Supporting Information

Selenium modulates mercury uptake and distribution in rice (*Oryza sativa L*.), in correlation to mercury species and exposure level

Jiating Zhao^a, Yunyun Li^a, Yuxi Gao^{a,*}, Yufeng Li^a, Bai Li^a, Yi Hu^a, Yuliang Zhao^a,

Zhifang Chai^a

- ^a CAS Key Lab of Nuclear Radiation and Nuclear Energy Technology; CAS Key Laboratory for Boimedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing 100049, China.
- * Corresponding author e-mail: gaoyx@ihep.ac.cn

Abbreviation:

Inductively coupled plasma-mass spectrometry (ICP-MS)

Inorganic mercury (IHg)

Methylmercury (MeHg)

Micro-synchrotron radiation X-ray fluorescence (µ-SRXRF)

of

Number of Pages: 4

Number of Tables: 1

Number	
--------	--

Images:

2

ICP/MS Conditions	
Spray chamber	Quartz impact bead
Nebulizer	Glass concentric
RF power/ W	1200
Plasma gas flow/ L min ⁻¹	13.0
Auxiliary gas flow/ L min ⁻¹	0.70
Nebulizer gas flow/ L min ⁻¹	0.72
Collision gas	7.28% (v/v) H ₂ in He
Collision gas flow/ ml min ⁻¹	5.6
Dwell time/ms	100
Monitored ion/m/z	²⁰² Hg

 Table S1 The operating conditions of ICP-MS for Hg analysis in rice plant

Figure S1 Effect of Se on the transfer factors (TF) of IHg and MeHg from root to the aerial part of rice plant.

TF=IHg (MeHg) content in aerial part / IHg (MeHg) content in root

Figure S2 μ -SRXRF imaging of the distribution and accumulation of the essential elements (K, Ca, Fe, Cu, Zn and Mn) in rice grains.

