Electronic Supplementary information for:

## "Elemental distribution in green micro-algae using combined synchrotron radiation nano X-ray fluorescence (SR-nXRF) and electron microscopy techniques – Subcellular localization and quantitative imaging of silver and cobalt uptake by *Coccomyxa actinabiotis*."

T. Leonardo, E. Farhi, A.-M. Boisson, J. Vial, P. Cloetens, S. Bohic and C. Rivasseau\*



Figure S1. Elemental distribution and abundance determined using SR-nXRF in a control micro-alga. Micro-alga originating from Control 1. Experimental conditions and figure legend as in Figure 2.



**Figure S2. Elemental distribution and abundance determined using SR-nXRF in a control micro-alga.** Micro-alga originating from Control 2B. Experimental conditions and figure legend as in Figure 2.



**Figure S3. Comparison of the mean Zn and Mo content in the different samples.** Statistical treatment of the results presented in Figure 4. The mean content in each element displayed on Figure 4 was compared for the different samples. For each element, the homogeneity of the samples' variance was assessed using four different tests (Barlett, Levene, Brown-Forsythe and O'Brien). The means of the samples were then compared using a one-way analysis of variance (ANOVA) for samples with homogeneous variances and using a Welch's test otherwise. The significance level of all the tests was set to 5%.

For the examples of Zn and Mo presented in this figure, the Welch's test yielded no statistical difference in the mean Zn content between all the samples (p-value = 0.076) whereas the mean Zn content was statistically different (p-value < 0.0001). Mean values were then compared by pairs using Student's t test.