# Copyright The Royal Society of Chemistry, 1999 # CCDC Number: 440/086 ############################################################################ # # # # # ### # # ### ### # ### # # ### # # ### # ### # # # # # # # # # # # # # ## ## # ## # # # # # # # # # # ### # # ### ### # ### # # # ### # ## # ### ### # # # # # # # # # # # # # # # # # # ## # # # ### ### # # ### ### # # ### # # # # # # # # # # # # # # # # # ### ### ### # # # # # ## ## # # # # # # # # # # # # # # # ### # ### ### # ### # # # # # # # # # ## # # # # # # # # # # # ### # # # # # ### # # # # # ############################################################################ ############################################################################ # # # This Supplementary Material is written in the Crystallographic # # Information File (CIF) format. For further details see: S.R. Hall, # # F.H. Allen and I.D. Brown, Acta Cryst. (1991) A47, 655-685. # # # ############################################################################ data_3 ############################################################################ # # _publ_requested_journal 'New Journal of Chemistry' _publ_section_title ; Structure of NH-Pyrazoles Bearing Only C-Methyl Substituents: 4-Methylpyrazole is a Hydrogen-Bonded Trimer in the Solid ; loop_ _publ_author_name _publ_author_address 'Richard Goddard' ; Max-Planck-Institut f\"ur Kohlenforschung Kaiser-Wilhelm-Platz 1 D-45470 M\"ulheim an der Ruhr Germany ; 'Rosa M. Claramunt' ; Departamento de Qu\'imica Org\'anica y Biolog\'ia M\'edica Facultad de Ciencias UNED Senda del Rey s/n E-28040 Madrid Spain ; 'Consuelo Escol\'astico' ; Departamento de Qu\'imica Org\'anica y Biolog\'ia M\'edica Facultad de Ciencias UNED Senda del Rey s/n E-28040 Madrid Spain ; 'Jos\'e Elguero' ; Instituto de Qu\'imica M\'edica CSIC Juan de la Cierva 3 E-28006 Madrid Spain ; # # ############################################################################ _chemical_name_systematic ; 4-methylpyrazole ; _chemical_name_common 4-methylpyrazole _chemical_melting_point 297 _chemical_formula_sum 'C4 H6 N2' _chemical_formula_weight 82.11 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M 'P c a 21' _symmetry_Int_Tables_number 29 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, z+1/2' 'x+1/2, -y, z' '-x+1/2, y, z+1/2' _cell_length_a 14.831(2) _cell_length_b 16.848(4) _cell_length_c 5.4962(14) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 1373.3(5) _cell_formula_units_Z 12 _cell_measurement_temperature 100 _cell_measurement_reflns_used 25 _cell_measurement_theta_min 20.5 _cell_measurement_theta_max 23.2 _exptl_crystal_description cylinder _exptl_crystal_colour colourless _exptl_crystal_size_max 0.60 _exptl_crystal_size_mid 0.50 _exptl_crystal_size_min 0.50 _exptl_crystal_density_meas none _exptl_crystal_density_diffrn 1.191 _exptl_crystal_density_method none _exptl_crystal_F_000 528 _exptl_absorpt_coefficient_mu 0.078 _exptl_absorpt_correction_type none _exptl_special_details ; The crystal was grown from the frozen liquid by zone crystallisation in a Lindemann glass capillary under argon at 273 K using a CO~2~ laser to melt the sample. ; _diffrn_ambient_temperature 100 _diffrn_radiation_wavelength 0.71069 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Enraf-Nonius CAD4' _diffrn_measurement_method '\w-2\q scan' _diffrn_standards_number 3 _diffrn_standards_interval_time 30 _diffrn_standards_decay_% 1.8 _diffrn_reflns_number 12289 _diffrn_reflns_av_R_equivalents 0.0713 _diffrn_reflns_av_sigmaI/netI 0.0462 _diffrn_reflns_limit_h_min -19 _diffrn_reflns_limit_h_max 19 _diffrn_reflns_limit_k_min -21 _diffrn_reflns_limit_k_max 21 _diffrn_reflns_limit_l_min -7 _diffrn_reflns_limit_l_max 7 _diffrn_reflns_theta_min 1.21 _diffrn_reflns_theta_max 27.53 _reflns_number_total 3148 _reflns_number_observed 2943 _reflns_threshold_expression I>2\s(I) _computing_data_collection 'EXPRESS / CAD4 software (Enraf-Nonius, 1995)' _computing_cell_refinement 'EXPRESS / CAD4 software (Enraf-Nonius, 1995)' _computing_data_reduction 'DATAP (Coppens,Leiserowitz & Rabinovich, 1965)' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'ORTEP (Johnson, 1976)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0570P)^2^+0.1329P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens difmap _refine_ls_hydrogen_treatment refall _refine_ls_extinction_method none _refine_ls_abs_structure_details 'Flack, H. D. (1983). Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack -0.3(16) _refine_ls_number_reflns 3148 _refine_ls_number_parameters 235 _refine_ls_number_restraints 1 _refine_ls_R_factor_all 0.0406 _refine_ls_R_factor_obs 0.0364 _refine_ls_wR_factor_ref 0.1008 _refine_ls_wR_factor_obs 0.0964 _refine_ls_goodness_of_fit_ref 1.053 _refine_ls_restrained_S_all 1.053 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C 0.83581(9) 0.60913(8) 0.5072(2) 0.0249(3) Uani 1 1 d . . . H1A H 0.8065(13) 0.6223(10) 0.642(4) 0.040(5) Uiso 1 1 d . . . C2 C 0.86045(9) 0.53500(7) 0.4252(3) 0.0249(3) Uani 1 1 d . . . C3 C 0.90242(10) 0.55067(8) 0.2022(3) 0.0302(3) Uani 1 1 d . . . H3A H 0.9352(14) 0.5156(12) 0.115(5) 0.060(6) Uiso 1 1 d . . . C4 C 0.84545(12) 0.45686(9) 0.5482(3) 0.0333(3) Uani 1 1 d . . . H4A H 0.792(2) 0.4502(17) 0.633(7) 0.108(11) Uiso 1 1 d . . . H4B H 0.8279(19) 0.4219(15) 0.445(7) 0.090(9) Uiso 1 1 d . . . H4C H 0.9010(17) 0.4274(14) 0.590(5) 0.069(7) Uiso 1 1 d . . . C5 C 1.05280(9) 0.69248(7) -0.3803(2) 0.0255(3) Uani 1 1 d . . . H5A H 1.0444(13) 0.6370(10) -0.429(4) 0.046(5) Uiso 1 1 d . . . C6 C 1.10506(9) 0.75283(6) -0.4748(2) 0.0209(3) Uani 1 1 d . . . C7 C 1.08216(9) 0.81807(7) -0.3320(3) 0.0248(3) Uani 1 1 d . . . H7 H 1.1080(12) 0.8719(10) -0.332(4) 0.041(5) Uiso 1 1 d . . . C8 C 1.17149(10) 0.74901(8) -0.6809(3) 0.0266(3) Uani 1 1 d . . . H8A H 1.1401(18) 0.7507(10) -0.834(6) 0.063(8) Uiso 1 1 d . . . H8B H 1.2109(14) 0.7931(11) -0.684(4) 0.052(6) Uiso 1 1 d . . . H8C H 1.2101(13) 0.7022(11) -0.669(4) 0.049(5) Uiso 1 1 d . . . C9 C 0.92083(9) 0.95385(8) 0.3003(3) 0.0259(3) Uani 1 1 d . . . H9 H 0.9557(10) 0.9930(9) 0.213(3) 0.024(4) Uiso 1 1 d . . . C10 C 0.86463(8) 0.95899(7) 0.5023(3) 0.0234(3) Uani 1 1 d . . . C11 C 0.83444(9) 0.88112(8) 0.5348(3) 0.0273(3) Uani 1 1 d . . . H11 H 0.7934(14) 0.8609(11) 0.654(5) 0.051(6) Uiso 1 1 d . . . C12 C 0.84090(10) 1.03042(8) 0.6508(3) 0.0298(3) Uani 1 1 d . . . H12A H 0.8401(19) 1.0161(15) 0.809(7) 0.094(9) Uiso 1 1 d . . . H12B H 0.8798(15) 1.0767(13) 0.609(5) 0.060(7) Uiso 1 1 d . . . H12C H 0.7799(15) 1.0486(11) 0.632(4) 0.055(6) Uiso 1 1 d . . . N1 N 0.86124(7) 0.66362(6) 0.3422(2) 0.0248(2) Uani 1 1 d . . . H1 H 0.860(2) 0.7246(18) 0.372(8) 0.123(12) Uiso 1 1 d . . . N2 N 0.90267(8) 0.62853(7) 0.1534(2) 0.0283(3) Uani 1 1 d . . . N3 N 1.00336(8) 0.72152(7) -0.1958(2) 0.0264(2) Uani 1 1 d . . . H3 H 0.9660(16) 0.6911(14) -0.108(5) 0.078(8) Uiso 1 1 d . . . N4 N 1.02065(8) 0.79909(6) -0.1634(2) 0.0256(2) Uani 1 1 d . . . N5 N 0.92200(8) 0.87821(7) 0.2227(2) 0.0254(2) Uani 1 1 d . . . H5 H 0.9613(16) 0.8513(14) 0.115(6) 0.080(8) Uiso 1 1 d . . . N6 N 0.86894(8) 0.83279(6) 0.3654(2) 0.0263(3) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.0268(6) 0.0277(6) 0.0203(6) -0.0011(5) 0.0020(5) -0.0026(5) C2 0.0271(6) 0.0251(6) 0.0224(6) 0.0014(5) 0.0007(5) -0.0029(5) C3 0.0393(8) 0.0258(6) 0.0256(7) -0.0045(6) 0.0092(6) -0.0040(5) C4 0.0390(8) 0.0250(6) 0.0360(9) 0.0069(6) 0.0029(6) -0.0034(6) C5 0.0334(6) 0.0227(6) 0.0204(6) -0.0011(5) 0.0004(5) -0.0018(5) C6 0.0242(6) 0.0227(6) 0.0157(5) 0.0022(5) -0.0019(5) 0.0032(4) C7 0.0319(6) 0.0212(5) 0.0212(6) 0.0017(5) 0.0014(5) 0.0009(5) C8 0.0309(7) 0.0295(7) 0.0196(6) 0.0019(5) 0.0038(5) 0.0030(5) C9 0.0312(7) 0.0238(6) 0.0226(6) 0.0011(5) 0.0033(5) 0.0033(5) C10 0.0249(6) 0.0246(6) 0.0206(6) -0.0007(5) -0.0019(5) 0.0021(5) C11 0.0276(6) 0.0287(6) 0.0256(7) -0.0009(6) 0.0029(5) -0.0021(5) C12 0.0335(7) 0.0300(7) 0.0260(7) -0.0072(6) 0.0026(5) 0.0013(5) N1 0.0285(5) 0.0236(5) 0.0222(5) -0.0024(5) 0.0008(4) -0.0033(4) N2 0.0358(6) 0.0277(5) 0.0213(5) -0.0015(5) 0.0061(5) -0.0065(4) N3 0.0320(6) 0.0276(6) 0.0196(5) 0.0019(5) 0.0020(4) -0.0034(5) N4 0.0313(6) 0.0255(5) 0.0200(5) 0.0004(5) 0.0019(4) 0.0036(4) N5 0.0310(6) 0.0240(5) 0.0213(5) 0.0001(4) 0.0024(4) 0.0039(4) N6 0.0295(5) 0.0248(5) 0.0247(6) 0.0004(4) 0.0014(4) -0.0001(4) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 N1 1.3447(18) . y C1 C2 1.3772(18) . y C2 C3 1.3998(19) . y C2 C4 1.4967(18) . y C3 N2 1.3390(18) . y C5 N3 1.3436(17) . y C5 C6 1.3798(18) . y C6 C7 1.3926(17) . y C6 C8 1.5028(19) . y C7 N4 1.3390(17) . y C9 N5 1.3441(17) . y C9 C10 1.3908(19) . y C10 C11 1.3977(18) . y C10 C12 1.4962(19) . y C11 N6 1.3384(18) . y N1 N2 1.3431(17) . y N3 N4 1.3437(16) . y N5 N6 1.3492(16) . y loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N1 C1 C2 108.88(12) . . y C1 C2 C3 103.52(12) . . y C1 C2 C4 127.61(13) . . y C3 C2 C4 128.87(13) . . y N2 C3 C2 111.19(12) . . y N3 C5 C6 108.79(11) . . y C5 C6 C7 103.45(12) . . y C5 C6 C8 128.34(11) . . y C7 C6 C8 128.21(12) . . y N4 C7 C6 111.57(11) . . y N5 C9 C10 108.67(12) . . y C9 C10 C11 103.63(12) . . y C9 C10 C12 128.79(12) . . y C11 C10 C12 127.58(13) . . y N6 C11 C10 111.08(13) . . y N2 N1 C1 110.43(11) . . y C3 N2 N1 105.97(11) . . y N4 N3 C5 110.49(11) . . y C7 N4 N3 105.70(10) . . y C9 N5 N6 110.22(11) . . y C11 N6 N5 106.40(11) . . y _diffrn_measured_fraction_theta_max 0.999 _diffrn_reflns_theta_full 27.53 _diffrn_measured_fraction_theta_full 0.999 _refine_diff_density_max 0.235 _refine_diff_density_min -0.187 _refine_diff_density_rms 0.041