Supporting Information

for

PtCl₂(phen) Disrupts the Metal Ions Binding to Amyloid-β Peptide

Guolin Ma, Erqiong Wang, Hao Wei, Kaiju Wei, Pingping Zhu and Yangzhong Liu

Contents:

- Figure S1. Reactions of $A\beta_{1-16}$ with $PtCl_2(phen)$ at pH 7.0 and 4.0
- **Figure S2.** HPLC monitoring the reaction of $PtCl_2(phen)$ with $[Cu^{II}-A\beta_{1-16}]$
- **Figure S3.** ESI-MS detecting the reaction of $A\beta_{1-16}$ with [Cu^{II}- $A\beta_{1-16}$]
- **Figure S4.** EPR spectra of $[Cu^{II}-A\beta_{1-16}]$ complexes
- **Figure S5.** EPR analysis of the reaction of $[Cu^{II}-A\beta_{1-16}]$ complex with PtCl₂(phen)

Figure S6. Comparison of the DMSO concentrations on the platination adducts.

Figure S7. Comparison of the Cu(II) ratios on the platination adducts.

Figure S8. MS/MS analysis of the binding sites of $[Pt(phen)+A\beta_{1-16}]$ (a)

Figure S9. MS/MS analysis of the binding sites of [Pt(phen)+A β_{1-16}] (**n**₁ and **n**₂)

Figure S10. Istopic distribution of the fragment ion x_4^{**} [HHQK+Pt(phen)+Cu]²⁺

Figure S11. HPLC monitoring the reaction of $PtCl_2(phen)$ with $[Zn^{II}-A\beta_{1-16}]$ complex

Figure S12. Istopic distribution of the fragment ion y_4^{**} [HHQK+Pt(phen)+Zn]²⁺

Table S1. EPR parameters corresponding to $[Cu^{II}-A\beta_{1-16}]$ complexes.

Figure S1. Comparison with the products of $A\beta_{1-16}$ with [PtCl(phen)(DMSO)](NO₃)₂ (**n**) at pH 7.0 (Red curve) and 4.0 (Blue curve) in DMSO/H₂O (v/v=2/1) solution at 25°C. The reaction rate declined apparently at pH 4.0; however, the products produced at pH 7.0 and 4.0 share the same retention time on HPLC profiles. This indicate that pH has no influence on products produced in the reaction of $A\beta_{1-16}$ with PtCl₂(phen).

Figure S2. HPLC profiles for the reaction of $A\beta_{1-16}$ with PtCl₂(phen) at 298K in DMSO/H₂O (v/v=1/2) solution in the presence of 2.5-fold molar excess of Cu²⁺ ions. (A) pH 5.0; (B) pH 7.4. The molar ratio of Cu^{II}: $A\beta_{1-16}$:Pt^{II} was 2.5:1:1 in the reaction system. HEPES has no influence on the reaction.

Figure S3. ESI-MS analysis of $[Cu^{II}-A\beta_{1-16}]$ (A) and the products from the reaction of PtCl₂(phen) (B). The reaction was performed in DMSO/H₂O (v/v=1/2) at 298K pH 7.4 for 4 hours. 2.5-fold molar equvilant Cu²⁺ ions were present in the reactions.

Figure S4. EPR spectra the $[Cu^{II}-A\beta_{1-16}]$ complex. (A) the measured spectra (solid lines) and the simulation curves (dash lines) of the $[Cu^{II}-A\beta_{1-16}]$ complex at pH 5.0 (blue) and 7.4 (red). (B) Verifying the effect of DMSO on the EPR spectra. 240 μ M Cu²⁺ and 300 μ M A β_{1-16} in 5 mM HEPES buffer, pH=7.4.

Near physiological pH, two different binding modes of $[Cu^{II}-A\beta_{1-16}]$ complexes are present usually noted mode (I) and (II). The mode (II) is stable at high pH (7.8 \leq pH \leq 9.3).¹ Moreover, the mode (z) is observed in the spectrum at pH 5.0. The signal of mode z was observed dominantly at lower pH (4.0).¹ The EPR data of these binding modes are listed on Table S1.

[Cu ^{II} -A _{β1-16}]	${g_{//}}^a$	$A_{//}{}^a$	Proposed Binding Sites	Reference
Mode (I)	2.275	184	N/A	This work
	2.262	184	$[\mathrm{NH_2}^{\mathrm{D1}}, \mathrm{CO}^{\mathrm{D1-A2}}, \mathrm{N_{Im}}^{\mathrm{H6}}, \\ \mathrm{N_{Im}}^{\mathrm{H13/H14}}]$	1-4
	2.272	171	$[\mathrm{NH_2}^{\mathrm{D1}},\mathrm{CO}^{\mathrm{D1-A2}},\mathrm{N_{Im}}^{\mathrm{H6}},\ \mathrm{N_{Im}}^{\mathrm{H13/H14}}]$	5-7
Mode (II) ^b	2.228	170	NH ₂ ^{D1} , CO, N ⁻ , N _{Im} ^{H13}	This work
	2.226	161	[NH ₂ ^{D1} , CO ^{A2-E3} , N ^{- (D1-A2)} , N _{Im}]	1-4
	2.227	157	$[{\rm CO}^{\rm A2}\!, {\rm N_{\rm Im}}^{\rm H6}\!, {\rm N_{\rm Im}}^{\rm H13}\!, {\rm N_{\rm Im}}^{\rm H14}]$	5-7

Table S1. EPR data of $[Cu^{II}-A\beta_{1-16}]$ corresponding to different coordination modes.

[a] Spin hamiltonian parameters of $[Cu^{II}-A\beta_{1-16}]$ complexes were determined from simulations of the CW-EPR Spectra in Figure S4 using program Hyperfine Spectrum.⁸

[b] The binding mode (II) was still controversial.

Figure S5. Selected $g_{//}$ region of CW-EPR spectra. (A) 150 μ M [Cu^{II}-A β_{1-16}] complex was prepared at the molar ratio Cu²⁺:A β_{1-16} =0.8:1 in ultrapure water, pH=5.0. Mode (z) and (I) are present in solution; (B) Reaction of 150 μ M [Cu^{II}-A β_{1-16}] with equal molar PtCl₂(phen) mixed at pH=5.0. The EPR spectrum was recorded after 12 hours reaction; (C) 150 μ M Cu(NO₃)₂ in ultrapure water at pH=5.0.

The signals of $[Cu^{II}-A\beta_{1-16}]$ decreased after the reaction with PtCl₂(phen) at pH 5.0. The product signals were consistent with Cu(NO₃)₂ in the aqueous, suggesting that the binding of PtCl₂(phen) released Cu²⁺ from A β_{1-16} peptide at low pH.

Figure S6. Comparison of the DMSO concentrations on the platination adducts. Reactions were performed in 0.15 mM A β_{1-16} with equimolar PtCl₂(phen) in the presence of 2.5-fold of Cu²⁺. (A) 33% DMSO (v/v); (B) 4% DMSO(v/v). The reactions were carried out at 298K, pH 5.0 for 6 hours before ESI-MS measurements. The same products were formed in these two reactions, although the relative abundance of products varied slightly in the two reactions. This result shows that 33% DMSO does not influence the reaction of PtCl₂(phen) with the [Cu^{II}-A β_{1-16}] complex.

Figure S7. Comparison of the Cu(II) ratios on the platination adducts. The ratios of copper are labeled in the figure. Reactions were performed in 0.15 mM A β_{1-16} with equimolar PtCl₂(phen) at 298K, pH 5.0 for 6 hours before ESI-MS measurements. 4% DMSO(v/v) are present in the reaction system. This result shows that the copper containing adducts are only slightly lower in the reaction with 1:1 copper ratio.

Figure S8. ESI-MS/MS spectrum of the product $[Pt(phen)+A\beta_{1-16}]$ (**a**) at m/z 777.20 (top) and the fragmentation scheme from the MS/MS spectrum (bottom). The precursor ion was denoted \blacklozenge on the spectra. His6 and His14 were potential binding sites.

In the MS/MS spectrum of **a**, the distribution of fragments is nearly identical to that of \mathbf{n}_{a} . The smallest platinated fragment b_{6}^{*} and the largest free peptide y_{10} indicated that His6 should be a binding site; while the y_{3}^{*} and b_{13} suggest that His14 is another binding site. This result was consisting with our previous report.⁹ The adducts \mathbf{n}_{a} and \mathbf{a} share the same binding sites His6 and His14. Our EPR experiments also confirmed that PtCl₂(phen) changed Cu²⁺ coordination sphere and could not released Cu²⁺ at pH 7.4. As a result, the molecular formula of \mathbf{n}_{a} was confirmed as [Pt(phen)+A β_{1-16} +Cu^{II}].

Figure S9. ESI-MS/MS spectra of the products \mathbf{n}_1 (A) and \mathbf{n}_2 (B) at m/z 777.20. The fragmentation schemes are given under the MS/MS spectra. The precursor ion was denoted \blacklozenge on the spectra. \mathbf{n}_1 and \mathbf{n}_2 share the same binding sits His6 and Lys16. The different retention time of \mathbf{n}_1 and \mathbf{n}_2 on HPLC profiles may suggest the influence of the copper coordination.

Figure S10. Isotopic distributions of the fragment ion x_4^{**} [HHQK+Pt(phen)+Cu]²⁺ produced in Figure 6. (A) Theoretical calculated isotope pattern, m/z = 506.11, z = 2+. The isotopic distribution was simulated by software IsoPro 3.0 with the fragment formula: $[C_{36}H_{41}N_{12}O_7PtCu]^{2+}$. (B) Measured ESI-MS spectrum, m/z =506.16, z = 2+.

In the MS/MS process, peptide bond breakage between C α -C, C-N and N-C α yields six different product ions. Nomenclature for polypeptide fragments: a_n , b_n and c_n are N-terminal fragments; x_n , y_n and z_n are C-terminal fragments.¹⁰

Figure S11. HPLC profiles for the reaction of $[Zn^{II}-A\beta_{1-16}]$ with equimolar [PtCl(phen)(DMSO)](NO₃) (**n**) in DMSO/H₂O (v/v=1/2, pH 6.0) at 298K. The molar ratio of $Zn^{II}:A\beta_{1-16}:Pt(II)$ was 2.5:1:1 in the reaction system.

Figure S12. Isotopic distributions for fragment ion y_4^{**} [HHQK+Pt(phen)+Zn]²⁺ produced in Figure 9. (A) Theoretical calculated isotope pattern, m/z = 493.11, z = 2+. The isotopic distribution was simulated by software IsoPro 3.0 with the formula $[C_{35}H_{42}N_{12}O_6PtZn]^{2+}$. (B) Measured ESI-MS spectrum, m/z = 493.12, z = 2+.

Reference

- 1. B. Alies, H. Eury, C. Bijani, L. Rechignat, P. Faller and C. Hureau, *Inorg. Chem.*, 2011, **50**, 11192-11201.
- 2. H. Eury, C. Bijani, P. Faller and C. Hureau, Angew. Chem. Int. Ed., 2011, 50, 901-905.
- 3. C. Hureau, Y. Coppel, P. Dorlet, P. L. Solari, S. Sayen, E. Guillon, L. Sabater and P. Faller, *Angew. Chem. Int. Ed.*, 2009, **48**, 9522-9525.
- 4. P. Dorlet, S. Gambarelli, P. Faller and C. Hureau, Angew. Chem. Int. Ed., 2009, 48, 9273-9276.
- 5. S. C. Drew, C. L. Masters and K. J. Barnham, *Plos One*, 2010, **5**, e15875.
- S. C. Drew, C. J. Noble, C. L. Masters, G. R. Hanson and K. J. Barnham, J. Am. Chem. Soc., 2009, 131, 1195-1207.
- 7. S. C. Drew and K. J. Barnham, Accounts Chem Res, 2011, 44, 1146-1155.
- 8. W. R. Hagen, CRC Press, Boca Raton, Fl, USA, 2009.
- 9. G. Ma, F. Huang, X. Pu, L. Jia, T. Jiang, L. Li and Y. Liu, Chem. Eur. J., 2011, 17, 11657-11666.
- 10. H. Steen and M. Mann, Nat. Rev. Mol. Cell. Bio., 2004, 5, 699-711.