd I	3 68 (dd I
Jg	-25 Hz	-5.011_{π}	-4.0 Hz	-50 Hz	-120 Hz	-5.22(1, 5)	= 12.0 Uz	-12 (uu, -12 5 Uz	-5011_{-5}
	– 5.5 пz,	– 3.0 HZ,	– 4.0 HZ,	– 3.0 HZ,	– 12.0 пz,	– 3.1 HZ,	– 12.0 пz,	– 12.3 пz,	– <u>5.0 п</u> <u></u> ,
	IH)	IH)	IH)	J = 4.0	J = 3.5	IH)	J = 3.5	J = 9.0	J = 9.0
				Hz, 1H)	Hz, 1H)		Hz, 1H)	Hz, 1H)	Hz, 1H)
3h	3.70 (d, J	4.28 (m, J	3.70 (d, <i>J</i>	3.91 (m, J	3.86 (m, J	3.76 (m, J	3.46 (dd, <i>J</i>	3.22 (dd, <i>J</i>	3.66 (s,
	= 6.0 Hz,	= 5.0 Hz,	= 6.0 Hz,	= 8.5 Hz,	= 5.0 Hz,	= 3.0 Hz,	= 12.0 Hz,	= 12.0 Hz,	1H)
	1H)	1H)	1H)	1H)	1H)	1H)	J = 4.0	J = 9.0	
	,	,	,	,	,	,	Hz 1H)	Hz 1H)	
2:	3.40 (m I)	1.06 (m I)	3.40 (m I)	3 67 (dd I	3 64 (dd I	3.56 (m I)	3 20 (dd 1	3.20 (m I)	3.08 (m I)
31	$-45 II_{-}$	- 4 0 II-	$-45 II_{-}$	-5.01 - I	-12011-	$-45 II_{-}$	-125 II_{-12}	-100 II_{-}	5.76 (III, 5
	= 4.5 HZ,	= 4.0 HZ,	= 4.5 HZ,	= 5.0Hz, J	= 12.0HZ,	= 4.5 HZ,	= 12.5 Hz,	= 18.0 Hz,	= 5.0 HZ,
	IH)	IH)	IH)	= 3.5Hz,	J=4.0Hz,	IH)	J = 5.5	J = 4.5	IH)
				1H)	1H)		Hz, 1H)	Hz, 1H)	
3i	3.50 (d, J	4.02 (m, J	3.46 (m, J	3.80 (m, J	3.65 (m, J	3.56 (m, J	3.26 (dd, <i>J</i>	3.12 (dd, <i>J</i>	3.80 (m, J
0	= 5.0 Hz,	= 4.5 Hz,	= 6.5 Hz,	= 4.0 Hz,	= 3.5 Hz,	= 3.5 Hz,	= 13.0 Hz,	= 12.5 Hz,	= 4.0 Hz,
	1H)	1H)	1H)	1H)	1H)	1H)	J = 3.0	J = 8.5	1H)
	,	,	,	,	,	,	Hz 1H)	Hz 1H)	,
31/	3.64 (m I)	3.92 (m. I	3 68 (d. I	3.82 (m I)	3.80 (m I)	3 68 (d. I	3 14 (dd I	2 90 (dd I	3.83 (m. I
JK	$-50 H_{7}$	- 3 5 Hz	$-50 H_7$	-45 Hz	- 3 5 Hz	$-50 H_7$	$-125 H_7$	$-125 H_{7}$	$-50 H_7$
	-3.0112,	-5.5112,	-5.0112,	- 4.5 HZ,	- 5.5 HZ,	- 5.0 HZ,	-12.3112,	$-12.5 \Pi Z$,	- 5.0 HZ,
	іп)	іп)	іп)	іп)	1п)	іп)	J - 5.5	J = 9.0	іп)
							HZ, IH)	HZ, IH)	a
31	3.56 (d, J	3.94 (m, J	3.66 (d, J	3.76 (m, J	3.71 (m, J	3.66 (d, J	$3.48 (\mathrm{dd}, J$	$3.18 (\mathrm{dd}, J)$	3.83 (m, J
	= 7.0 Hz,	= 8.5 Hz,	= 6.0 Hz,	= 4.0 Hz,	= 3.0 Hz,	= 6.0 Hz,	= 6.5 Hz,	= 9.0 Hz,	= 4.0 Hz,
	1H)	1H)	1H)	1H)	1H)	1H)	J = 3.0	J = 4.5	J = 8.0
							Hz, 1H)	Hz, 1H)	Hz, 1H)
3m	3.65 (m. J	4.06 (m. J	3.65 (m. J	3.81 (m. J	3.80 (m. J	3.68 (t. J	3.24 (m. J	3.10 (m. J	3.75 (m. J
UIII	= 55 Hz	= 5.0 Hz	= 55 Hz	= 5.0 Hz	= 4.0 Hz	= 6.0 Hz	= 130 Hz	= 130 Hz	= 5.0 Hz
	1H)	1H)	1H)	1H)	1H)	1H)	I = 2.5	I = 6.0	1H)
	111)	111)	111)	111)	111)	111)	J = 2.5 $U_{7} = 1U$	J = 0.0 $U_{7} = 1 U$	111)
•	2 (A (m. I	4.02 (m. I	2 (A (2 70 (m I	274 (m. I	2 (7 (+ 1	12, 11)	112, 111	2.90 (m. I
3n	3.64 (m, J	4.02 (m, J	3.64 (m, J	5.78 (m, J	5.74 (m, J	3.67 (l, J	3.20 (m, J	3.11 (m, J	3.80 (m, J
	= 5.5 Hz,	= 5.0 Hz,	= 5.5 Hz,	= 4.0 Hz,	= 5.0 Hz,	= 6.0 Hz,	= 13.0 Hz,	= 13.0 Hz,	= 5.0 Hz,
	1H)	1H)	1H)	1H)	1H)	1H)	J = 2.5	J = 6.0	1H)
							Hz, 1H)	Hz, 1H)	
30	3.62 (d, J	4.12 (m, J	3.62 (d, J	3.80 (m, J	3.76 (m, J	3.70 (m, J	3.22 (dd, J	3.12 (dd, J	3.83 (m, J
	= 4.5 Hz.	= 5.0 Hz.	= 4.5 Hz.	= 5.0 Hz.	= 5.0 Hz.	= 4.0 Hz	= 12.5 Hz	= 9.3 Hz.	= 5.0 Hz
	1H)	1H)	1H)	1H)	1H)	1H)	I = 4.0	J = 12.9	1H)
					111)		ит. Па 1П/	U7 1U)	
2	2676.1	1 00 (2 50 (11 7	276 (274 (1	2676-1	$\Pi Z, \Pi I,$	$\Pi Z, \Pi I I I$	2 70 (1
3p	3.07 (m, J	4.08 (m, J	3.38 (aa, J	3.70 (m, J	3.74 (m, J	3.07 (m, J	3.20 (dd, J	3.14 (aa, J	5.19 (m, J
	= 4.0 Hz,	= 5.0 Hz,	= 4.5 Hz,	= 4.5 Hz,	= 4.0 Hz,	= 4.0 Hz,	= 3.0 Hz,	= 10.0 Hz,	= 5.0 Hz,
	1H)	1H)	J = 16.0	1H)	1H)	1H)	J = 13.0	J = 13.0	1H)
			Hz, 1H)				Hz, 1H)	Hz, 1H)	

3q	3.48 (d, J	4.22 (m, J	3.48 (d, J	3.68 (m, J	3.63 (m, J	3.58 (m, J	3.20 (dd, J	3.03 (dd, J	3.70 (m, J
•	= 5.0 Hz,	= 7.5 Hz,	= 5.0 Hz,	= 5.0 Hz,	= 4.0 Hz,	= 4.5 Hz,	= 12.5 Hz,	= 12.0 Hz,	= 5.0 Hz,
	1H)	1H)	1H)	1H)	1H)	1H)	J = 3.5	J = 9.0	1H)
							Hz, 1H)	Hz, 1H)	
3r	3.58 (t, J	4.12 (m, J	3.62 (m, J	3.75 (m, J	3.70 (m, J	3.62 (m, J	3.21 (dd, J	3.16 (dd, J	3.79 (m, J
	= 4.5 Hz,	= 5.0 Hz,	= 5.0 Hz,	= 4.5 Hz,	= 4.0 Hz,	= 5.0 Hz,	= 12.0 Hz,	= 12.0 Hz,	=5.0 Hz,
	1H)	1H)	1H)	1H)	1H)	1H)	J = 3.5	J = 4.5	1H)
							Hz, 1H)	Hz, 1H)	
3s	3.56 (m, J	4.28 (dd, J	3.56 (m, J	3.75 (m, J	3.70 (m, J	3.62 (m, J	3.44 (dd, J	2.86 (m, J	3.79 (m, J
	= 11.5 Hz,	= 6.5 Hz,	= 11.5 Hz,	= 5.0 Hz,	= 4.0 Hz,	= 4.2 Hz,	= 12.5 Hz,	= 12.5 Hz,	= 5.0 Hz,
	J = 4.5	J = 2.0	J = 4.5	1H)	1H)	1H)	J = 3.5	J = 9.0	1H)
	Hz, 1H)	Hz, 1H)	Hz, 1H)		-	-	Hz, 1H)	Hz, 1H)	

Compd	R	На	Hb	Нс	Hd	Не	Hf
3 a	a C ^{_0}	3.01 (dd, <i>J</i> = 18.0 Hz, <i>J</i> = 5.0 Hz, 1H)	2.92 (dd, <i>J</i> = 18.0 Hz, <i>J</i> = 7.0 Hz, 1H)				
3b		2.25 (t, <i>J</i> = 11.5 Hz, <i>J</i> = 9.5 Hz, 2H)	2.01 (m, <i>J</i> = 8.0 Hz, 2H)				
3c	OH a b	1.32 (d, <i>J</i> = 6.0 Hz, 3H)	3.76 (m, <i>J</i> = 2.0 Hz, 1H)				
3d	а ОН	7.09 (d, <i>J</i> = 7.5 Hz, 2H)	6.86 (d, <i>J</i> = 7.5 Hz, 2H)	2.85 (m, <i>J</i> = 4.5 Hz, 2H)			
3 e	a HO	3.54 (m, <i>J</i> = 4.0 Hz, 2H)					
3f	H ₂ N O	2.62 (d, <i>J</i> = 5.0 Hz, 2H)					
3g	a O b NH ₂	2.20 (t, <i>J</i> = 5.0 Hz, 2H)	2.00 (m, <i>J</i> = 5.0 Hz, 1H)	1.97 (m, <i>J</i> = 4.5 Hz, 1H)			
3h	a —H	3.66 (s, 1H)					
3 i	a SH	3.14 (d, <i>J</i> = 5.0 Hz, 2H)					
3ј	a S b c	2.50 (t, <i>J</i> = 4.0 Hz, 2H)	2.12 (m, 2H)	2.08 (s, 3H)			
3k	a H₃C—	1.66 (d, <i>J</i> = 7.0 Hz, 3H)					
31	a d	7.32 (m, <i>J</i> = 7.5 Hz, 2H)	7.30 (m, <i>J</i> = 7.0 Hz 2H)	7.23 (m, <i>J</i> = 8.0 Hz, 1H)	2.96 (d, <i>J</i> = 5.0 Hz, 2H)		
3m	a b	1.79 (m, <i>J</i> = 6.0 Hz, 1H)	1.72 (m, <i>J</i> = 7.0 Hz, <i>J</i> = 3.5 Hz, 2H)	1.02 (d, <i>J</i> = 6.5 Hz, 6H)			
3n	a c d	2.32 (m, <i>J</i> = 4.5 Hz, 1H)	1.36 (m, <i>J</i> = 4.0 Hz, 2H)	1.15 (d, <i>J</i> = 3.0 Hz, 3H)	0.95 (dd, <i>J</i> = 6.0 Hz, <i>J</i> = 3.5 Hz, 3H)		

1.3. In vitro anti-tumor assays of cisplatin and 3a-s

HeLa cell lines obtained from Peking University Health Science Center were cultivated at 37 °C in a 75-cm² flask, which contains 12 mL of RPMI1640 (Gibco Laboratories, Santa Clara, CA, USA) with 10% fetal calf serum (Gibco Laboratories). Penicillin and streptomycin (100 U/mL and 100 μ g/mL, respectively) were administered. The cells were incubated in humidified air with 5% CO₂ and grown to a density of 1 × 10⁵ cells/mL. Proliferation of HeLa and HL60 cells was determined by the colorimetric MTT assay as described previously [30, 31]. Briefly, cells were seeded in 100 μ L of medium in the 96-well plates (Corning, NY, USA) with a density of 1 × 10⁴ cells/well. In the treatment group, each 6 wells were added 12.5 μ L of cisplatin in NS (final concentration: 16 μ M) and 12.5 μ L of **3a-s** in NS (final concentration: 16 μ M). In the positive control group, each 6 wells were added 25 μ L of cisplatin (final concentration: 8 μ M). In the negative control group, each 6 wells were added 25 μ L of NS. The 96-well plates were incubated for 48 h at 37 °C, centrifuged at 2000 r/min for 10 min and the supernatant was aspirated. To each well, 20 mL aqueous 3-[4,5dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT, 5 mg/mL) solution was added. The 96-well plates were incubated at 37°C for another 4 h and the supernatant was aspirated. 100 μ L of DMSO was added to each well and the plates were shaken for 8 min. Optical density (OD) at 570 nm (reference at 630 nm) was measured on a 96-well microplate reader (Mode 680, Bio-Rad). All assays were repeated three times. Viability of the cells treated with test compound was deter- mined as: % Cell viability = [(average OD of test compound)/(average OD of control)] × 100.

1.4. In vivo anti-cancer assay with cisplatin and 3a-s

Male Kunming mice, purchased from Peking University Health Science Center, were maintained at 21 °C with natural day/night cycle in a conventional animal colony. 10-12 week-old mice were used in the in vivo experiments. S180, a solid sarcoma tumor, was chosen as the tumor model for this study. S180 cells for initiating subcutaneous tumors were obtained from the ascitic fluid in S180-bearing mice. S180 tumors were implanted in mice by subcutaneously injecting 0.2 mL of 0.9% normal saline containing 4×10^6 viable S180 cells under the skin on the right oxter. Twentyfour hours after implantation, the mice were randomly divided into experimental groups. The mice (30) in the positive control groupwere given a daily i.p. injection of 1.667 µmol/kg of cisplatin (Platinol, obtained as a crystalline powder from Qilu pharmaceutical factory, China) in 0.2 mL of 0.9% normal saline for ten consecutive

19

days. The mice (10) in the negative control group were given a daily i.p injection of 0.2 mL of 0.9% saline for ten consecutive days. The mice (each 10) in the treatment groups were given a daily i.p injection of 1.67 µmol/kg of cisplatin in 0.2 mL of 0.9% saline and 1.67 µmol/kg of each of **3a-s** in 0.2 mL of 0.9% saline for ten consecutive days. On the first day, 2 h after the administration the urine of each group was continually collected for 5 h and the feces of each group were weighed and blood was drawn from the eye orbit. The mice were then sacrificed by diethyl ether anesthesia and immediately dissected to provide tumor, liver, kidney, brain, spleen and heart samples.

1.5. Determination of the platinum in tumor, organs, urine, feces and blood of S180-bearing mice

Twenty-four hours after the last administration, all mice were weighed and blood was drawn from the eye orbit. Then the mice were sacrificed by diethyl ether anesthesia, dissected and weighed immediately to obtain the biosamples of the tumor, liver, kidney, brain, spleen, heart and left femur of the S180-bearing mice. All of these biosamples were digested in HClO₄/HNO₃ (1/3) on a heating block, dried at 80 °C, re-dissolved in 1% nitric acid, and measured their platinum on a Varian Spectr AA-220 atomic absorption spectrometer (Zeeman graphite furnace).

The sample solution or the standard solution (1.5 mL) was transferred to the autosampler for platinum measurement in a graphite furnace. In the measurement the

conditions, namely Drying Temperature 95 - 120 °C, Ramp 40s, Flow rate of Ar 3.0 L/min, Ashing Temperature 1000 °C, Atomization temperature 2700 °C, Substrate Background on, Lamp Current 10 mA, Wavelength 265.9 nm, Slit Width 0.2 nm, Measure Mode peak height, were used. The standard calibrations (0 μ g/L, 45 μ g/L, 90 μ g/L, 135 μ g/L, 180 μ g/L, 225 μ g/L) were prepared by diluting the stock standard solution (Pt (II) 300 μ g/L) with the autosampler. The concentration of the platinum in the sample solution was calculated automatically with the unit, μ g per gram of organ (for urine, μ g per mL of urine).

1.3.4 Metabolic analysis of platinum complex of 3n in urine, fecal, kidney and tumor samples of mice.

S180 mice were treated with cisplatin and **3n** for ten days as described above. 1 mL of urine sample was collected and extracted with ethyl acetate (3 mL × 4). The ethyl acetate phase was combined and washed with distilled water (5 mL × 4), evaporated under vacuum and the resulting residue was analyzed by reverse-phase HPLC coupled with ESI-MS (Waters, Atlantis HILIC Silica 5 μ m 4.6 × 150mm, 20 min, 70 - 90% of Methanol/water).

1 gram of the fecal sample was suspended in 5 mL of distilled waster, stirred at room temperature for 1 h and then filtered. The filtrate was extracted with ethyl acetate (3 mL \times 4). The combined ethyl acetate phase was washed with distilled waster (5 mL \times 4), evaporated under vacuum, and the residue was analyzed by LC-MS. Kidney and tumor sample of mice were collected. At 4 °C, 1 gram of the kidney or tumor and 3 mL of distilled water was homogenized, centrifuged at 2000 rpm for 5 min and 3 mL of the supernatant was obtained. The supernatant was extracted with ethyl acetate (3 mL × 4). The combined ethyl acetate phase was washed with distilled waster (5 mL × 4), evaporated under vacuum, and the resulting residue was analyzed by LC-MS.

