Supplementary Information ## Contrasting cellular uptake pathways for chlorido and iodido iminopyridine ruthenium arene anticancer complexes Isolda Romero-Canelón, Ana M. Pizarro, Abraha Habtemariam, Peter J. Sadler* Department of Chemistry, University of Warwick, Coventry CV4 7AL (UK) *To whom correspondence should be addressed: P.J.Sadler@Warwick.ac.uk Tables S1 – S11 **Table S1.** Extent of aquation for complexes **1** and **2** after 24 h, using 2 mM solutions of each complex in phosphate buffer (pH 7.2) Each value represents the mean \pm SD for three independent NMR experiments at 310 K. | | Compound | | | | | |---|--|------------|--|--|--| | 1 | $[Ru(\eta^6-p-cym)(p-Impy-NMe_2)Cl]PF_6$ | 66 ± 6 | | | | | 2 | $[Ru(\eta^6-p-cym)(p-Impy-NMe_2)I]PF_6$ | 63 ± 3 | | | | **Table S2. Time dependence.** Total accumulation of Ru in A2780 cells for complexes **1, 2** and CDDP after various periods of drug exposure at 310 K with no recovery time. Equipotent concentrations used were CDDP = $0.4 \mu M$, **1** = $5 \mu M$ and **2** = $1 \mu M$. | | ng Ru/Pt x10 ⁶ cells | | | | | | | | | |------|---------------------------------|------------------------|------------|------------|------------|------------|--------|--|--| | | | Drug exposure time (h) | | | | | | | | | | 1 4 8 24 48 72 96 | | | | | | | | | | CDDD | 0.0011 | 0.014 | 0.11 | 0.25 | 0.29 | 0.26 | 0.25 | | | | CDDP | ± 0.0001 | ± 0.004 | ± 0.08 | ± 0.03 | ± 0.02 | ± 0.01 | ± 0.02 | | | | 1 | 1.32 | 3.5 | 4.2 | 7.6 | 8.9 | 5.8 | 4.0 | | | | 1 | ± 0.09 | ± 0.4 | ± 0.1 | ± 0.8 | ± 0.6 | ± 0.4 | ± 0.2 | | | | 2 | 6.5 | 8.2 | 9 | 11 | 13.0 | 10.7 | 7.4 | | | | 2 | ± 0.4 | ± 0.4 | ± 2 | ± 1 | ± 0.7 | ± 0.3 | ± 0.1 | | | **Table S3. Temperature dependence.** Total accumulation of Ru in A2780 cells for complexes **1, 2** and CDDP after 8 h of drug exposure at various temperatures with no recovery time. Equipotent concentrations used were CDDP = 0.4 μ M, **1** = 5 μ M and **2** = 1 μ M. | | ng Ru/Pt x10 ⁶ cells | | | | | | |------|---------------------------------|-------------------|-----------------|--|--|--| | | Temperature (K) | | | | | | | | 277 293 310 | | | | | | | CDDP | N/D | 0.005 ± 0.002 | 0.12 ± 0.03 | | | | | 1 | 0.14 ± 0.04 | 0.61 ± 0.06 | 4.6 ± 0.6 | | | | | 2 | 0.8 ± 0.1 | 4.1 ± 0.9 | 10.7 ± 0.6 | | | | **Table S4. Concentration dependence.** Total accumulation of Ru in A2780 cells for complexes **1, 2** and CDDP after 24 h of drug exposure at 310 K with no recovery time. | | ng Ru/Pt x10 ⁶ cells | | | | | | | |-------------|---|-------------------------|---------------|---------------|------------|------------------|--| | | | Concentration (µM) | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | 0.10 X IC50 | 0.33 x 1C ₅₀ | 1.0 X IC50 | IC_{50} | IC_{50} | IC ₅₀ | | | CDDP | 0.16 ± 0.02 | 0.28 ± 0.05 | 2.1 ± 0.3 | 4.8 ± 0.5 | 10 ± 1 | 11 ± 3 | | | 1 | 4.1 ± 0.8 | 8.0 ± 0.3 | 40 ± 7 | 95 ± 3 | N/V | N/V | | | 2 | 5 ± 1 | 11.4 ± 0.4 | 42 ± 5 | 57 ± 6 | N/V | N/V | | **Table S5. Extent of efflux.** Total accumulation of Ru in A2780 cells for complexes 1 and 2 after 24 h of drug exposure and various recovery times at 310 K. Equipotent concentrations used were CDDP = $0.4 \mu M$, $1 = 5 \mu M$ and $2 = 1 \mu M$. | | ng Ru/Pt x10 ⁶ cells | | | | | | | |---|---------------------------------|-------------------|---------------|-----------------|--|--|--| | | | Recovery Time (h) | | | | | | | | 0 | 24 | 48 | 72 | | | | | 1 | 7.8 ± 0.1 | 3.0 ± 0.3 | 1.7 ± 0.1 | 1.7 ± 0.4 | | | | | 2 | 11.8 ± 0.8 | 3.7 ± 0.2 | 2.8 ± 0.3 | 2.79 ± 0.07 | | | | **Table S6. Inhibition of efflux.** Total accumulation of Ru in A2780 cells for complexes 1 and 2 after 24 h of drug exposure and 24 h of recovery time in drug-free medium that contained various concentrations of verapamil. Equipotent concentrations used were CDDP = 0.4 μ M, 1 = 5 μ M and 2 = 1 μ M. | | ng Ru/Pt x10 ⁶ cells | | | | | | |---|---------------------------------------|------------------|-----------------------|-----------------|-----------------|--| | | Cellular
Accumulation ^A | Verapamil (μM) | | | | | | | | 0_{B} | 5 ^C | 10 ^D | 20 ^E | | | 1 | 7.5 ± 0.5 | 3.0 ± 0.3 | 4.1 ± 0.5 | 4.9 ± 0.2 | 5.3 ± 0.4 | | | 2 | 11.9 ± 0.8 | 3.7 ± 0.2 | 4.8 ± 0.3 | 6.1 ± 0.4 | 7.2 ± 0.2 | | Table S7. Role of Na⁺/K⁺ pump in cellular metal accumulation, as a facilitated diffusion endocytosis pathway. Total accumulation of Ru in A2780 cells when co-incubated with complexes 1, 2, CDDP and various concentrations of ouabain after 24 h of drug exposure at 310 K with no recovery time. Equipotent concentrations used were CDDP = 0.4 μ M, 1 = 5 μ M and 2 = 1 μ M. | | ng Ru/Pt x10 ⁶ cells | | | | | | | |------|---------------------------------|--------------|------------|------------|-------------|------------|--| | | | Ouabain (µM) | | | | | | | | 0 | 5 | 10 | 20 | 100 | 200 | | | CDDP | 0.24 | 0.22 | 0.21 | 0.27 | 0.18 | 0.12 | | | CDDP | ± 0.05 | ± 0.02 | ± 0.04 | ± 0.06 | $\pm 0.0.5$ | ± 0.03 | | | 1 | 7.5 | 5.7 | 5.5 | 5.1 | 4.9 | 3.8 | | | 1 | ± 0.2 | ± 0.4 | ± 0.2 | ± 0.6 | ± 0.6 | ± 0.3 | | | 2 | 11.9 | 9.7 | 9.2 | 8.9 | 8.5 | 7.5 | | | 2 | ± 0.3 | ± 0.4 | ± 0.3 | ± 0.5 | ± 0.4 | ± 0.2 | | Table S8. Role of CTR1 in cellular metal accumulation. Total accumulation of Ru in A2780 cells when co-incubated with complexes 1, 2, CDDP and various concentrations of copper(II) chloride after 24 h of drug exposure at 310 K with no recovery time. Equipotent concentrations used were CDDP = $0.4 \mu M$, $1 = 5 \mu M$ and $2 = 1 \mu M$. | | ng Ru/Pt x10 ⁶ cells | | | | | | | |------|---------------------------------|------------|------------|------------|-----------|------------|--| | | Copper(II) chloride (μM) | | | | | | | | | 0 10 20 40 100 200 | | | | | | | | CDDP | 0.24 | 0.22 | 0.19 | 0.15 | 0.10 | 0.08 | | | CDDP | ± 0.05 | ± 0.02 | ± 0.03 | ± 0.04 | ± 0.2 | ± 0.01 | | | 1 | 7.5 | 7.0 | 6.8 | 6.7 | 5.2 | 4.6 | | | 1 | ± 0.2 | ± 0.3 | ± 0.5 | ± 0.3 | ± 0.5 | ± 0.3 | | | 2 | 11.9 | 11.0 | 10.8 | 10.1 | 9.5 | 8.8 | | | | ± 0.3 | ± 0.5 | ± 0.2 | ± 0.6 | ± 0.3 | ± 0.4 | | Table S9. Effect of ATP depletion in cellular metal accumulation. Total accumulation of Ru in A2780 cells when co-incubated with complexes 1, 2, CDDP and 5 μ M of antimycin A₁ after 24 h of drug exposure at 310 K with no recovery time. Equipotent concentrations used were CDDP = 0.4 μ M, 1 = 5 μ M and 2 = 1 μ M. | | ng Ru/Pt x10 ⁶ cells | | | | | | |------|---------------------------------|-----------------|--|--|--|--| | | Antimycin A ₁ (μM) | | | | | | | | 0 | 5 | | | | | | CDDP | 0.24 ± 0.05 | 0.22 ± 0.02 | | | | | | 1 | 7.5 ± 0.2 | 32 ± 2 | | | | | | 2 | 11.9 ± 0.3 | 13.6 ± 0.4 | | | | | Table S10. Membrane disruption by amphotericin B as a model for protein-mediated uptake. Total accumulation of Ru in A2780 cells when co-incubated with complexes 1, 2, CDDP and various concentrations of amphotericin B after 24 h of drug exposure at 310 K with no recovery time. Equipotent concentrations used were CDDP = 0.4 μ M, 1 = 5 μ M and 2 = 1 μ M. | | | ng Ru/Pt x10 ⁶ cells | | | | | | | |------|---------------------|---------------------------------|-----------------|-----------------|--|--|--|--| | | Amphotericin B (μM) | | | | | | | | | | 0 1 5 10 | | | | | | | | | CDDP | 0.24 ± 0.05 | 0.28 ± 0.03 | 0.35 ± 0.05 | 0.49 ± 0.05 | | | | | | 1 | 7.5 ± 0.2 | 7.7 ± 0.2 | 9.8 ± 0.3 | 10.2 ± 0.5 | | | | | | 2 | 11.9 ± 0.3 | 13.0 ± 0.4 | 18.5 ± 0.7 | 25.4 ± 0.6 | | | | | Table S11. The role of caveolae endocytotic pathway in metal accumulation. Total accumulation of Ru in A2780 cells when co-incubated with complexes 1, 2, CDDP and various concentrations of β -methyl cyclodextrin after 24 h of drug exposure at 310 K with no recovery time. Equipotent concentrations used were CDDP = 0.4 μ M, 1 = 5 μ M and 2 = 1 μ M. | | ng Ru/Pt x10 ⁶ cells | | | | | | | | |------|---------------------------------|-----------------|-----------------|-----------------|-----------------|--|--|--| | | β-methyl cyclodextrin (μM) | | | | | | | | | | 0 10 20 500 1000 | | | | | | | | | CDDP | 0.24 ± 0.05 | 0.20 ± 0.06 | 0.26 ± 0.03 | 0.23 ± 0.05 | 0.27 ± 0.02 | | | | | 1 | 7.5 ± 0.2 | 7.8 ± 0.4 | 7.5 ± 0.2 | 7.6 ± 0.4 | 7.3 ± 0.3 | | | | | 2 | 11.9 ± 0.3 | 11.2 ± 0.5 | 11.9 ± 0.5 | 12.2 ± 0.4 | 12.1 ± 0.6 | | | |