Supplementary data

Figure S-1: ¹H NMR spectrum of the ligand *isapn*, in dmso-d6.

Figure S-2: Mass spectrum of the ligand *isapn*, in methanol.

Figure S-3: ¹H NMR spectrum of the complex [Zn(isapn)]ClO₄, in MeOH-d4, at apparent pH 5.

Figure S-4: ¹H NMR spectrum of the complex [Zn(isapn)]ClO₄, in MeOH-d4, at apparent pH 7.

In both spectra, the keto-keto species (\mathbf{A}) is predominant. However, with increasing pH the intensity of these characteristic signals decrease, and there are other signals that can be attributed to the keto-enol species (\mathbf{B}) or enol-enol species (\mathbf{C}). The complex was isolated as species \mathbf{B} , but all the species are probably present in solution at different ratio, according to the equilibria:

Figure S-5: Mass spectrum of the complex [Zn(isapn)]ClO₄ dissolved in methanol/water (9:1)

Figure S-5 shows the positive ion electrospray mass spectrum of the isatin-schiff base zinc(II) complex acquired from a 9:1 methanol/water solution, and reveals a metal/ligand ratio of 1:1. Zinc displays five isotopes and the two more abundant were observed in a 1:0.56 ratio for 64 Zn (48.6%) and 66 Zn (27.4%).

Figure S-6: Western blot analysis of the purified human topo IB fraction detected by reaction with monoclonal antibody. Lane 1, markers of different molecular weights in kDa: β -galactosidase (115.7), Bovine serum albumin (96.7), Ovalbumin (53), Soybean trypsin inhibitor (37), Carbonic anhydrase (29), Lysozyme (19.7). Lane 2, purified human topoisomerase I band.

Figure S-7: CD spectra of CT-DNA (800 μ M) in phosphate buffer 50 mM/NaCl 0.1 M, in the absence and presence of the complexes [Cu(isapn)]²⁺ and [Zn(isapn)]⁺ at different concentrations (up to 160 μ M).