Supporting Information

Bimodal-hybrid heterocyclic amine targeting oxidative pathways and copper mis-regulation in Alzheimer's disease.

Paulina Gonzalez¹, Viviana C.P. da Costa¹, Kimberly Hyde¹, Qiong Wu², Onofrio Annunziata¹, Josep Rizo², Giridhar Akkaraju³, Kayla N. Green^{1*}

Table of Contents.

Figure S1. Screening for biocompatibility of cyclen using the MTT assay, with 10 fold dilution concentrations, in HT-22 cell line.

Figure S2. Protective effect of **1** against A β associated neurotoxicity in HT-22 cells in a 48 h. treatment using MTT assay. A β 15 μ M; **1** 50, 80, 100, 120 μ M.

Figure S3. Protective effect of 1 against copper associated neurotoxicity in HT-22 cells in a 48 h. treatment using MTT assay. $CuCl_2$ 15 μ M; 1 50, 80, 100, 120 μ M.

Figure S4. Evaluation of GSH levels in HT-22 Neuronal Cells measured by GSH-GloTM Kit: (a) Treatment of HT-22 neuronal cells with BSO results in a dose dependent decrease in GSH. (b) The addition of **1** at 80, 100, 120 μ M does not change GSH levels.

Figure S5. DCFH-DA Antioxidant assay of HT-22 neuronal cells after 12 hour exposure to $A\beta$ + Cu [15 µM each, final conc.] followed by addition of **1**. n=8 for each sample. (Note: DCFH-DA interacts with free copper ions to give unreliable readings, therefore this control was excluded.)

Table S1. Calculated Kow values to determine BBB permeability of cyclen.

Figure S6. HSQC spectra of ¹⁵N-A $\beta_{1.40}$ (black) and ¹⁵N-A $\beta_{1.40}$ and **1** (1.5 eq.) (red). (a) full spectrum, (b) zoom of ¹⁵N 120-125 ppm region and (c) change in intensity for residues in A $\beta_{1.40}$ peptide in the presence of **1** when compared to ¹⁵N-A $\beta_{1.40}$ signal intensities alone.

Experimental: Details of Spectrophotometric determination of K (mM⁻¹) for cyclen and 1.

Figure S1. Screening for biocompatibility of cyclen using the MTT assay, with 10 fold dilution concentrations, in HT-22 cell line.

Figure S2. Protective effect of **1** against A β associated neurotoxicity in HT-22 cells in a 48 h. treatment using MTT assay. A β 15 μ M; **1** 50, 80, 100, 120 μ M.

Figure S3. Protective effect of 1 against copper associated neurotoxicity in HT-22 cells in a 48 h. treatment using MTT assay. $CuCl_2$ 15 μ M; 1 50, 80, 100, 120 μ M.

Figure S4. Evaluation of GSH levels in HT-22 Neuronal Cells measured by GSH-GloTM Kit: (a) Treatment of HT-22 neuronal cells with BSO results in a dose dependent decrease in GSH. (b) The addition of **1** at 80, 100, 120 μ M does not change GSH levels.

Figure S5. DCFH-DA Antioxidant assay of HT-22 neuronal cells after 12 hour exposure to $A\beta$ + Cu [15 μ M each, final conc.] followed by addition of **1**. n=8 for each sample. (Note: DCFH-DA interacts with free copper ions to give unreliable readings, therefore this control was excluded.)

$Log K_{ow}$ fragment description	Coefficient	Value obtained for 1
-CH2- [aliphatic carbon]	0.4911	3.9288
-NH- [aliphatic attach]	-1.4962	-5.9848
Equation Constant		0.2290
LogK _{ow}		-1.8270

Table S1. Calculated K_{ow} values to determine BBB permeability of cyclen.

Figure S6. HSQC spectra of ¹⁵N-A β_{1-40} (black) and ¹⁵N-A β_{1-40} plus **1** (1.5 eq.) (red). (a) Full spectrum. (b) Expansion of the central region of the spectrum, plotted at higher contour levels than in panel (a) to emphasize the stronger intensities of the red cross-peaks compared to the corresponding black cross-peaks. (c) Changes in the HSQC cross-peak intensities of the A β_{1-40} peptide caused by addition of **1** (1.5 eq.). The ratios between the cross-peak intensities of the A β_{1-40} peptide alone (I₀) are plotted as a function of the residue number.

Details of Spectrophotometric determination of K (mM⁻¹) for cyclen and 1.

Our data were examined using the one-to-one binding stoichiometry model: $\mathbf{M} + \mathbf{L} \rightleftharpoons \mathbf{ML}$, where M, L and ML represent free copper, free ligand and copper-ligand complex, respectively. The binding constant, *K*, can then be expressed in terms of molar concentrations of each component:

$$K = \frac{[ML]}{[M][L]} (1)$$

where [M], [L] and [ML] are the corresponding molar concentrations. The total copper concentration, $C_{\rm M}$, is related to [M] by the mass balance $C_{\rm M} = [M] + [ML]$ and the total ligand concentration $C_{\rm L}$ to [L] by the mass balance $C_{\rm L} = [L] + [ML]$.

In order to express [M] has a function of K, $C_{\rm M}$ and $C_{\rm L}$, it is useful to start by relating the fraction of copperligand complex, $\binom{[{\rm ML}]}{C_{\rm L}}$, to the binding constant using equation 1 and the previous mass balances:

$$\frac{C_{\mathbf{M}} - [\mathbf{M}]}{C_{\mathbf{L}}} = \frac{K[\mathbf{M}]}{1 + K[\mathbf{M}]}$$
(2)

Equation 2 can be rearranged as a quadratic equation with respected to [M] and its positive root can be calculated:

$$[\mathbf{M}] = \frac{-(1 - KC_{\mathbf{M}} + KC_{\mathbf{L}}) + \sqrt{(1 - KC_{\mathbf{M}} + KC_{\mathbf{L}})^2 + 4KC_{\mathbf{M}}}}{2K}$$
(3)

At a given wavelength, the copper extinction coefficient, ε , in the presence of ligand, can be expressed as the weighted average between that of the free copper ions, $\varepsilon_{\text{free}}$, and bound copper, $\varepsilon_{\text{bound}}$, according to:

$$\varepsilon = \frac{[\mathbf{M}]}{C_{\mathbf{M}}} \varepsilon_{\text{free}} + \frac{[\mathbf{M}\mathbf{L}]}{C_{\mathbf{M}}} \varepsilon_{\text{bound}}$$
(4)

In equation 4, it is useful to define [M]/ $C_{\rm M}$ has the fraction of free copper ions in solution, $\alpha_{\rm free}$. Therefore, we can rewrite equation 4 and express $\varepsilon/\varepsilon_{\rm free}$ has a function of $\alpha_{\rm free}$.

$$\frac{\varepsilon}{\varepsilon_{\rm free}} = \alpha_{\rm free} + (1 - \alpha_{\rm free})R$$
(3)

where and $R = \varepsilon_{\text{bound}} / \varepsilon_{\text{free}}$ and

$$\alpha_{\text{free}} = \frac{-(1 - KC_{\text{M}} + KC_{\text{L}}) + \sqrt{(1 - KC_{\text{M}} + KC_{\text{L}})^2 + 4KC_{\text{M}}}}{2KC_{\text{M}}}$$
(4)

The method of least squares (using KaleidaGraph software) based on equations 3 and 4 was applied to our experimental data to determine *K* and *R* (Table S3). The accuracy of the prepared 1 solutions concentration was assessed by substituting in equation (4) C_L with fC'_L , where C'_L is the measured 1 concentration by weight and *f* is a corrective factor that takes into account that part of the total weighed material is impurity; hence, $f \leq 1$. This value of *f* is consistent with the actual concentration value extracted from NMR, being approximately 10% lower than that determined by sample weight.

 Table S3. Fitting model parameters associated with copper-ligand binding.

	Cyclen ¹	1 ¹
K/mM^{-1}	>100	6.4±1.7
R	179±1	14.7±0.2
f	1.05 ± 0.01	0.88 ± 0.02

¹the uncertainties are standard deviations.