Supplementary materials

Unexpected impact of the number of glutamine residues on metal complex stability

Nadine M. Chiera^a, Magdalena Rowinska-Zyrek^{*b}, Robert Wieczorek^b, Remo Guerrini^a, Danuta Witkowska^b, Maurizio Remelli^{*a}, Henryk Kozlowski^b

^a Department of Chemical and Pharmaceutical Sciences, University of Ferrara, via Fossato di Mortara, 17-27, I-44121 Ferrara, Italy; rmm@unife.it

^b Department of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; magdalena.rowinska-zyrek@chem.uni.wroc.pl

FIGURE S1 ESI-MS spectra of the studied systems. Metal : ligand ratio = 1:1.1, $[ligand]_{tot}$ = 10⁻⁴ M), pH 7.4.

The most intensive signal on each of the plots corresponds to the metal complex, described in the text. The signal is enlarged in the upper right corner and its isotopic distribution is compared to a simulated one. Minor species on the main plot are Na and Cl adducts, and on plot H, also a minor signal from the free ligand is present. All species are negatively charged.

A Mass spectrum Ni²⁺ – MAHHEQQHQA-NH₂

Ni-MAHHEQQHQA-NH₂

B Mass spectrum Ni²⁺ – MAHHEQQ-NH₂

Ni-MAHHEQQ-NH₂

C Mass spectrum Ni²⁺ – MAHHEEQ-NH₂

D Mass spectrum Ni²⁺ – MAHHE-NH₂

E Mass spectrum Cu²⁺ – MAHHEQQHQA-NH₂

Cu-MAHHEQQHQA-NH₂

F Mass spectrum Cu²⁺ – MAHHEQQ-NH₂

Cu-MAHHEQQ-NH₂

G Mass spectrum Cu²⁺ – MAHHEEQ-NH₂

Cu-MAHHEEQ-NH₂

H Mass spectrum Cu²⁺ – MAHHE-NH₂

Cu-MAHHE-NH₂

FIGURE S2. Distribution plots of the studied systems. Metal : ligand ratio = 1:1, [ligand]_{tot}= 10^{-3} M), I=0,1M, 298K. All plots are based on a series of potentiometric titrations. A correlation between the species distribution and spectral parameters can be found in the tables; a wider description of this correlation is discussed in the main body of this paper.

A Distribution plot Ni²⁺ – MAHHEQQHQA-NH₂

B Distribution plot Ni²⁺ – MAHHEQQ-NH₂

C Distribution plot Ni²⁺ – MAHHEEQ-NH₂

D Distribution plot Ni²⁺ – MAHHE-NH₂

E Distribution plot Cu²⁺ – MAHHEQQHQA-NH₂

F Distribution plot Cu²⁺ – MAHHEQQ-NH₂

G Distribution plot Cu²⁺ – MAHHEEQ-NH₂

H Distribution plot Cu²⁺ – MAHHE-NH₂

FIGURE S3. Circular dichroism spectra of the studied systems. Metal : ligand ratio = 1:1.1, [ligand]_{tot}= 10^{-3} M), I=0,1M, (4mM HCl and 0.096M KCl), 298K. The studied pH ranges from 2 to 11. On all plots, the change of the spectral shape and intensity between pH 6 and 7 (together with potentiometric data) strongly suggests a square planar, albumine-like binding mode. A correlation between the species distribution and spectral parameters can be found in the tables; a wider description of this correlation is discussed in the main body of this paper.

A CD plot Ni²⁺ – MAHHEQQ-NH₂

B CD plot Ni²⁺ – MAHHEEQ-NH₂

C CD plot Ni^{2+} – MAHHE-NH₂

D CD plot Cu²⁺ – MAHHEQQHQA-NH₂

λ(nm)

E CD plot Cu²⁺ – MAHHEQQ-NH₂

F CD plot Cu²⁺ – MAHHEEQ-NH₂

λ(nm)

G CD plot Cu²⁺ – MAHHE-NH₂

FIGURE S4. UV-Vis spectra of the studied systems. Metal : ligand ratio = 1:1.1, $[ligand]_{tot}$ = 10⁻³ M), I=0,1M (4mM HCl and 0.096M KCl), 298K. The studied pH ranges from 2 to 11. On all plots, the change of the spectral shape and intensity (together with potentiometric and circular dichroism data) suggest an albumine-like binding mode. A correlation between the species distribution and spectral parameters can be found in the tables; a wider description of this correlation is discussed in the main body of this paper.

λ **(nm)**

B UV-vis plot Ni²⁺- MAHHEQQ-NH₂

λ **(nm)**

G UV-vis plot Cu²⁺ – MAHHEEQ-NH₂

 λ (nm)

FIGURE S5. Fully optimized simulated structures of the Cu^{2+} and Ni^{2+} complexes discussed in the paper. Hydrogen bonds between glutamine residues are made visible. Copper – orange, nickel – green. All structures are signed below the appropriate figure with the metal and peptide sequence.

A Cu²⁺-MAHHEEQQQQQQA-NH₂

B Ni²⁺-MAHHEEQQQQQQA-NH₂

C Cu²⁺-MAHHEQQHQA-NH₂

D Ni²⁺-MAHHEQQHQA-NH₂

E Cu²⁺-MAHHEQQ-NH₂

F Ni²⁺-MAHHEQQ-NH₂

G Cu²⁺-MAHHEEQHG-NH₂

H Ni²⁺-MAHHEEQHG-NH₂

I Cu²⁺-MAHHEEQ-NH₂

J Ni²⁺-MAHHEEQ-NH₂

K Cu²⁺-MAHHE-NH₂

L Ni²⁺-MAHHE-NH₂