Supporting Information: Hg(II) bacterial biouptake: The role of anthropogenic and biogenic ligands present in solution and spectroscopic evidence of ligand exchange reactions at the cell surface

Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208

Sara Anne Thomas, Tiezheng Tong, and Jean-François Gaillard*

*Corresponding author: Jean-François Gaillard Email: jf-gaillard@northwestern.edu Phone: (847)-467-1376

1 Supporting Text

2 Preparation of Hg standards for XANES measurements

3 The Hg standards analyzed in this study include Hg(acetate)₂ and Hg(cysteine)₂ powders 4 as well as aqueous Hg(cysteine)₃ and HgEDTA. The Hg(acetate)₂ standard was purchased from 5 Sigma Aldrich and finely ground. $Hg(cysteine)_2$ was synthesized according to the method by 6 Jalilehvand et al.¹ 100 mM Hg(NO₃)₂ was mixed with 500 mM cysteine in freshly filtered Milli-7 Q water bubbled with pure N_2 gas. Hg(cysteine)₂ formed as a white precipitate. The precipitate 8 was filtered was washed with Milli-Q under a constant stream of N₂ gas, dried under an 9 atmosphere of N₂, and finely ground into a powder for XAS analysis. Powder standards were 10 spread onto the sticky side of a 6" piece of Scotch tape with a razor blade. The tape was then cut 11 into approximately 12 equal pieces and these pieces were stacked (between 2-4 pieces per stack) 12 and sandwiched between 2 pieces of scotch tape. This was done to eliminate "pinholes" and to 13 enable layering for optimal sample thickness at the beamline. 14 For the aqueous standards, a stock solution of $0.5M \text{ Hg}(\text{NO}_3)_2$ was prepared in 5% trace 15 metal grade HNO_3 . Stock solutions of 1M cysteine and 1M EDTA were also prepared by 16 dissolving the corresponding mass of powdered H₂cysteine in Milli-Q and powdered 17 Na₂H₂EDTA in Milli-Q with 2M NaOH respectively. Both Hg(cysteine)₃ and HgEDTA standards were prepared at Hg to ligand ratios of 1:5 (100mM Hg(NO₃)₂ and 500mM ligand). 18 19 Aliquots of 1M HNO₃ or 1M NaOH were added to the solutions to achieve pH=7 for HgEDTA 20 and pH=8 for Hg(cysteine)₃. Speciation calculations with ChemEQL indicated 100% of total Hg 21 was as HgEDTA and Hg(cysteine)₃ for the respective standards at respective pH. A precipitate 22 initially formed in the Hg(cysteine)₃ standard, but it dissolved when pH was increased to 8. 23 Additionally, the Hg(cysteine)₃ standard solution was stored in a container with no headspace of

24 air and sealed with Parafilm to minimize the oxidation of excess cysteine.

25 XANES data collection and analysis

26 Hg standards were measured in transmission mode, while Hg samples – having lower Hg 27 concentrations - were measured in fluorescence mode. Aqueous Hg standards were contained in 28 \sim 1cm diameter rubber tubes sealed on both ends with Kapton tape, and the optimal tube length 29 (i.e., absorption length) was calculated with the program Hephaestus (Ravel and Newville 2005). 30 Powdered standards were contained between pieces of Scotch tape, and Hg samples were 31 contained between pieces of Kapton tape. Energy was scanned between 200 eV below to 32 approximately 1000 eV above the Hg L_{III} -edge (12,284 eV) with a Si(111) monochromator. All 33 samples and standards had a pre-edge scanning step size of 0.6 eV, an EXAFS scan increment of 0.06 Å⁻¹, a base count time of 1 second, a k weight for the time base of 2, and a final k count time 34 35 of 10 seconds. Spectra of samples with low Hg concentrations were too noisy for EXAFS 36 analysis; however, energy was still scanned well beyond the edge for normalization purposes. To 37 maintain the energy calibration between samples, a selenium reference foil placed between the 38 transmitted beam detector (I_{T1}) and a reference detector (I_{T2}) was simultaneously scanned for 39 both transmission and fluorescence mode. Incident intensity (I_{T0}) , I_{T1} , and I_{T2} were measured with 40 ionization chambers, while fluorescence intensity was measured with a silicon drift detector. 41 Three successive scans of approximately 25 minutes duration per scan were collected for the Hg 42 reference standards. Between 5 and 39 scans of approximately 45 minutes duration per scan were 43 collected for the Hg samples. The beam position was altered for samples that required more 44 scans to prevent beam-induced changes in the sample. XANES data processing was done with the program Athena². 45

46

47 References

48 1. F. Jalilehvand, B. O. Leung, M. Izadifard, E. Damian, *Inorg Chem* 2006, **45**. 66-73.

49 2. B. Ravel, M. Newville, *J Synchrotron Radiat* 2005, **12**. 537-541

51 Supporting Tables

52 Table S1: Composition of MSM and MCM

	Media component	MSM (M)	MCM (M)
	KH ₂ PO ₄	5.0×10^{-3}	
	$K_2 HPO_4$	9.9×10^{-3}	
	3-(N-Morpholino)propane-		2.0×10^{-2}
	sulfonic acid (MOPS buffer)		
	Na-β-glycerophosphate		1.0×10^{-3}
	$MgSO_4$	4.1×10^{-4}	4.1×10^{-4}
	NH_4NO_3	1.2×10^{-2}	1.2×10^{-2}
	Isoleucine	7.6×10^{-4}	7.6×10^{-4}
	Leucine	7.6×10^{-4}	7.6×10^{-4}
	Thiamine	3.0×10^{-9}	3.0×10^{-9}
	Glucose	1.0×10^{-2}	1.0×10^{-2}
	MgO	2.5×10^{-5}	
	$CaCO_3$	2.0×10^{-6}	
	$Fe(NO_3)_3$	2.0×10^{-6}	
	$ZnSO_4$	5.0×10^{-7}	
	$CuSO_4$	1.0×10^{-7}	
	$CoSO_4$	1.0×10^{-8}	
	H_3BO_3	1.0×10^{-6}	
	Na_2MoO_4	2.0×10^{-7}	
	HNO ₃	8.0×10^{-5}	
	NaOH		9.1×10^{-3}
53			
54			
55			
56			
57			
58			
59			
60			
60			
<i>(</i> 1			
61			
()			
62			
()			
63			
C A			
64			

65	Table	S2:	Hg(II)	-organic	ligand	com	olexation	constants
			0\ /	0	0			

Species	Reaction	LogK		
EDTA				
HgEDTA ²⁻	$Hg^{2+} + EDTA^{4-} = HgEDTA^{2-}$	23.50 ª		
HgOHEDTA ^{3–}	$H_2O + Hg^{2+} + EDTA^{4-} = H^+ + HgOHEDTA^{3-}$	13.7		
HgHEDTA ⁻	$Hg^{2+} + H^+ + EDTA^{4-} = HgHEDTA^-$	27.0		
EDDS				
HgEDDS ^{2–}	$Hg^{2+} + EDDS^{4-} = HgEDDS^{2-}$	17.50		
HgOHEDDS ^{3–}	$H_2O + Hg^{2+} + EDDS^{4-} = H^+ + HgOHEDDS^{3-}$	10.69		
HgHEDDS ⁻	$Hg^{2+} + H^+ + EDDS^{4-} = HgHEDDS^{-}$	22.32		
DTPA				
HgDTPA ³⁻	$Hg^{2+} + DTPA^{5-} = HgDTPA^{3-}$	26.3		
HgHDTPA ²⁻	$Hg^{2+} + H^+ + DTPA^{5-} = HgHDTPA^{2-}$	30.4		
NTA				
HgNTA ⁻	$Hg^{2+} + NTA^{3-} = HgNTA^{-}$	15.9		
Cysteine		15.00		
HgCysteine	Hg^{2+} + Cysteine ²⁻ = HgCysteine	15.30		
$Hg(Cysteine)_2^2$	$Hg^{2+} + 2Cysteine^{2-} = Hg(Cysteine)_2^{2-}$	41.8 ^a		
$HgH(Cysteine)_2^-$	$Hg^{2+} + H^+ + 2Cysteine^{2-} = HgH(Cysteine)_2^-$	50.74 ^ª		
$HgH_2(Cysteine)_2$	$Hg^{2+} + 2H^+ + 2Cysteine^{2-} = HgH_2(Cysteine)_2$	58.11ª		
$Hg(Cysteine)_3^{4-}$	$Hg^{2+} + 3Cysteine^{2-} = Hg(Cysteine)_3^{4-}$	45.39 ^b		
$HgH(Cysteine)_3^{3-}$	$Hg^{2+} + H^+ + 3Cysteine^{2-} = HgH(Cysteine)_3^{3-}$	55.85 ^b		
$HgH_2(Cysteine)_3^{2-}$	$Hg^{2+} + 2H^+ + 3Cysteine^{2-} = HgH_2(Cysteine)_3^{2-}$	64.55 ^b		
Penicillamine				
HgPEN	$Hg^{2+} + PEN^{2-} = HgPEN$	16.15		
$HgH(PEN)_2^-$	$Hg^{2+} + H^+ + 2PEN^{2-} = HgH(PEN)_2^-$	52.03°		
$HgH_2(PEN)_2$	$Hg^{2+} + 2H^{+} + 2PEN^{2-} = HgH_2(PEN)_2$	59.0 °		
$HgH_3(PEN)_2^+$	$Hg^{2+} + 3H^{+} + 2PEN^{2-} = HgH_3(PEN)_2^{+}$	61.02 °		
$HgH_3(PEN)_3^-$	$Hg^{2+} + 3H^{+} + 3PEN^{2-} = HgH_3(PEN)_3^{-}$	72.43 °		
Glutathione				
HgGSH ⁻	$Hg^{2+} + GSH^{3-} = HgGSH^{-}$	26.0		
$Hg(GSH)_2^{4-}$	$Hg^{2+} + 2GSH^{3-} = Hg(GSH)_2^{4-}$	41.58		
HgH(GSH) ₂ ^{3–}	$Hg^{2+} + H^+ + 2GSH^{3-} = HgH(GSH)_2^{3-}$	51.21°		
$HgH_2(GSH)_2^{2-}$	$Hg^{2+} + 2H^{+} + 2GSH^{3-} = HgH_2(GSH)_2^{2-}$	60.24 ^e		
$Hg(GSH)_3^{7-}$	$Hg^{2+} + 3GSH^{3-} = Hg(GSH)_3^{7-}$	44.76 ^e		
HgH(GSH) ₃ ^{6–}	$Hg^{2+} + H^{+} + 3GSH^{3-} = HgH(GSH)_3^{6-}$	54.70 ^e		
$HgH_2(GSH)_3^{5-}$	$Hg^{2+} + 2H^{+} + 3GSH^{3-} = HgH_2(GSH)_3^{5-}$	63.90 ^e		
$HgH_3(GSH)_3^{4-}$	$Hg^{2+} + 3H^{+} + 3GSH^{3-} = HgH_3(GSH)_3^{4-}$	72.75°		
^a All complexation constants are obtained from the Joint Expert Speciation System database				
(http://jess.murdoch.edu.au/jess_home.htm) or otherwise cited.				
^b Complexation constant obtained from Cheesman, Arnold, and Rabenstein (1).				
^c Complexation constants obtained from Koszegi-Szalai and Paal (2).				

^dComplexation constants obtained from Berthon (3).

^e Complexation constants obtained from Shoukry, Cheesman, and Rabenstein (4).

66 **References**

1.

67

B. V. Cheesman, A. P. Arnold, D. L. Rabenstein, J Am Chem Soc 1988, 110. 6359-6364.

68	2.	H. Koszegi-Szalai, T. L. Paal, Talanta 1999, 48. 393-402.
69	3.	G. Berthon, Pure Appl Chem 1995, 67. 1117-1240.
70	4.	M. M. Shoukry, B. V. Cheesman, D. L. Rabenstein, Can J Chem 1988, 66. 3184-3189.
71		
72		
73		
74		
75		
76		
77		
78		
79		
80		
81		
82		
83		
84		
85		
86		
87		
88		
89		
90		
91		
92		

93 Table S3: Speciation of 300 nM Hg(II) (as % THg) in presence of varying concentrations of

94 organic ligand in Milli-Q water.

[Organ	ic ligand]	1µM	10µM	100µM	1mM	10mM
EDTA	pH	5.5	5.9	7.0	7.7	7.6
	HgEDTA ²⁻	98.91	99.58	99.80	99.26	99.37
	HgOHEDTA ³⁻	_	0.01	0.17	0.74	0.63
	HgHEDTA ⁻	1.09	0.41	0.03	_	-
NTA	pН	5.4	5.4	5.5	5.7	6.4
	HgNTA	62.21	95.16	99.51	99.92	99.96
	$Hg(OH)_2$	36.82	4.70	0.49	0.08	0.04
	HgCl ₂	0.97	0.14	_	_	_
EDDS	pH	5.6	6.4	8.4	9.8	9.8
	HgEDDS ²⁻	73.04	69.61	2.39	0.11	0.10
	HgOHEDDS ³⁻	4.21	27.72	97.52	99.89	99.90
	HgHEDDS ⁻	12.98	1.79	_	-	_
	$Hg(OH)_2$	9.61	0.88	0.09	-	-
	HgCl ₂	0.16	_	_	_	_
DTPA	pН	5.5	5.5	5.7	5.8	5.6
	HgDTPA ³⁻	96.17	96.17	97.54	98.05	96.80
	HgHDTPA ²⁻	3.83	3.83	2.46	1.95	3.20
Cysteine	pН	5.4	5.4	5.4	5.3	5.3
(CYS)	$HgH_2(CYS)_2$	98.96	99.01	98.89	99.14	99.17
	HgH(CYS)2	1.04	0.99	1.11	0.86	0.83
Penicillamine	pН	5.4	5.4	5.3	5.2	5.2
(PEN)	$HgH_2(PEN)_2$	99.96	99.95	99.93	99.82	98.78
	$HgH_3(PEN)_2^+$	0.04	0.05	0.05	0.06	0.06
	HgH ₃ (PEN) ₃	_	_	0.02	0.12	1.16
Glutathione	pН	5.3	4.6	4.1	3.4	2.9
(GSH)	$HgH(GSH)_2^{3-}$	0.02	_	_	_	_
	HgH ₂ (GSH) ₂ ²⁻	99.98	100	100	100	100

- -

108 Fig. S1: The luminescence output of *E. coli* ARL1 in the presence of 0-100 nM THg recorded

- 109 every 5 minutes for 3 hours in MCM. The dominant Hg(II) species for all Hg concentrations are
- 110 Hg(isoleucine)₂ and Hg(NH₃)₂²⁺. Data points are the average of 3 replicates.

Fig. S2: The growth of *E. coli* ARL1 reported as increase in OD_{600} in the presence of 0-500 nM THg in the bioreporter exposure medium (MCM) with no organic ligands recorded during a 3hour exposure period (blue) and a 7-hour exposure period (green). The dashed lines represent the growth of *E. coli* ARL1 in the absence of Hg. MCM contains a limited amount of nutrients to support the growth of *E. coli*, thus growth for all conditions is minimal. The initial OD_{600} of *E. coli* ARL1 for each exposure condition was approximately 0.18. The points represent the average of 3 replicates, and error bars are ± 1 SD.

Fig. S3: The growth of *E. coli* ARL1 reported as increase in OD_{600} in the presence of 30 nM THg with 0-1000 μ M organic ligand in the bioreporter exposure medium (MCM) for a 3-hour (blue) and a 7-hour (green) exposure period. The dashed lines represent the increase in OD_{600} of *E. coli* ARL1 in the presence of 30 nM THg in the absence of organic ligand for a 3-hour exposure

124	period (blue) and a 7-hour exposure period (green). MCM contains a limited amount of nutrients
125	to support the growth of <i>E</i> . <i>coli</i> , thus growth for all conditions is minimal. The initial OD_{600} of <i>E</i> .
126	coli ARL1 was approximately 0.18 for all samples. The values presented are the average of three
127	replicates, and error bars are ± 1 SD.
128	
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	
140	
141	
142	
143	
144	
145	
146	
147	
148	

150 Figure S4: The concentration of THg recovered in the wells of a 96-well plate after exposure of

151 E. coli ARL1 to 30 nM THg in the presence of 0.1, 10, and 1000 μ M (A) aminopolycarboxylate

152 ligand and (B) thiol-containing ligand in MCM for a 3-hour exposure period. The values

153 presented are the average of three replicates, and error bars are ± 1 SD.

Fig. S5: The concentration of dissolved oxygen measured in a solution of 1 mM penicillamine or
glutathione dissolved in the bioreporter exposure medium (MCM) over a period of 3 hours. The
solution was prepared in a BOD bottle and sealed from the atmosphere for the entire exposure

165 period.

170

Figure S6: The fraction of total Hg associated with *E. coli* ARL1 after a 3-hour exposure period to 50 μ M Hg in the absence of organic ligand and in the presence of 1 mM EDTA. The exposure medium was MCM without glucose and cell density was approximately 3 × 10⁸ cells/mL. The fraction of sorbed Hg was calculated as the concentration of dissolved Hg (passed through 0.22 μ m filter) subtracted from THg then divided by THg. The bars represent averages from at least 3 independent experiments, and error bars are ±1 SD.